P. Gunawardana, P. Chowdhury, Gabriele Morra, Peter A. Cawood
The dominant tectonic mode operating on early Earth (before ca. 2.5 Ga) remains elusive, with an increasing body of evidence suggesting that non-plate tectonic modes were likely more prevalent at that time. Thus, how plate tectonics evolved after that remains contentious. We performed two-dimensional numerical modeling of mantle convection at temperatures appropriate for the Hadean−Archean eons and show that subduction and rift systems may have spontaneously emerged on Earth from an earlier drip-and-rift−dominated tectonic mode in response to the secular cooling of the mantle. This cooling of the mantle was mediated by repeated events of rifting and dripping that likely occurred over a few hundred million years. As the mantle cooled, its effective viscosity and the thickness and strength of the lithosphere increased, which helped establish rigid plates and initiate plate tectonics on Earth.
地球早期(约 2.5 Ga 之前)的主要构造模式仍然难以捉摸,越来越多的证据表明,当时非板块构造模式可能更为普遍。因此,板块构造在此之后是如何演变的仍然存在争议。我们对地幔对流进行了二维数值建模,模拟了适合哈代-阿耳干纪温度的地幔对流,结果表明,地球上的俯冲和裂谷系统可能是在地幔长期冷却的作用下,从早期以滴流和裂谷为主的构造模式中自发形成的。地幔的这种冷却是通过反复发生的裂解和滴落事件来实现的,这些事件可能发生了几亿年。随着地幔的冷却,其有效粘度以及岩石圈的厚度和强度增加,这有助于在地球上建立刚性板块并启动板块构造。
{"title":"Correlating mantle cooling with tectonic transitions on early Earth","authors":"P. Gunawardana, P. Chowdhury, Gabriele Morra, Peter A. Cawood","doi":"10.1130/g51874.1","DOIUrl":"https://doi.org/10.1130/g51874.1","url":null,"abstract":"The dominant tectonic mode operating on early Earth (before ca. 2.5 Ga) remains elusive, with an increasing body of evidence suggesting that non-plate tectonic modes were likely more prevalent at that time. Thus, how plate tectonics evolved after that remains contentious. We performed two-dimensional numerical modeling of mantle convection at temperatures appropriate for the Hadean−Archean eons and show that subduction and rift systems may have spontaneously emerged on Earth from an earlier drip-and-rift−dominated tectonic mode in response to the secular cooling of the mantle. This cooling of the mantle was mediated by repeated events of rifting and dripping that likely occurred over a few hundred million years. As the mantle cooled, its effective viscosity and the thickness and strength of the lithosphere increased, which helped establish rigid plates and initiate plate tectonics on Earth.","PeriodicalId":503125,"journal":{"name":"Geology","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139624366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enbo Fan, Y. Ai, Stephen S. Gao, Yumei He, Kelly H. Liu, M. Jiang, Guangbing Hou, Shun Yang, Chit Thet Mon, Myo Thant, K. Sein
One of the major advances in mineral physics and seismology is the realization that different olivine fabric types are functions of temperature, shear stress, and water content in oceanic subducting systems. The distribution of different olivine fabric types and geodynamic processes in the mantle wedge above a subducting continental slab remain poorly understood. Here, based on splitting analysis of shear waves recorded by 46 stations recently deployed in central Myanmar, we reveal trench-perpendicular fast orientations between the 80 and 100 km slab contours sandwiched between trench-parallel fast orientations from the mantle wedge tip to the backarc. The dramatic change in fast orientations indicates the transition of olivine fabric types in the mantle wedge combined with corner flow. Cold continental subduction and shear stress reduction caused by partial melting favor B-type and C- or E-type olivine fabrics, respectively.
