首页 > 最新文献

International Journal of Modern Physics E最新文献

英文 中文
Cross sections for nuclear transmutation of long-lived fission product 126Sn using (p,n) reaction 利用(p,n)反应实现长寿命裂变产物 126Sn 核嬗变的截面
IF 1.1 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2024-01-26 DOI: 10.1142/s021830132450006x
K. Churi, P. Singh, S. Hinge, M. Hemalatha
{"title":"Cross sections for nuclear transmutation of long-lived fission product 126Sn using (p,n) reaction","authors":"K. Churi, P. Singh, S. Hinge, M. Hemalatha","doi":"10.1142/s021830132450006x","DOIUrl":"https://doi.org/10.1142/s021830132450006x","url":null,"abstract":"","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139594712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Squeezed spectra and elliptic flow of bosons and anti-bosons with in-medium mass splitting 具有中等质量分裂的玻色子和反玻色子的挤压谱和椭圆流
IF 1.1 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2024-01-12 DOI: 10.1142/s0218301323500702
Yong Zhang, Shi-Yao Wang, Peng Ru, Wei-Hua Wu

We study the impact of the in-medium mass splitting between bosons and anti-bosons on their spectra and elliptic flow. The in-medium mass splitting may cause a separation in the transverse momentum spectra, as well as a division in the elliptic flow between bosons and anti-bosons. The magnitude of this effect becomes greater as the in-medium mass splitting increases. With the increasing rapidity, the splitting effect of the spectra increases and the splitting effect of the elliptic flow decreases. These phenomena may provide a way to differentiate whether the influences on boson and anti-boson in the medium are consistent.

我们研究了玻色子和反玻色子的中间质量分裂对它们的光谱和椭圆流的影响。中间质量分裂可能会导致玻色子和反玻色子的横动量谱分离,以及椭圆流的分裂。这种影响的程度会随着中间质量分裂的增加而增大。随着速度的增加,光谱的分裂效应也会增加,而椭圆流的分裂效应则会减弱。这些现象可能为区分介质中玻色子和反玻色子的影响是否一致提供了一种方法。
{"title":"Squeezed spectra and elliptic flow of bosons and anti-bosons with in-medium mass splitting","authors":"Yong Zhang, Shi-Yao Wang, Peng Ru, Wei-Hua Wu","doi":"10.1142/s0218301323500702","DOIUrl":"https://doi.org/10.1142/s0218301323500702","url":null,"abstract":"<p>We study the impact of the in-medium mass splitting between bosons and anti-bosons on their spectra and elliptic flow. The in-medium mass splitting may cause a separation in the transverse momentum spectra, as well as a division in the elliptic flow between bosons and anti-bosons. The magnitude of this effect becomes greater as the in-medium mass splitting increases. With the increasing rapidity, the splitting effect of the spectra increases and the splitting effect of the elliptic flow decreases. These phenomena may provide a way to differentiate whether the influences on boson and anti-boson in the medium are consistent.</p>","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermodynamic and hydrodynamic characteristics of interacting system formed in relativistic heavy ion collisions 相对论重离子碰撞中形成的相互作用体系的热力学和流体力学特征
IF 1.1 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2023-12-23 DOI: 10.1142/s0218301323500659
Xu-Hong Zhang, Hao-Ning Wang, Fu-Hu Liu, Khusniddin K. Olimov

To study the energy-dependent characteristics of thermodynamic and hydrodynamic parameters, based on the framework of a multi-source thermal model, we analyze the soft transverse momentum (pT) spectra of the charged particles (π, π+, K, K+, p̄, and p) produced in gold–gold (Au–Au) collisions at the center-of-mass energies sNN=7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200GeV from the STAR Collaboration and in lead–lead (Pb–Pb) collisions at sNN=2.76 and 5.02TeV from the ALICE Collaboration. In the rest framework of emission source, the probability density function obeyed by meson momenta satisfies the Bose–Einstein distribution, and that obeyed by baryon momenta satisfies the Fermi–Dirac distribution. To simulate the pT of the charged particles, the kinetic freeze-out temperature T and transverse expansion velocity βT of emission source are introduced into the relativistic ideal gas model. Our results, based on the Monte Carlo method for numerical calculation, show a good agreement with the experimental data. The excitation f

