Dopamine transporter single-photon emission computed tomography (DAT-SPECT) is a crucial tool for evaluating patients with Parkinson’s disease (PD). However, its implication is limited by inter-site variability in large multisite clinical trials. To overcome the limitation, a conventional prospective correction method employs linear regression with phantom scanning, which is effective yet available only in a prospective manner. An alternative, although relatively underexplored, involves retrospective modeling using a statistical method known as “combatting batch effects when combining batches of gene expression microarray data” (ComBat).We analyzed DAT-SPECT-specific binding ratios (SBRs) derived from 72 healthy older adults and 81 patients with PD registered in four clinical sites. We applied both the prospective correction and the retrospective ComBat correction to the original SBRs. Next, we compared the performance of the original and two corrected SBRs to differentiate the PD patients from the healthy controls. Diagnostic accuracy was assessed using the area under the receiver operating characteristic curve (AUC-ROC).The original SBRs were 6.13 ± 1.54 (mean ± standard deviation) and 2.03 ± 1.41 in the control and PD groups, respectively. After the prospective correction, the mean SBRs were 6.52 ± 1.06 and 2.40 ± 0.99 in the control and PD groups, respectively. After the retrospective ComBat correction, the SBRs were 5.25 ± 0.89 and 2.01 ± 0.73 in the control and PD groups, respectively, resulting in substantial changes in mean values with fewer variances. The original SBRs demonstrated fair performance in differentiating PD from controls (Hedges’s g = 2.76; AUC-ROC = 0.936). Both correction methods improved discrimination performance. The ComBat-corrected SBR demonstrated comparable performance (g = 3.99 and AUC-ROC = 0.987) to the prospectively corrected SBR (g = 4.32 and AUC-ROC = 0.992) for discrimination.Although we confirmed that SBRs fairly discriminated PD from healthy older adults without any correction, the correction methods improved their discrimination performance in a multisite setting. Our results support the utility of harmonization methods with ComBat for consolidating SBR-based diagnosis or stratification of PD in multisite studies. Nonetheless, given the substantial changes in the mean values of ComBat-corrected SBRs, caution is advised when interpreting them.
{"title":"Harmonizing multisite data with the ComBat method for enhanced Parkinson’s disease diagnosis via DAT-SPECT","authors":"Noritaka Wakasugi, Harumasa Takano, Mitsunari Abe, N. Sawamoto, Toshiya Murai, Toshiki Mizuno, Teruyuki Matsuoka, Ryo Yamakuni, Hirooki Yabe, Hiroshi Matsuda, Takashi Hanakawa","doi":"10.3389/fneur.2024.1306546","DOIUrl":"https://doi.org/10.3389/fneur.2024.1306546","url":null,"abstract":"Dopamine transporter single-photon emission computed tomography (DAT-SPECT) is a crucial tool for evaluating patients with Parkinson’s disease (PD). However, its implication is limited by inter-site variability in large multisite clinical trials. To overcome the limitation, a conventional prospective correction method employs linear regression with phantom scanning, which is effective yet available only in a prospective manner. An alternative, although relatively underexplored, involves retrospective modeling using a statistical method known as “combatting batch effects when combining batches of gene expression microarray data” (ComBat).We analyzed DAT-SPECT-specific binding ratios (SBRs) derived from 72 healthy older adults and 81 patients with PD registered in four clinical sites. We applied both the prospective correction and the retrospective ComBat correction to the original SBRs. Next, we compared the performance of the original and two corrected SBRs to differentiate the PD patients from the healthy controls. Diagnostic accuracy was assessed using the area under the receiver operating characteristic curve (AUC-ROC).The original SBRs were 6.13 ± 1.54 (mean ± standard