{"title":"Mantle flow and olivine fabric transition in the Myanmar continental subduction zone","authors":"Enbo Fan, Y. Ai, Stephen S. Gao, Yumei He, Kelly H. Liu, M. Jiang, Guangbing Hou, Shun Yang, Chit Thet Mon, Myo Thant, K. Sein","doi":"10.1130/g51698.1","DOIUrl":"https://doi.org/10.1130/g51698.1","url":null,"abstract":"One of the major advances in mineral physics and seismology is the realization that different olivine fabric types are functions of temperature, shear stress, and water content in oceanic subducting systems. The distribution of different olivine fabric types and geodynamic processes in the mantle wedge above a subducting continental slab remain poorly understood. Here, based on splitting analysis of shear waves recorded by 46 stations recently deployed in central Myanmar, we reveal trench-perpendicular fast orientations between the 80 and 100 km slab contours sandwiched between trench-parallel fast orientations from the mantle wedge tip to the backarc. The dramatic change in fast orientations indicates the transition of olivine fabric types in the mantle wedge combined with corner flow. Cold continental subduction and shear stress reduction caused by partial melting favor B-type and C- or E-type olivine fabrics, respectively.","PeriodicalId":503125,"journal":{"name":"Geology","volume":" 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139626595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andreas Petersson, T. Waight, A. Kemp, M. Whitehouse, J. Valley
Enabling the build-up of continental crust is a vital step in the stabilization of cratonic lithosphere. However, these initial crustal nuclei are commonly either destroyed by recycling or buried by younger rocks. In the Fennoscandian Shield, the oldest rocks are ca. 3.5 Ga, but ca. 3.7 Ga inherited and detrital zircons suggest the presence of an older, unexposed crustal substrate. We present U-Pb, O, and Hf isotope data from detrital zircons of three major Finnish rivers as well as zircon O and Hf isotope data from previously dated rocks of the Archean Suomujärvi and Pudasjärvi complexes, central Finland. Combined, these data indicate a previously unidentified ca. 3.75 Ga crustal nucleus in the Fennoscandian Shield. This adds to the growing number of Eoarchean nuclei recognized in Archean terranes around the globe, highlighting the importance of such nuclei in enabling the growth of continental crust. The isotope signatures of the Fennoscandian nucleus correlate with equivalent-aged rocks in Greenland, consistent with a common Eoarchean evolution for Fennoscandia and the North Atlantic craton.
大陆地壳的形成是板块岩石圈稳定的重要一步。然而,这些最初的地壳核通常要么被循环破坏,要么被较年轻的岩石掩埋。在芬诺斯坎德地盾,最古老的岩石约为 3.5 Ga,但约为 5.5 Ga 的岩石却被较年轻的岩石所掩埋。3.5 Ga,但约3.7Ga的继承锆石和碎屑锆石表明存在更古老的、未暴露的地壳基质。我们展示了来自芬兰三条主要河流的碎屑锆石的U-Pb、O和Hf同位素数据,以及来自芬兰中部Archean Suomujärvi和Pudasjärvi复合体的锆石O和Hf同位素数据。这些数据综合起来表明,在芬诺斯坎地盾有一个以前未被发现的约 3.75 Ga 的地壳核。这使全球越来越多的新元古代地核得到确认,凸显了此类地核在促成大陆地壳生长方面的重要性。芬诺斯坎地核的同位素特征与格陵兰岛同等年龄的岩石相关,这与芬诺斯坎地和北大西洋陨石坑的共同始新世演化相一致。
{"title":"An Eoarchean continental nucleus for the Fennoscandian Shield and a link to the North Atlantic craton","authors":"Andreas Petersson, T. Waight, A. Kemp, M. Whitehouse, J. Valley","doi":"10.1130/g51658.1","DOIUrl":"https://doi.org/10.1130/g51658.1","url":null,"abstract":"Enabling the build-up of continental crust is a vital step in the stabilization of cratonic lithosphere. However, these initial crustal nuclei are commonly either destroyed by recycling or buried by younger rocks. In the Fennoscandian Shield, the oldest rocks are ca. 3.5 Ga, but ca. 3.7 Ga inherited and detrital zircons suggest the presence of an older, unexposed crustal substrate. We present U-Pb, O, and Hf isotope data from detrital zircons of three major Finnish rivers as well as zircon O and Hf isotope data from previously dated rocks of the Archean Suomujärvi and Pudasjärvi complexes, central Finland. Combined, these data indicate a previously unidentified ca. 3.75 Ga crustal nucleus in the Fennoscandian Shield. This adds to the growing number of Eoarchean nuclei recognized in Archean terranes around the globe, highlighting the importance of such nuclei in enabling the growth of continental crust. The isotope signatures of the Fennoscandian nucleus correlate with equivalent-aged rocks in Greenland, consistent with a common Eoarchean evolution for Fennoscandia and the North Atlantic craton.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"16 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139152258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The garnet signature in the rare earth element (REE) abundances in adakites has been considered a key genetic indicator of these controversial rocks, whose proposed origins include direct melting of subducted oceanic crust (“slab melts”). We show that the garnet signature may be quantified using the shape coefficients of chondrite-normalized REE patterns. We applied this method to a global data set of Cenozoic and Quaternary volcanic samples described as “adakites.” The results indicate that many, but not all, suites of rocks labeled as adakites have undergone fractional crystallization of garnet, starting from parental melts attributable to partial melts of garnet-bearing sources. The extreme garnet signatures seen in many examples require hybrid sources, consisting of subducted sediment as well as igneous oceanic crust; however, extensive deep-crustal differentiation obscures the major and trace-element characteristics of these sources, casting doubt on their identification as primitive slab melts.