为了研究热力学和流体力学参数随能量变化的特性,我们在多源热模型的框架下,分析了在质量中心能量sNN=7的金-金(Au-Au)对撞中产生的带电粒子(π-、π+、K-、K+、p̄和p)的软横动量(pT)谱图,以及在质量中心能量sNN=7的铅-铅(Pb-Pb)对撞中产生的带电粒子(π-、π+、K-、K+、p̄和p)的软横动量(pT)谱图。7、11.5、14.5、19.6、27、39、62.4 和 200GeV 的金-金(Au-Au)对撞中产生的,以及在 sNN=2.76 和 5.02TeV 的铅-铅(Pb-Pb)对撞中产生的。在发射源的静态框架中,介子矩服从的概率密度函数满足玻色-爱因斯坦分布,重子矩服从的概率密度函数满足费米-狄拉克分布。为了模拟带电粒子的 pT,在相对论理想气体模型中引入了发射源的动力学冻结温度 T 和横向膨胀速度 βT。我们采用蒙特卡洛方法进行数值计算,结果与实验数据非常吻合。分析结果表明,在不同中心度的对撞中,热力学参数 T 和流体力学参数 βT 的激发函数呈从 7.7GeV 到 5.02TeV 的递增趋势。
{"title":"Thermodynamic and hydrodynamic characteristics of interacting system formed in relativistic heavy ion collisions","authors":"Xu-Hong Zhang, Hao-Ning Wang, Fu-Hu Liu, Khusniddin K. Olimov","doi":"10.1142/s0218301323500659","DOIUrl":"https://doi.org/10.1142/s0218301323500659","url":null,"abstract":"<p>To study the energy-dependent characteristics of thermodynamic and hydrodynamic parameters, based on the framework of a multi-source thermal model, we analyze the soft transverse momentum (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span>) spectra of the charged particles (<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>π</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>π</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>K</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mover accent=\"true\"><mrow><mi>p</mi></mrow><mo>̄</mo></mover></math></span><span></span>, and <i>p</i>) produced in gold–gold (Au–Au) collisions at the center-of-mass energies <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>7</mn><mo>.</mo><mn>7</mn></math></span><span></span>, 11.5, 14.5, 19.6, 27, 39, 62.4, and 200<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>GeV from the STAR Collaboration and in lead–lead (Pb–Pb) collisions at <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msqrt><mrow><msub><mrow><mi>s</mi></mrow><mrow><mi>N</mi><mi>N</mi></mrow></msub></mrow></msqrt><mo>=</mo><mn>2</mn><mo>.</mo><mn>7</mn><mn>6</mn></math></span><span></span> and 5.02<span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>TeV from the ALICE Collaboration. In the rest framework of emission source, the probability density function obeyed by meson momenta satisfies the Bose–Einstein distribution, and that obeyed by baryon momenta satisfies the Fermi–Dirac distribution. To simulate the <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span> of the charged particles, the kinetic freeze-out temperature <i>T</i> and transverse expansion velocity <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>β</mi></mrow><mrow><mi>T</mi></mrow></msub></math></span><span></span> of emission source are introduced into the relativistic ideal gas model. Our results, based on the Monte Carlo method for numerical calculation, show a good agreement with the experimental data. The excitation f","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Open charm mesons and charmonium states in magnetized strange hadronic medium at finite temperature 有限温度下磁化奇异强子介质中的开放粲介子和粲态
IF 1.1 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2023-12-23 DOI: 10.1142/s0218301323500635
Amal Jahan C. S., Amruta Mishra

In this paper, we investigate the masses of the pseudoscalar (D(D0, D+), D̄(D0̄, D) and vector open charm mesons (D(D0, D+), D̄(D̄0, D) as well as the pseudoscalar (ηc(1S), ηc(2S)) and the vector charmonium states (Jψ, ψ(2S),