deviation) and 2.03 ± 1.41 in the control and PD groups, respectively. After the prospective correction, the mean SBRs were 6.52 ± 1.06 and 2.40 ± 0.99 in the control and PD groups, respectively. After the retrospective ComBat correction, the SBRs were 5.25 ± 0.89 and 2.01 ± 0.73 in the control and PD groups, respectively, resulting in substantial changes in mean values with fewer variances. The original SBRs demonstrated fair performance in differentiating PD from controls (Hedges’s g = 2.76; AUC-ROC = 0.936). Both correction methods improved discrimination performance. The ComBat-corrected SBR demonstrated comparable performance (g = 3.99 and AUC-ROC = 0.987) to the prospectively corrected SBR (g = 4.32 and AUC-ROC = 0.992) for discrimination.Although we confirmed that SBRs fairly discriminated PD from healthy older adults without any correction, the correction methods improved their discrimination performance in a multisite setting. Our results support the utility of harmonization methods with ComBat for consolidating SBR-based diagnosis or stratification of PD in multisite studies. Nonetheless, given the substantial changes in the mean values of ComBat-corrected SBRs, caution is advised when interpreting them.","PeriodicalId":503840,"journal":{"name":"Frontiers in Neurology","volume":"2 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139958188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17DOI: 10.3389/fneur.2023.1284444
James F. Howard, V. Bril, Tuan Vu, C. Karam, S. Peric, J. L. De Bleecker, H. Murai, A. Meisel, S. Beydoun, M. Pasnoor, Antonio Guglietta, B. van Hoorick, S. Steeland, C. T’joen, K. Utsugisawa, J. Verschuuren, Renato Mantegazza
ADAPT+ assessed the long-term safety, tolerability, and efficacy of efgartigimod in adult participants with generalized myasthenia gravis (gMG).ADAPT+ was an open-label, single-arm, multicenter, up to 3-year extension of the pivotal phase 3 ADAPT study. Efgartigimod was administered in treatment cycles of 4 intravenous infusions (one 10 mg/kg infusion per week). Initiation of subsequent treatment cycles was individualized based on clinical evaluation. Safety endpoints included incidence and severity of adverse events. Efficacy endpoints assessed disease severity using Myasthenia Gravis-Activities of Daily Living (MG-ADL) and Quantitative Myasthenia Gravis (QMG) scores.As of January 2022, 151 participants had rolled over to ADAPT+ and 145 had received ≥1 dose of efgartigimod, of whom, 111 (76.6%) were AChR-Ab+ and 34 (23.4%) were AChR-Ab−. Mean study duration (treatment plus follow-up) was 548 days, and participants received up to 17 treatment cycles, corresponding to 217.6 participant-years of exposure. In the overall population, 123 (84.8%) participants reported ≥1 treatment-emergent adverse event; most frequent were headache (36 [24.8%]), COVID-19 (22 [15.2%]), and nasopharyngitis (20 [13.8%]). Clinically meaningful improvement (CMI) in mean MG-ADL and QMG scores was seen as early as 1 week following the first infusion across multiple cycles in AChR-Ab+ and AChR-Ab− participants. Maximal MG-ADL and QMG improvements aligned with onset and magnitude of total IgG and AChR-Ab reductions. For AChR-Ab+ participants at any time point in each of the first 10 treatment cycles, more than 90% had a maximum reduction of ≥2 points (CMI) in MG-ADL total score; across the 7 cycles in which QMG was measured, 69.4% to 91.3% of participants demonstrated a maximum reduction of ≥3 points (CMI) in QMG total score. Many participants demonstrated improvements well beyond CMI thresholds. In AChR-Ab+ participants with ≥1 year of combined follow-up between ADAPT and ADAPT+, mean number of annualized cycles was 4.7 per year (median [range] 5.0 [0.5–7.6]).Results of ADAPT+ corroborate the substantial clinical improvements seen with efgartigimod in ADAPT and support its long-term safety, tolerability, and efficacy, as well as an individualized dosing regimen for treatment of gMG.https://classic.clinicaltrials.gov/ct2/show/NCT03770403, NCT03770403.