{"title":"Garnet versus amphibole: Implications for magmatic differentiation and slab melting","authors":"Yajie Gao, Hugh St. C. O’Neill, J. Mavrogenes","doi":"10.1130/g51637.1","DOIUrl":"https://doi.org/10.1130/g51637.1","url":null,"abstract":"The garnet signature in the rare earth element (REE) abundances in adakites has been considered a key genetic indicator of these controversial rocks, whose proposed origins include direct melting of subducted oceanic crust (“slab melts”). We show that the garnet signature may be quantified using the shape coefficients of chondrite-normalized REE patterns. We applied this method to a global data set of Cenozoic and Quaternary volcanic samples described as “adakites.” The results indicate that many, but not all, suites of rocks labeled as adakites have undergone fractional crystallization of garnet, starting from parental melts attributable to partial melts of garnet-bearing sources. The extreme garnet signatures seen in many examples require hybrid sources, consisting of subducted sediment as well as igneous oceanic crust; however, extensive deep-crustal differentiation obscures the major and trace-element characteristics of these sources, casting doubt on their identification as primitive slab melts.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139201000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingfei Wang, Xuefei Liu, Runsheng Yin, Weijun Weng, Hesen Zhao, Lin Yang, D. Zhai, Dapeng Li, Yao Ma, D. Groves, Jun Deng
Investigation of Hg isotope ratios of gold-related sulfides and penecontemporaneous mafic dikes from four orogenic gold provinces on the margins of the North China Craton and Yangtze Craton identifies three orogenic gold deposit (OGD) groups from different tectonic regimes. Ore-related sulfides of group 1 OGDs and mafic dikes from the craton margin reworked via oceanic subduction mostly have positive Δ199Hg values. The group 2 OGDs and mafic dikes from the margin that witnessed complex oceanic and continental subductions have mixed positive to negative Δ199Hg values. The group 3 OGDs on the margin that experienced continental subduction have dominantly negative Δ199Hg values. These isotopic differences indicate subduction histories have a first-order control on the distinct sources for the OGDs. It indicates that OGDs were derived from fluids from the mantle lithosphere metasomatized by contrasting subduction components, not from metamorphic fluids as is widely accepted. Group 1 OGDs and dikes were sourced from metasomatized mantle, which inherited the positive Δ199Hg of both recycled marine sediments and seawater during oceanic subduction, whereas group 3 with negative Δ199Hg was derived from mantle lithosphere metasomatized by subduction of mainly continental components. This genetic model identifies regions with high-grade metamorphic rocks above metasomatized mantle lithosphere as promising new OGD exploration targets.