本文研究了伪高子(D(D0, D+),D̄(D0̄, D-)和矢量开放符介子(D∗(D∗0, D∗+),D̄∗(D̄∗0, D∗-)以及伪高子(ηc(1S)、ηc(2S))和矢量粲态(J∕ψ, ψ(2S), ψ(1D))。在磁化介质中,我们在手性有效模型中研究了开放符介子由于与重子和标量场(σ、ζ和δ)相互作用而产生的质量变化。此外,由于朗道量子化的作用,带电伪谱介子(D±)和带电矢量介子的纵向分量(D∗±∥)在磁场中经历了额外的正质量修正。在手性有效模型中还计算了稀拉顿场χ的介质变化所模拟的胶子凝聚物的修正对粲子质量的影响。在胶子凝聚物的修正中还考虑了轻夸克质量的贡献。在高温下,标量场的磁诱导修正会显著降低介子的中间质量。我们的研究通过现象学有效拉格朗日相互作用,将伪标量和相应矢量介子之间的磁诱导自旋混合效应纳入其中。在磁场存在的情况下,自旋混合导致矢量介子纵向分量的质量发生正偏移,而伪镜介子的质量发生负偏移。根据得到的粲介子和开放粲介子的中间质量,我们还利用轻夸克对产生模型,即3P0模型,计算了ψ(1D)到DD̄的部分衰变宽度。
{"title":"Open charm mesons and charmonium states in magnetized strange hadronic medium at finite temperature","authors":"Amal Jahan C. S., Amruta Mishra","doi":"10.1142/s0218301323500635","DOIUrl":"https://doi.org/10.1142/s0218301323500635","url":null,"abstract":"<p>In this paper, we investigate the masses of the pseudoscalar (<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi></math></span><span></span>(<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow></msup></math></span><span></span>), <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mover accent=\"true\"><mrow><mi>D</mi></mrow><mo>̄</mo></mover></math></span><span></span>(<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mover accent=\"true\"><mrow><msup><mrow><mi>D</mi></mrow><mrow><mn>0</mn></mrow></msup></mrow><mo>̄</mo></mover></math></span><span></span>, <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span><span></span>) and vector open charm mesons (<span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span><span></span>(<span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>∗</mo><mn>0</mn></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>∗</mo><mo>+</mo></mrow></msup></math></span><span></span>), <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mover accent=\"true\"><mrow><mi>D</mi></mrow><mo>̄</mo></mover></mrow><mrow><mo>∗</mo></mrow></msup></math></span><span></span>(<span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mover accent=\"true\"><mrow><mi>D</mi></mrow><mo>̄</mo></mover></mrow><mrow><mo>∗</mo><mn>0</mn></mrow></msup></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>D</mi></mrow><mrow><mo>∗</mo><mo>−</mo></mrow></msup></math></span><span></span>) as well as the pseudoscalar (<span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>η</mi></mrow><mrow><mi>c</mi></mrow></msub><mo stretchy=\"false\">(</mo><mn>1</mn><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>η</mi></mrow><mrow><mi>c</mi></mrow></msub><mo stretchy=\"false\">(</mo><mn>2</mn><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span>) and the vector charmonium states (<span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>J</mi><mo stretchy=\"false\">∕</mo><mi>ψ</mi></math></span><span></span>, <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>ψ</mi><mo stretchy=\"false\">(</mo><mn>2</mn><mi>S</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"e","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of midrapidity average transverse momentum of pions, kaons, protons and antiprotons in Au+Au collisions in (snn)1∕2= 7–39-GeV energy range from the beam energy scan program 波束能量扫描程序显示的 (snn)1∕2= 7-39-GeV 能量范围内 Au+Au 对撞中的小离子、高子、质子和反质子的中频平均横动量的演变情况
IF 1.1 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2023-12-21 DOI: 10.1142/s0218301323500660
Khusniddin K. Olimov, Igor A. Lebedev, Boburbek J. Tukhtaev, Anastasiya I. Fedosimova, Fu-Hu Liu, Shokhida A. Khudoyberdieva, Shakhnoza Z. Kanokova

