首页 > 最新文献

Genetic Programming and Evolvable Machines最新文献

英文 中文
Acknowledgement of Reviewers for 2020 2020年审稿人致谢
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 DOI: 10.1007/s11069-021-04522-1
M. Blunt
{"title":"Acknowledgement of Reviewers for 2020","authors":"M. Blunt","doi":"10.1007/s11069-021-04522-1","DOIUrl":"https://doi.org/10.1007/s11069-021-04522-1","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"43 1","pages":"139 - 141"},"PeriodicalIF":2.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s11069-021-04522-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52467713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Programming: 24th European Conference, EuroGP 2021, Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings 遗传规划:第24届欧洲会议,EuroGP 2021,作为EvoStar 2021的一部分举行,虚拟事件,2021年4月7日至9日,会议录
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 DOI: 10.1007/978-3-030-72812-0
{"title":"Genetic Programming: 24th European Conference, EuroGP 2021, Held as Part of EvoStar 2021, Virtual Event, April 7–9, 2021, Proceedings","authors":"","doi":"10.1007/978-3-030-72812-0","DOIUrl":"https://doi.org/10.1007/978-3-030-72812-0","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"13 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81920462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Editorial introduction. 编辑介绍。
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 Epub Date: 2021-02-16 DOI: 10.1007/s10710-021-09399-4
Lee Spector
{"title":"Editorial introduction.","authors":"Lee Spector","doi":"10.1007/s10710-021-09399-4","DOIUrl":"https://doi.org/10.1007/s10710-021-09399-4","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"22 1","pages":"1-2"},"PeriodicalIF":2.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10710-021-09399-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25389447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highlights of genetic programming 2020 events. 2020年遗传编程活动亮点。
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-01-01 Epub Date: 2021-10-16 DOI: 10.1007/s10710-021-09421-9
Miguel Nicolau
{"title":"Highlights of genetic programming 2020 events.","authors":"Miguel Nicolau","doi":"10.1007/s10710-021-09421-9","DOIUrl":"https://doi.org/10.1007/s10710-021-09421-9","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"22 4","pages":"391-393"},"PeriodicalIF":2.6,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520072/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39551671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tag-based regulation of modules in genetic programming improves context-dependent problem solving 遗传规划中基于标记的模块调节改进了上下文相关问题的求解
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-12-16 DOI: 10.1007/s10710-021-09406-8
Alexander Lalejini, M. Moreno, C. Ofria
{"title":"Tag-based regulation of modules in genetic programming improves context-dependent problem solving","authors":"Alexander Lalejini, M. Moreno, C. Ofria","doi":"10.1007/s10710-021-09406-8","DOIUrl":"https://doi.org/10.1007/s10710-021-09406-8","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"22 1","pages":"325 - 355"},"PeriodicalIF":2.6,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10710-021-09406-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49372982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Discovering novel memory cell designs for sentiment analysis on tweets 发现用于推特情绪分析的新型存储单元设计
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-11-17 DOI: 10.1007/s10710-020-09395-0
S. Nistor, M. Moca, R. Nistor
{"title":"Discovering novel memory cell designs for sentiment analysis on tweets","authors":"S. Nistor, M. Moca, R. Nistor","doi":"10.1007/s10710-020-09395-0","DOIUrl":"https://doi.org/10.1007/s10710-020-09395-0","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"22 1","pages":"147 - 187"},"PeriodicalIF":2.6,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10710-020-09395-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45085439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Virginia Dignum: Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way Virginia Dignum:负责任的人工智能:如何以负责任的方式开发和使用人工智能
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-10-10 DOI: 10.1007/s10710-020-09394-1
Nicolas E. Gold
{"title":"Virginia Dignum: Responsible Artificial Intelligence: How to Develop and Use AI in a Responsible Way","authors":"Nicolas E. Gold","doi":"10.1007/s10710-020-09394-1","DOIUrl":"https://doi.org/10.1007/s10710-020-09394-1","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"22 1","pages":"137 - 139"},"PeriodicalIF":2.6,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10710-020-09394-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52297825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Learning feature spaces for regression with genetic programming. 利用遗传编程学习回归特征空间。
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-09-01 Epub Date: 2020-03-11 DOI: 10.1007/s10710-020-09383-4
William La Cava, Jason H Moore

