Luis Fernando Garcia-Rodriguez, Diego Hayashi Alonso, Emilio Carlos Nelli Silva
Turbulence significantly influences fluid flow topology optimization, and this has already been verified under the incompressible flow regime. However, the same cannot be said about the compressible flow regime, in which the density field now affects and couples all of the fluid flow and turbulence equations and makes obtaining the adjoint model, which is necessary for topology optimization, extremely difficult. Up to now, the turbulence phenomenon has still not been considered in compressible flow topology optimization, which is what is being proposed and analyzed here. Rather than being based in the Reynolds-Averaged Navier–Stokes (RANS) equations which are defined only for incompressible flow, the equations are now based on the Favre-Averaged Navier–Stokes (FANS) equations, which are the counterpart of the RANS equations for compressible flow and feature different dependencies and terms. The compressible turbulence model being considered is the compressible version of the Spalart–Allmaras model, which differs from the usual Spalart–Allmaras model, since now there are some new spatially varying density and specific heat terms that depend on the primal variables and that act over some of the turbulence terms of the overall model. The adjoint equations are obtained by using an automatic differentiation scheme through a coupled software platform. The optimization algorithm is IPOPT, and some examples are presented to show the effect of turbulence in the compressible flow topology optimization.
{"title":"Turbulence effects in the topology optimization of compressible subsonic flow","authors":"Luis Fernando Garcia-Rodriguez, Diego Hayashi Alonso, Emilio Carlos Nelli Silva","doi":"10.1002/fld.5338","DOIUrl":"https://doi.org/10.1002/fld.5338","url":null,"abstract":"<p>Turbulence significantly influences fluid flow topology optimization, and this has already been verified under the incompressible flow regime. However, the same cannot be said about the compressible flow regime, in which the density field now affects and couples all of the fluid flow and turbulence equations and makes obtaining the adjoint model, which is necessary for topology optimization, extremely difficult. Up to now, the turbulence phenomenon has still not been considered in compressible flow topology optimization, which is what is being proposed and analyzed here. Rather than being based in the Reynolds-Averaged Navier–Stokes (RANS) equations which are defined only for incompressible flow, the equations are now based on the Favre-Averaged Navier–Stokes (FANS) equations, which are the counterpart of the RANS equations for compressible flow and feature different dependencies and terms. The compressible turbulence model being considered is the compressible version of the Spalart–Allmaras model, which differs from the usual Spalart–Allmaras model, since now there are some new spatially varying density and specific heat terms that depend on the primal variables and that act over some of the turbulence terms of the overall model. The adjoint equations are obtained by using an automatic differentiation scheme through a coupled software platform. The optimization algorithm is IPOPT, and some examples are presented to show the effect of turbulence in the compressible flow topology optimization.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 1","pages":"44-68"},"PeriodicalIF":1.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142759838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this article, the response surface approach was employed to enhance the hydraulic performance of the pump at the rated point. Specifically, an approximate link between the design head and efficiency of the single-stage centrifugal pump and the parameters of the impeller's design was established. The first step in creating a one-factor experimental design involved selecting significant geometric variables as factors. Decision variables such as the number of blades, flow rate, and rotation were chosen due to their significant impact on hydraulic performance, while head and efficiency were considered as responses. Subsequently, the best-optimized values for each level of the parameters were identified using response surface analysis and a central composite design. The impeller schemes of the Design-Expert software were evaluated for head and efficiency using Computational fluid dynamics, and a total of 20 experiments were conducted. The simulated results were then validated with experimental data. Through the analysis of the individual parameters and the approximation model, the ideal parameter combination that increased head and efficiency by 7.90% and 2.06%, respectively, at the rated value was discovered. It is worth noting that in cases of a high rate of flow, the inner flow was also enhanced.