The Npart dependencies of the experimental average transverse momentum, pt, of the charged pions, charged kaons, protons and antiprotons produced at midrapidity (|y|<0.1) in Au+Au collisions from the Beam Energy Scan (BES) program at the RHIC (Relativistic Heavy Ion Collider), measured by STAR Collaboration in the (snn)12=7–39-GeV energy range, have been described quite well with the power-law model function. We have obtained 0<α(pion)<α(kaon)<α((anti)proton)<0.2 inequality at all BES energies, indicating the clear mass ordering (dependence) of the power parameter α. On the whole, the exponent parameter α for the charged kaons as well as (anti)protons decreases noticeably with increasing Au+Au collision energy from

带电质子、带电高子、质子和反质子在中速(|y|<0.1)时产生的Au+Au对撞中的带电质子、带电高子、质子和反质子的能量,用幂律模型函数进行了很好的描述。我们在所有 BES 能量下都得到了 0<α(先驱)<α(高子)<α((反质子)<0.2 不等式,表明幂参数 α 具有明显的质量排序(依赖性)。总的来说,带电高子和(反)质子的指数参数α随着 Au+Au 碰撞能量的增加而明显减小,从(snn)1∕2=7.7GeV 到(snn)1∕2=39GeV。在(snn)1∕2≈39GeV处观察到的带电高子参数α的能量(snn)依赖性的急剧变化,可能表明在(snn)1∕2≈39GeV左右的Au+Au对撞中带电高子的产生机制发生了重大变化。在(snn)1∕2≈20GeV左右观测到的带电质子参数α的(snn)1∕2依赖性的显著变化,与STAR协作组早先报告的在(snn)1∕2≈20GeV左右Au+Au对撞中粒子产生机制的可能变化是一致的。在(snn)1∕2=7-20GeV区域,α(质子)和α(反质子)之间以及(π+)和α(π-)之间出现了明显的间隙。在(snn)1∕2>20GeV区域,这些间隙随着(π+)≈α(π-)和α(质子)≈α(反质子)而减小并几乎消失。总之,关于所研究粒子种类的参数α的碰撞能量依赖性的发现,可以表明在(snn)1∕2≈20GeV左右的Au+Au碰撞中,核物质可能发生相变,进入QGP和强子的混合相。粒子和反粒子的参数α与(snn)1∕2之间的差异与反粒子和粒子的产量比以及粒子和反粒子的产生机制的差异有关。由此推断,指数参数α应该对粒子(系统)热化程度和粒子产生机制很敏感,它的急剧变化可能与核/重子物质中粒子产生机制的变化或/和相变有关。
{"title":"Evolution of midrapidity average transverse momentum of pions, kaons, protons and antiprotons in Au+Au collisions in (snn)1∕2= 7–39-GeV energy range from the beam energy scan program","authors":"Khusniddin K. Olimov, Igor A. Lebedev, Boburbek J. Tukhtaev, Anastasiya I. Fedosimova, Fu-Hu Liu, Shokhida A. Khudoyberdieva, Shakhnoza Z. Kanokova","doi":"10.1142/s0218301323500660","DOIUrl":"https://doi.org/10.1142/s0218301323500660","url":null,"abstract":"<p>The <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">〈</mo><msub><mrow><mi>N</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">part</mtext></mstyle></mrow></msub><mo stretchy=\"false\">〉</mo></math></span><span></span> dependencies of the experimental average transverse momentum, <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">〈</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>t</mi></mrow></msub><mo stretchy=\"false\">〉</mo></math></span><span></span>, of the charged pions, charged kaons, protons and antiprotons produced at midrapidity (<span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>|</mi><mi>y</mi><mi>|</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>1</mn></math></span><span></span>) in <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Au</mtext></mstyle><mo>+</mo><mstyle><mtext mathvariant=\"normal\">Au</mtext></mstyle></math></span><span></span> collisions from the Beam Energy Scan (BES) program at the RHIC (Relativistic Heavy Ion Collider), measured by STAR Collaboration in the <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mo stretchy=\"false\">∕</mo><mn>2</mn></mrow></msup><mo>=</mo><mn>7</mn></math></span><span></span>–39-GeV energy range, have been described quite well with the power-law model function. We have obtained <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo stretchy=\"false\">(</mo><mstyle><mtext mathvariant=\"normal\">pion</mtext></mstyle><mo stretchy=\"false\">)</mo><mo>&lt;</mo><mi>α</mi><mo stretchy=\"false\">(</mo><mstyle><mtext mathvariant=\"normal\">kaon</mtext></mstyle><mo stretchy=\"false\">)</mo><mo>&lt;</mo><mi>α</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">(</mo><mstyle><mtext mathvariant=\"normal\">anti</mtext></mstyle><mo stretchy=\"false\">)</mo><mstyle><mtext mathvariant=\"normal\">proton</mtext></mstyle><mo