{"title":"Metasomatized mantle sources for orogenic gold deposits hosted in high-grade metamorphic rocks: Evidence from Hg isotopes","authors":"Qingfei Wang, Xuefei Liu, Runsheng Yin, Weijun Weng, Hesen Zhao, Lin Yang, D. Zhai, Dapeng Li, Yao Ma, D. Groves, Jun Deng","doi":"10.1130/g51593.1","DOIUrl":"https://doi.org/10.1130/g51593.1","url":null,"abstract":"Investigation of Hg isotope ratios of gold-related sulfides and penecontemporaneous mafic dikes from four orogenic gold provinces on the margins of the North China Craton and Yangtze Craton identifies three orogenic gold deposit (OGD) groups from different tectonic regimes. Ore-related sulfides of group 1 OGDs and mafic dikes from the craton margin reworked via oceanic subduction mostly have positive Δ199Hg values. The group 2 OGDs and mafic dikes from the margin that witnessed complex oceanic and continental subductions have mixed positive to negative Δ199Hg values. The group 3 OGDs on the margin that experienced continental subduction have dominantly negative Δ199Hg values. These isotopic differences indicate subduction histories have a first-order control on the distinct sources for the OGDs. It indicates that OGDs were derived from fluids from the mantle lithosphere metasomatized by contrasting subduction components, not from metamorphic fluids as is widely accepted. Group 1 OGDs and dikes were sourced from metasomatized mantle, which inherited the positive Δ199Hg of both recycled marine sediments and seawater during oceanic subduction, whereas group 3 with negative Δ199Hg was derived from mantle lithosphere metasomatized by subduction of mainly continental components. This genetic model identifies regions with high-grade metamorphic rocks above metasomatized mantle lithosphere as promising new OGD exploration targets.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139209741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Grasby, O. Ardakani, Xiaojun Liu, D. P. Bond, P. Wignall, Lorna J. Strachan
The Permian−Triassic mass extinction (PTME) interval is marked by major excursions in both inorganic and organic carbon (C) isotopes. Carbon cycle models predict that these trends were driven by large increases in productivity, yet organic C−rich rocks are not recorded in most PTME shelf sedimentary successions. Anomalous C-rich facies have been reported from rare abyssal plains records now exposed in Japan and New Zealand, where black shales at the PTME are extraordinarily organic-rich units. We examined organic matter at the Waiheke, New Zealand, section, and results show that these deposits are dominated by lamalginites composed of unicellar solitary or colonial phytoplankton produced during algal blooms that falls as “marine snow.” We modeled the impact of ash fall from eruptions in the Siberian Traps large igneous province and argue that they fertilized the Panthalassa Ocean with P and Fe, leading to a marine “snowstorm” and significant C drawdown marking this major biobloom during the PTME.
{"title":"Marine snowstorm during the Permian−Triassic mass extinction","authors":"S. Grasby, O. Ardakani, Xiaojun Liu, D. P. Bond, P. Wignall, Lorna J. Strachan","doi":"10.1130/g51497.1","DOIUrl":"https://doi.org/10.1130/g51497.1","url":null,"abstract":"The Permian−Triassic mass extinction (PTME) interval is marked by major excursions in both inorganic and organic carbon (C) isotopes. Carbon cycle models predict that these trends were driven by large increases in productivity, yet organic C−rich rocks are not recorded in most PTME shelf sedimentary successions. Anomalous C-rich facies have been reported from rare abyssal plains records now exposed in Japan and New Zealand, where black shales at the PTME are extraordinarily organic-rich units. We examined organic matter at the Waiheke, New Zealand, section, and results show that these deposits are dominated by lamalginites composed of unicellar solitary or colonial phytoplankton produced during algal blooms that falls as “marine snow.” We modeled the impact of ash fall from eruptions in the Siberian Traps large igneous province and argue that they fertilized the Panthalassa Ocean with P and Fe, leading to a marine “snowstorm” and significant C drawdown marking this major biobloom during the PTME.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"13 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139213449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonas Köpping, A. Cruden, Samuel T. Thiele, Craig Magee, Andrew Bunger
Space for intruding magma is created by elastic, viscous, and/or plastic deformation of host rocks. Such deformation impacts the geometries of igneous intrusions, particularly sills and dikes. For example, tapered intrusion tips indicate linear-elastic fracturing during emplacement, whereas fluidization of host rocks has been linked to development of elongate magma fingers with rounded tips. Although host rock fluidization has only been observed at the lateral tips of magma fingers, it is assumed to occur at their leading edges (frontal tips) and thereby control their propagation and geometry. Here, we present macro- and microstructural evidence of fluidized sedimentary host rock at the lateral tips of magma fingers emanating from the Shonkin Sag laccolith (Montana, western United States), and we explore whether fluidization could have occurred at their frontal tips. Specifically, we combine heat diffusion modeling and fracture tip velocity estimates to show that: (1) low intrusion tip velocities (≤10−5 m s−1) allow pore fluids ahead of the intrusion to reach temperatures sufficient to cause fluidization, but (2) when tip velocities are high (∼0.01−1 m s−1), which is typical for many sheet intrusions, fluidization ahead of propagating tips is inhibited. Our results suggest that intrusion tip velocity (i.e., strain rate) is a first-order control on how rocks accommodate magma. Spatially and temporally varying velocities of lateral and frontal tips suggest that deformation mechanisms at these sites may be decoupled, meaning magma finger formation may not require host rock fluidization. It is thus critical to consider strain rate and three-dimensional intrusion geometry when inferring dominant magma emplacement mechanisms.