{"title":"Response surface method-based hydraulic performance optimization of a single-stage centrifugal pump","authors":"Durvesh Yadav, Raj Kumar Singh, K. Manjunath","doi":"10.1002/fld.5332","DOIUrl":"10.1002/fld.5332","url":null,"abstract":"<p>In this article, the response surface approach was employed to enhance the hydraulic performance of the pump at the rated point. Specifically, an approximate link between the design head and efficiency of the single-stage centrifugal pump and the parameters of the impeller's design was established. The first step in creating a one-factor experimental design involved selecting significant geometric variables as factors. Decision variables such as the number of blades, flow rate, and rotation were chosen due to their significant impact on hydraulic performance, while head and efficiency were considered as responses. Subsequently, the best-optimized values for each level of the parameters were identified using response surface analysis and a central composite design. The impeller schemes of the Design-Expert software were evaluated for head and efficiency using Computational fluid dynamics, and a total of 20 experiments were conducted. The simulated results were then validated with experimental data. Through the analysis of the individual parameters and the approximation model, the ideal parameter combination that increased head and efficiency by 7.90% and 2.06%, respectively, at the rated value was discovered. It is worth noting that in cases of a high rate of flow, the inner flow was also enhanced.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 1","pages":"20-43"},"PeriodicalIF":1.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper presents an improved approach for modeling multicomponent gas mixtures based on quasi-gasdynamic equations. The proposed numerical algorithm is implemented as a reactingQGDFoam solver based on the open-source OpenFOAM platform. The following problems have been considered for validation: the Riemann problems, the backward facing step problem, the interaction of a shock wave with a heavy and a light gas bubble, the unsteady underexpanded hydrogen jet flow in an air. The stability and convergence parameters of the proposed numerical algorithm are determined. The simulation results are found to be in agreement with analytical solutions and experimental data.
{"title":"Development of a new solver for homogenous mixture based on regularized gas dynamic equation system","authors":"Andrey Epikhin, Ivan But","doi":"10.1002/fld.5333","DOIUrl":"10.1002/fld.5333","url":null,"abstract":"<p>The paper presents an improved approach for modeling multicomponent gas mixtures based on quasi-gasdynamic equations. The proposed numerical algorithm is implemented as a reactingQGDFoam solver based on the open-source OpenFOAM platform. The following problems have been considered for validation: the Riemann problems, the backward facing step problem, the interaction of a shock wave with a heavy and a light gas bubble, the unsteady underexpanded hydrogen jet flow in an air. The stability and convergence parameters of the proposed numerical algorithm are determined. The simulation results are found to be in agreement with analytical solutions and experimental data.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"97 1","pages":"1-19"},"PeriodicalIF":1.7,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This work presents a monolithic finite element strategy for the accurate solution of strongly-coupled fluid-structure-electrostatics interaction problems involving a compressible fluid. The complete set of equations for a compressible fluid is employed within the framework of the arbitrary Lagrangian–Eulerian (ALE) fluid formulation on the reference configuration. The proposed numerical approach incorporates geometric nonlinearities of both the structural and fluid domains, and can thus be used for investigating dynamic pull-in phenomena and squeeze film damping in high aspect-ratio micro-electro-mechanical systems (MEMS) structures immersed in a compressible fluid. Through various illustrative examples, we demonstrate the significant influence of fluid compressibility on the dynamics of MEMS devices subjected to constrained geometry and/or high-frequency electrostatic actuation. Moreover, we compare the proposed formulation with the nonlinear compressible Reynolds equation and highlight that, particularly at low pressures and high fluid viscosity, the Reynolds equation fails to provide a reliable approximation to the complete set of equations utilized in our proposed formulation.
{"title":"Monolithic finite element modeling of compressible fluid-structure-electrostatics interactions in MEMS devices","authors":"Suman Dutta, C. S. Jog","doi":"10.1002/fld.5329","DOIUrl":"10.1002/fld.5329","url":null,"abstract":"<p>This work presents a monolithic finite element strategy for the accurate solution of strongly-coupled fluid-structure-electrostatics interaction problems involving a compressible fluid. The complete set of equations for a compressible fluid is employed within the framework of the arbitrary Lagrangian–Eulerian (ALE) fluid formulation on the reference configuration. The proposed numerical approach incorporates geometric nonlinearities of both the structural and fluid domains, and can thus be used for investigating dynamic pull-in phenomena and squeeze film damping in high aspect-ratio micro-electro-mechanical systems (MEMS) structures immersed in a compressible fluid. Through various illustrative examples, we demonstrate the significant influence of fluid compressibility on the dynamics of MEMS devices subjected to constrained geometry and/or high-frequency electrostatic actuation. Moreover, we compare the proposed formulation with the nonlinear compressible Reynolds equation and highlight that, particularly at low pressures and high fluid viscosity, the Reynolds equation fails to provide a reliable approximation to the complete set of equations utilized in our proposed formulation.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 12","pages":"2006-2050"},"PeriodicalIF":1.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A nonlinear correction technique for finite element methods of advection-diffusion problems on general triangular meshes is introduced. The classic linear finite element method is modified, and the resulting scheme satisfies discrete strong extremum principle unconditionally, which means that it is unnecessary to impose the well-known restrictions on diffusion coefficients and geometry of mesh-cell (e.g., “acute angle” condition), and we need not to perform upwind treatment on the advection term separately. Moreover, numerical example shows that when a discrete scheme does not satisfy the strong extremum principle, even if it maintains the global physical bound, non-physical numerical oscillations may still occur within local regions where no numerical result is beyond the physical bound. Thus, it is worth to point out that our new nonlinear finite element scheme can avoid non-physical oscillations around sharp layers in advection-dominate regions, due to maintaining discrete strong extremum principle. Convergence rates are verified by numerical tests for both diffusion-dominate and advection-dominate problems.