Genetic programming has found recent success as a tool for learning sets of features for regression and classification. Multidimensional genetic programming is a useful variant of genetic programming for this task because it represents candidate solutions as sets of programs. These sets of programs expose additional information that can be exploited for building block identification. In this work, we discuss this architecture and others in terms of their propensity for allowing heuristic search to utilize information during the evolutionary process. We investigate methods for biasing the components of programs that are promoted in order to guide search towards useful and complementary feature spaces. We study two main approaches: 1) the introduction of new objectives and 2) the use of specialized semantic variation operators. We find that a semantic crossover operator based on stagewise regression leads to significant improvements on a set of regression problems. The inclusion of semantic crossover produces state-of-the-art results in a large benchmark study of open-source regression problems in comparison to several state-of-the-art machine learning approaches and other genetic programming frameworks. Finally, we look at the collinearity and complexity of the data representations produced by different methods, in order to assess whether relevant, concise, and independent factors of variation can be produced in application.

遗传编程作为一种学习回归和分类特征集的工具,最近取得了成功。多维遗传编程是遗传编程在这项任务中的一个有用变体,因为它将候选解决方案表示为程序集。这些程序集揭示了额外的信息,可用于识别构件。在这项工作中,我们将从启发式搜索在进化过程中利用信息的倾向出发,讨论这种架构和其他架构。我们研究了对程序中被推广的部分进行偏置的方法,以引导搜索向有用和互补的特征空间发展。我们研究了两种主要方法:1)引入新目标;2)使用专门的语义变异算子。我们发现,基于阶段回归的语义交叉算子能显著改善一组回归问题。在一项大型开源回归问题基准研究中,与几种最先进的机器学习方法和其他遗传编程框架相比,语义交叉的加入产生了最先进的结果。最后,我们研究了不同方法产生的数据表示的共线性和复杂性,以评估是否能在应用中产生相关、简洁和独立的变化因素。
{"title":"Learning feature spaces for regression with genetic programming.","authors":"William La Cava, Jason H Moore","doi":"10.1007/s10710-020-09383-4","DOIUrl":"10.1007/s10710-020-09383-4","url":null,"abstract":"<p><p>Genetic programming has found recent success as a tool for learning sets of features for regression and classification. Multidimensional genetic programming is a useful variant of genetic programming for this task because it represents candidate solutions as sets of programs. These sets of programs expose additional information that can be exploited for building block identification. In this work, we discuss this architecture and others in terms of their propensity for allowing heuristic search to utilize information during the evolutionary process. We investigate methods for biasing the components of programs that are promoted in order to guide search towards useful and complementary feature spaces. We study two main approaches: 1) the introduction of new objectives and 2) the use of specialized semantic variation operators. We find that a semantic crossover operator based on stagewise regression leads to significant improvements on a set of regression problems. The inclusion of semantic crossover produces state-of-the-art results in a large benchmark study of open-source regression problems in comparison to several state-of-the-art machine learning approaches and other genetic programming frameworks. Finally, we look at the collinearity and complexity of the data representations produced by different methods, in order to assess whether relevant, concise, and independent factors of variation can be produced in application.</p>","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"21 3","pages":"433-467"},"PeriodicalIF":2.6,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7748157/pdf/nihms-1575378.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38738086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TPOT-NN: augmenting tree-based automated machine learning with neural network estimators TPOT-NN:用神经网络估计器增强基于树的自动机器学习
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-06-11 DOI: 10.1007/s10710-021-09401-z
Joseph D. Romano, Trang T. Le, Weixuan Fu, J. Moore
{"title":"TPOT-NN: augmenting tree-based automated machine learning with neural network estimators","authors":"Joseph D. Romano, Trang T. Le, Weixuan Fu, J. Moore","doi":"10.1007/s10710-021-09401-z","DOIUrl":"https://doi.org/10.1007/s10710-021-09401-z","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"22 1","pages":"207 - 227"},"PeriodicalIF":2.6,"publicationDate":"2020-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10710-021-09401-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47403442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Arthur I. Miller: The artist in the machine: the world of AI-powered creativity Arthur I. Miller:机器中的艺术家:人工智能创造的世界
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2020-06-02 DOI: 10.1007/s10710-020-09392-3
A. Olszewska
{"title":"Arthur I. Miller: The artist in the machine: the world of AI-powered creativity","authors":"A. Olszewska","doi":"10.1007/s10710-020-09392-3","DOIUrl":"https://doi.org/10.1007/s10710-020-09392-3","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"21 1","pages":"525 - 527"},"PeriodicalIF":2.6,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10710-020-09392-3","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52297790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Genetic Programming and Evolvable Machines
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1