主岩的弹性、粘性和/或塑性变形为岩浆的侵入创造了空间。这种变形会影响火成岩侵入体的几何形状,尤其是岩屑和岩钉。例如,锥形的侵入体尖端表明在形成过程中发生了线性弹性断裂,而母岩的流化则与尖端呈圆形的细长岩浆指的形成有关。虽然只在岩浆指的侧端观察到了母岩流化现象,但假定它发生在岩浆指的前缘(前端),从而控制了岩浆指的传播和几何形状。在这里,我们展示了从湘金萨格岩隙(美国西部蒙大拿州)喷出的岩浆指侧端流化沉积母岩的宏观和微观结构证据,并探讨了流化是否可能发生在岩浆指的前端。具体而言,我们结合热扩散建模和断裂顶端速度估算结果表明(1) 低侵入尖端速度(≤10-5 m s-1)可使侵入体前方的孔隙流体达到足以导致流化的温度,但 (2) 当尖端速度较高(∼0.01-1 m s-1)时(这是许多片状侵入体的典型特征),传播尖端前方的流化受到抑制。我们的研究结果表明,侵入体尖端的速度(即应变率)是岩石如何容纳岩浆的一阶控制因素。侧面和正面尖端速度的时空变化表明,这些部位的变形机制可能是分离的,这意味着岩浆指的形成可能不需要主岩流化。因此,在推断主要的岩浆置换机制时,考虑应变率和三维侵入体几何学至关重要。
{"title":"Intrusion tip velocity controls the emplacement mechanism of sheet intrusions","authors":"Jonas Köpping, A. Cruden, Samuel T. Thiele, Craig Magee, Andrew Bunger","doi":"10.1130/g51509.1","DOIUrl":"https://doi.org/10.1130/g51509.1","url":null,"abstract":"Space for intruding magma is created by elastic, viscous, and/or plastic deformation of host rocks. Such deformation impacts the geometries of igneous intrusions, particularly sills and dikes. For example, tapered intrusion tips indicate linear-elastic fracturing during emplacement, whereas fluidization of host rocks has been linked to development of elongate magma fingers with rounded tips. Although host rock fluidization has only been observed at the lateral tips of magma fingers, it is assumed to occur at their leading edges (frontal tips) and thereby control their propagation and geometry. Here, we present macro- and microstructural evidence of fluidized sedimentary host rock at the lateral tips of magma fingers emanating from the Shonkin Sag laccolith (Montana, western United States), and we explore whether fluidization could have occurred at their frontal tips. Specifically, we combine heat diffusion modeling and fracture tip velocity estimates to show that: (1) low intrusion tip velocities (≤10−5 m s−1) allow pore fluids ahead of the intrusion to reach temperatures sufficient to cause fluidization, but (2) when tip velocities are high (∼0.01−1 m s−1), which is typical for many sheet intrusions, fluidization ahead of propagating tips is inhibited. Our results suggest that intrusion tip velocity (i.e., strain rate) is a first-order control on how rocks accommodate magma. Spatially and temporally varying velocities of lateral and frontal tips suggest that deformation mechanisms at these sites may be decoupled, meaning magma finger formation may not require host rock fluidization. It is thus critical to consider strain rate and three-dimensional intrusion geometry when inferring dominant magma emplacement mechanisms.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139221806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rare earth elements (REEs) are essential metals for modern technologies. Recent studies suggest that subcontinental lithospheric mantle (SCLM) remelting, previously fertilized by subducted marine sediments, leads to formation of REE-bearing rocks. However, the transfer mechanism of REE-rich sediments from the subducted slab to the overlying mantle wedge is unclear. We present high-pressure experiments on natural REE-rich marine sediments at 3–4 GPa and 800–1000 °C to constrain the phase relations, sediment melting behavior, and REE migration during subduction. Our results show recrystallization into an eclogite-like assemblage, with melting only occurring at 4 GPa, 1000 °C, experiments. Regardless of melting behavior, REE are refractory and mostly hosted by apatite. Buoyancy calculations suggest that most of the eclogite-like residues would form solid-state diapirs, ascending to the SCLM, resulting in the REE-fertilized source. Such flux may be required for substantial REE transport during subduction, as a foundation for economic-grade mineralization.