{"title":"Discrete strong extremum principles for finite element solutions of advection-diffusion problems with nonlinear corrections","authors":"Shuai Wang, Guangwei Yuan","doi":"10.1002/fld.5330","DOIUrl":"10.1002/fld.5330","url":null,"abstract":"<p>A nonlinear correction technique for finite element methods of advection-diffusion problems on general triangular meshes is introduced. The classic linear finite element method is modified, and the resulting scheme satisfies discrete strong extremum principle unconditionally, which means that it is unnecessary to impose the well-known restrictions on diffusion coefficients and geometry of mesh-cell (e.g., “acute angle” condition), and we need not to perform upwind treatment on the advection term separately. Moreover, numerical example shows that when a discrete scheme does not satisfy the strong extremum principle, even if it maintains the global physical bound, non-physical numerical oscillations may still occur within local regions where no numerical result is beyond the physical bound. Thus, it is worth to point out that our new nonlinear finite element scheme can avoid non-physical oscillations around sharp layers in advection-dominate regions, due to maintaining discrete <i>strong</i> extremum principle. Convergence rates are verified by numerical tests for both diffusion-dominate and advection-dominate problems.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 12","pages":"1990-2005"},"PeriodicalIF":1.7,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this paper, a high-order compact finite difference method in general curvilinear coordinates is proposed for solving unsteady incompressible Navier-Stokes equations. By constructing the fourth-order spatial discretization schemes for all partial derivative terms of the pure streamfunction formulation in general curvilinear coordinates, especially for the fourth-order mixed derivative terms, and applying a Crank-Nicolson scheme for the second-order temporal discretization, we extend the unsteady high-order pure streamfunction algorithm to flow problems with more general non-conformal grids. Furthermore, the stability of the newly proposed method for the linear model is validated by von-Neumann linear stability analysis. Five numerical experiments are conducted to verify the accuracy and robustness of the proposed method. The results show that our method not only effectively solves problems with non-conformal grids, but also allows grid generation and local refinement using commercial software. The solutions are in good agreement with the established numerical and experimental results.
{"title":"A high-order pure streamfunction method in general curvilinear coordinates for unsteady incompressible viscous flow with complex geometry","authors":"Bo Wang, Peixiang Yu, Xin Tong, Hua Ouyang","doi":"10.1002/fld.5331","DOIUrl":"10.1002/fld.5331","url":null,"abstract":"<p>In this paper, a high-order compact finite difference method in general curvilinear coordinates is proposed for solving unsteady incompressible Navier-Stokes equations. By constructing the fourth-order spatial discretization schemes for all partial derivative terms of the pure streamfunction formulation in general curvilinear coordinates, especially for the fourth-order mixed derivative terms, and applying a Crank-Nicolson scheme for the second-order temporal discretization, we extend the unsteady high-order pure streamfunction algorithm to flow problems with more general non-conformal grids. Furthermore, the stability of the newly proposed method for the linear model is validated by von-Neumann linear stability analysis. Five numerical experiments are conducted to verify the accuracy and robustness of the proposed method. The results show that our method not only effectively solves problems with non-conformal grids, but also allows grid generation and local refinement using commercial software. The solutions are in good agreement with the established numerical and experimental results.</p>","PeriodicalId":50348,"journal":{"name":"International Journal for Numerical Methods in Fluids","volume":"96 12","pages":"1960-1989"},"PeriodicalIF":1.7,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}