{"title":"Long-term safety, tolerability, and efficacy of efgartigimod (ADAPT+): interim results from a phase 3 open-label extension study in participants with generalized myasthenia gravis","authors":"James F. Howard, V. Bril, Tuan Vu, C. Karam, S. Peric, J. L. De Bleecker, H. Murai, A. Meisel, S. Beydoun, M. Pasnoor, Antonio Guglietta, B. van Hoorick, S. Steeland, C. T’joen, K. Utsugisawa, J. Verschuuren, Renato Mantegazza","doi":"10.3389/fneur.2023.1284444","DOIUrl":"https://doi.org/10.3389/fneur.2023.1284444","url":null,"abstract":"ADAPT+ assessed the long-term safety, tolerability, and efficacy of efgartigimod in adult participants with generalized myasthenia gravis (gMG).ADAPT+ was an open-label, single-arm, multicenter, up to 3-year extension of the pivotal phase 3 ADAPT study. Efgartigimod was administered in treatment cycles of 4 intravenous infusions (one 10 mg/kg infusion per week). Initiation of subsequent treatment cycles was individualized based on clinical evaluation. Safety endpoints included incidence and severity of adverse events. Efficacy endpoints assessed disease severity using Myasthenia Gravis-Activities of Daily Living (MG-ADL) and Quantitative Myasthenia Gravis (QMG) scores.As of January 2022, 151 participants had rolled over to ADAPT+ and 145 had received ≥1 dose of efgartigimod, of whom, 111 (76.6%) were AChR-Ab+ and 34 (23.4%) were AChR-Ab−. Mean study duration (treatment plus follow-up) was 548 days, and participants received up to 17 treatment cycles, corresponding to 217.6 participant-years of exposure. In the overall population, 123 (84.8%) participants reported ≥1 treatment-emergent adverse event; most frequent were headache (36 [24.8%]), COVID-19 (22 [15.2%]), and nasopharyngitis (20 [13.8%]). Clinically meaningful improvement (CMI) in mean MG-ADL and QMG scores was seen as early as 1 week following the first infusion across multiple cycles in AChR-Ab+ and AChR-Ab− participants. Maximal MG-ADL and QMG improvements aligned with onset and magnitude of total IgG and AChR-Ab reductions. For AChR-Ab+ participants at any time point in each of the first 10 treatment cycles, more than 90% had a maximum reduction of ≥2 points (CMI) in MG-ADL total score; across the 7 cycles in which QMG was measured, 69.4% to 91.3% of participants demonstrated a maximum reduction of ≥3 points (CMI) in QMG total score. Many participants demonstrated improvements well beyond CMI thresholds. In AChR-Ab+ participants with ≥1 year of combined follow-up between ADAPT and ADAPT+, mean number of annualized cycles was 4.7 per year (median [range] 5.0 [0.5–7.6]).Results of ADAPT+ corroborate the substantial clinical improvements seen with efgartigimod in ADAPT and support its long-term safety, tolerability, and efficacy, as well as an individualized dosing regimen for treatment of gMG.https://classic.clinicaltrials.gov/ct2/show/NCT03770403, NCT03770403.","PeriodicalId":503840,"journal":{"name":"Frontiers in Neurology","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139527085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.3389/fneur.2023.1354100
Alexander F. Kuffer, Danielle Golub, Amir R. Dehdashti
{"title":"Editorial: Clinical experience of open cerebral revascularization (bypass surgery) for the management of ischemic or hemorrhagic stroke","authors":"Alexander F. Kuffer, Danielle Golub, Amir R. Dehdashti","doi":"10.3389/fneur.2023.1354100","DOIUrl":"https://doi.org/10.3389/fneur.2023.1354100","url":null,"abstract":"","PeriodicalId":503840,"journal":{"name":"Frontiers in Neurology","volume":"43 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139385106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-04DOI: 10.3389/fneur.2023.1343786
Xudong Wen, Pan Long
{"title":"Editorial: Neurological dysfunction and diseases in high altitude","authors":"Xudong Wen, Pan Long","doi":"10.3389/fneur.2023.1343786","DOIUrl":"https://doi.org/10.3389/fneur.2023.1343786","url":null,"abstract":"","PeriodicalId":503840,"journal":{"name":"Frontiers in Neurology","volume":"41 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-03DOI: 10.3389/fneur.2023.1344956
Lidong Zhao, Wei Sun, Heng-Wai Yuen, Michael C. F. Tong
{"title":"Editorial: Advances in hearing loss, tinnitus, and vertigo: mechanisms and treatment","authors":"Lidong Zhao, Wei Sun, Heng-Wai Yuen, Michael C. F. Tong","doi":"10.3389/fneur.2023.1344956","DOIUrl":"https://doi.org/10.3389/fneur.2023.1344956","url":null,"abstract":"","PeriodicalId":503840,"journal":{"name":"Frontiers in Neurology","volume":"38 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139389068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}