stretchy=\"false\">)</mo><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>2</mn></math></span><span></span> inequality at all BES energies, indicating the clear mass ordering (dependence) of the power parameter <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>. On the whole, the exponent parameter <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> for the charged kaons as well as (anti)protons decreases noticeably with increasing <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">Au</mtext></mstyle><mo>+</mo><mstyle><mtext mathvariant=\"normal\">Au</mtext></mstyle></math></span><span></span> collision energy from <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msup><m","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140075813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A study of decay chains of radioactive actinium isotopes 放射性锕系元素衰变链研究
IF 1.1 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2023-12-08 DOI: 10.1142/s0218301323500696
P. S. Damodara Gupta, N. Sowmya, H. C. Manjunatha, H.S. Anushree, L. Seenappa, K. Sridhar
{"title":"A study of decay chains of radioactive actinium isotopes","authors":"P. S. Damodara Gupta, N. Sowmya, H. C. Manjunatha, H.S. Anushree, L. Seenappa, K. Sridhar","doi":"10.1142/s0218301323500696","DOIUrl":"https://doi.org/10.1142/s0218301323500696","url":null,"abstract":"","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139011461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systematic investigation of proxy-SU(3) model in light nuclei 轻核中代理-SU(3)模型的系统研究
IF 1.1 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2023-12-08 DOI: 10.1142/s0218301323500714
H. Abusara, M. Alstaty
{"title":"Systematic investigation of proxy-SU(3) model in light nuclei","authors":"H. Abusara, M. Alstaty","doi":"10.1142/s0218301323500714","DOIUrl":"https://doi.org/10.1142/s0218301323500714","url":null,"abstract":"","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139011195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charge radius relations derived from the nuclear masses for two neighboring isotopes 从两个相邻同位素的核质量推导出的电荷半径关系
IF 1.1 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2023-12-01 DOI: 10.1142/s0218301323500684
Bao-Bao Jiao
{"title":"Charge radius relations derived from the nuclear masses for two neighboring isotopes","authors":"Bao-Bao Jiao","doi":"10.1142/s0218301323500684","DOIUrl":"https://doi.org/10.1142/s0218301323500684","url":null,"abstract":"","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138619365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electromagnetic transitions between two mesons containing different masses of heavy quarks using BS framework 利用 BS 框架实现包含不同质量重夸克的两个介子之间的电磁跃迁
IF 1.1 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2023-11-24 DOI: 10.1142/s0218301323500672
Hluf Negash
{"title":"Electromagnetic transitions between two mesons containing different masses of heavy quarks using BS framework","authors":"Hluf Negash","doi":"10.1142/s0218301323500672","DOIUrl":"https://doi.org/10.1142/s0218301323500672","url":null,"abstract":"","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139241394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photonuclear reaction in 67Zn 67Zn 中的光核反应
IF 1.1 4区 物理与天体物理 Q3 Physics and Astronomy Pub Date : 2023-11-17 DOI: 10.1142/s0218301323500647
Sylvian Kahane, Raymond Moreh
{"title":"Photonuclear reaction in 67Zn","authors":"Sylvian Kahane, Raymond Moreh","doi":"10.1142/s0218301323500647","DOIUrl":"https://doi.org/10.1142/s0218301323500647","url":null,"abstract":"","PeriodicalId":50306,"journal":{"name":"International Journal of Modern Physics E","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139263843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Modern Physics E
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1