稀土元素(REEs)是现代技术所必需的金属。最近的研究表明,大陆下岩石圈地幔(SCLM)重熔,以前由俯冲海洋沉积物肥化,导致含稀土元素岩石的形成。然而,富含REE的沉积物从俯冲板块到上覆地幔楔的转移机制尚不清楚。我们对富含REE的天然海洋沉积物在3-4 GPa和800-1000 °C的条件下进行了高压实验,以对俯冲过程中的相关系、沉积物熔融行为和REE迁移进行约束。我们的结果表明,只有在 4 GPa、1000 °C 的实验中才会发生熔融,从而重结晶成类似黝帘石的集合体。无论熔化行为如何,REE 都是难熔的,并且主要由磷灰石寄存。浮力计算表明,大部分类黝帘石残留物将形成固态二阶梯,上升到SCLM,形成REE肥化源。这种通量可能是俯冲过程中REE大量迁移所必需的,是经济品位矿化的基础。
{"title":"Massive rare earth element storage in sub-continental lithospheric mantle initiated by diapirism, not by melting","authors":"XinXiang Zhu, Yan Liu, Zengqian Hou","doi":"10.1130/g51102.1","DOIUrl":"https://doi.org/10.1130/g51102.1","url":null,"abstract":"Rare earth elements (REEs) are essential metals for modern technologies. Recent studies suggest that subcontinental lithospheric mantle (SCLM) remelting, previously fertilized by subducted marine sediments, leads to formation of REE-bearing rocks. However, the transfer mechanism of REE-rich sediments from the subducted slab to the overlying mantle wedge is unclear. We present high-pressure experiments on natural REE-rich marine sediments at 3–4 GPa and 800–1000 °C to constrain the phase relations, sediment melting behavior, and REE migration during subduction. Our results show recrystallization into an eclogite-like assemblage, with melting only occurring at 4 GPa, 1000 °C, experiments. Regardless of melting behavior, REE are refractory and mostly hosted by apatite. Buoyancy calculations suggest that most of the eclogite-like residues would form solid-state diapirs, ascending to the SCLM, resulting in the REE-fertilized source. Such flux may be required for substantial REE transport during subduction, as a foundation for economic-grade mineralization.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139223858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalie Tanski, J. Pederson, T. Rittenour, A. Hidy
Colorado River terraces in the canyonlands region of southeastern Utah can be dated and analyzed to address the controls of incision and nature of the Colorado Plateau's largest channel-steepness anomaly, Cataract Canyon. Field correlations supported by luminescence and cosmogenic-nuclide ages on strath terraces along Meander Canyon, upstream of Cataract Canyon, reveal a complex record of unsteady incision over the past ∼340 k.y. at an average rate of ∼0.4 mm/yr. Both an upstream progression of rapid incision and a unique sigmoidal long-profile pattern of terraces indicate incision in response to episodic baselevel fall. Also, terraces converge downstream with the anomalously low-gradient modern channel above Cataract Canyon. We interpret these results as indicating that growth of the Cataract Canyon knickzone is due to an erosion-salt tectonics feedback since at least the Mid Pleistocene, which has imparted unsteady, and currently elevated, local baselevel. More broadly, the canyonlands region is marked by rapid and unsteady incision that is complicated by local geologic controls even while being absent of any regional or mantle-driven uplift.
{"title":"Pleistocene Colorado River terraces in the canyonlands region (Utah, USA) record unsteady, transient incision and growth of the Cataract Canyon knickzone by salt tectonics","authors":"Natalie Tanski, J. Pederson, T. Rittenour, A. Hidy","doi":"10.1130/g51599.1","DOIUrl":"https://doi.org/10.1130/g51599.1","url":null,"abstract":"Colorado River terraces in the canyonlands region of southeastern Utah can be dated and analyzed to address the controls of incision and nature of the Colorado Plateau's largest channel-steepness anomaly, Cataract Canyon. Field correlations supported by luminescence and cosmogenic-nuclide ages on strath terraces along Meander Canyon, upstream of Cataract Canyon, reveal a complex record of unsteady incision over the past ∼340 k.y. at an average rate of ∼0.4 mm/yr. Both an upstream progression of rapid incision and a unique sigmoidal long-profile pattern of terraces indicate incision in response to episodic baselevel fall. Also, terraces converge downstream with the anomalously low-gradient modern channel above Cataract Canyon. We interpret these results as indicating that growth of the Cataract Canyon knickzone is due to an erosion-salt tectonics feedback since at least the Mid Pleistocene, which has imparted unsteady, and currently elevated, local baselevel. More broadly, the canyonlands region is marked by rapid and unsteady incision that is complicated by local geologic controls even while being absent of any regional or mantle-driven uplift.","PeriodicalId":503125,"journal":{"name":"Geology","volume":"18 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139258333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}