首页 > 最新文献

Genetic Programming and Evolvable Machines最新文献

英文 中文
Complexity and aesthetics in generative and evolutionary art 生成与进化艺术中的复杂性与美学
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-05 DOI: 10.1007/s10710-022-09429-9
J. Mccormack, Camilo Cruz Gambardella
{"title":"Complexity and aesthetics in generative and evolutionary art","authors":"J. Mccormack, Camilo Cruz Gambardella","doi":"10.1007/s10710-022-09429-9","DOIUrl":"https://doi.org/10.1007/s10710-022-09429-9","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"23 1","pages":"535 - 556"},"PeriodicalIF":2.6,"publicationDate":"2022-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49050797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Genetic Programming: 25th European Conference, EuroGP 2022, Held as Part of EvoStar 2022, Madrid, Spain, April 20–22, 2022, Proceedings 遗传规划:第25届欧洲会议,EuroGP 2022,作为EvoStar 2022的一部分,马德里,西班牙,2022年4月20日至22日,会议记录
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 DOI: 10.1007/978-3-031-02056-8
{"title":"Genetic Programming: 25th European Conference, EuroGP 2022, Held as Part of EvoStar 2022, Madrid, Spain, April 20–22, 2022, Proceedings","authors":"","doi":"10.1007/978-3-031-02056-8","DOIUrl":"https://doi.org/10.1007/978-3-031-02056-8","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"11 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87133014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial Introduction. 编辑介绍。
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2022-01-01 Epub Date: 2022-08-20 DOI: 10.1007/s10710-022-09437-9
Leonardo Trujillo, Ting Hu, Nuno Lourenço, Mengjie Zhang
{"title":"Editorial Introduction.","authors":"Leonardo Trujillo, Ting Hu, Nuno Lourenço, Mengjie Zhang","doi":"10.1007/s10710-022-09437-9","DOIUrl":"https://doi.org/10.1007/s10710-022-09437-9","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"23 3","pages":"305-307"},"PeriodicalIF":2.6,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392059/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33444614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic programming for iterative numerical methods 迭代数值方法的遗传规划
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-11-25 DOI: 10.1007/s10710-021-09425-5
Dominik Sobania, J. Schmitt, H. Köstler, Franz Rothlauf
{"title":"Genetic programming for iterative numerical methods","authors":"Dominik Sobania, J. Schmitt, H. Köstler, Franz Rothlauf","doi":"10.1007/s10710-021-09425-5","DOIUrl":"https://doi.org/10.1007/s10710-021-09425-5","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"23 1","pages":"253 - 278"},"PeriodicalIF":2.6,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43930738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Blood glucose prediction using multi-objective grammatical evolution: analysis of the “agnostic” and “what-if” scenarios 使用多目标语法进化的血糖预测:“不可知论”和“假设”情景分析
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-11-18 DOI: 10.1007/s10710-021-09424-6
Sergio Contador, J. Colmenar, O. Garnica, J. M. Velasco, J. Hidalgo
{"title":"Blood glucose prediction using multi-objective grammatical evolution: analysis of the “agnostic” and “what-if” scenarios","authors":"Sergio Contador, J. Colmenar, O. Garnica, J. M. Velasco, J. Hidalgo","doi":"10.1007/s10710-021-09424-6","DOIUrl":"https://doi.org/10.1007/s10710-021-09424-6","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"23 1","pages":"161 - 192"},"PeriodicalIF":2.6,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43483386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Artificial intelligence for fashion, Leanne Luce, Apress 2019, ISBN 978-1-4842-3930-8 how AI is revolutionizing the fashion industry 人工智能的时尚,Leanne Luce, Apress 2019, ISBN 978-1-4842-3930-8人工智能如何彻底改变时尚产业
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-10-26 DOI: 10.1007/s10710-021-09422-8
Grace Buttler
{"title":"Artificial intelligence for fashion, Leanne Luce, Apress 2019, ISBN 978-1-4842-3930-8 how AI is revolutionizing the fashion industry","authors":"Grace Buttler","doi":"10.1007/s10710-021-09422-8","DOIUrl":"https://doi.org/10.1007/s10710-021-09422-8","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"28 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138517139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robert Elliott Smith: Rage Inside the Machine—the prejudice of algorithms, and how to stop the internet making bigots of us all 罗伯特·艾略特·史密斯:机器内部的愤怒——算法的偏见,以及如何阻止互联网使我们所有人变得偏执
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-10-25 DOI: 10.1007/s10710-021-09420-w
Walid Magdy
{"title":"Robert Elliott Smith: Rage Inside the Machine—the prejudice of algorithms, and how to stop the internet making bigots of us all","authors":"Walid Magdy","doi":"10.1007/s10710-021-09420-w","DOIUrl":"https://doi.org/10.1007/s10710-021-09420-w","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"29 3","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138496056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Generating networks of genetic processors 生成基因处理器网络
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-10-21 DOI: 10.1007/s10710-021-09423-7
Campos, Marcelino, Sempere, José M.

The Networks of Genetic Processors (NGPs) are non-conventional models of computation based on genetic operations over strings, namely mutation and crossover operations as it was established in genetic algorithms. Initially, they have been proposed as acceptor machines which are decision problem solvers. In that case, it has been shown that they are universal computing models equivalent to Turing machines. In this work, we propose NGPs as enumeration devices and we analyze their computational power. First, we define the model and we propose its definition as parallel genetic algorithms. Once the correspondence between the two formalisms has been established, we carry out a study of the generation capacity of the NGPs under the research framework of the theory of formal languages. We investigate the relationships between the number of processors of the model and its generative power. Our results show that the number of processors is important to increase the generative capability of the model up to an upper bound, and that NGPs are universal models of computation if they are formulated as generation devices. This allows us to affirm that parallel genetic algorithms working under certain restrictions can be considered equivalent to Turing machines and, therefore, they are universal models of computation.

遗传处理器网络(NGPs)是基于字符串遗传操作的非常规计算模型,即遗传算法中建立的突变和交叉操作。最初,它们被认为是决策问题解决者的接受机器。在这种情况下,已经证明它们是相当于图灵机的通用计算模型。在这项工作中,我们提出了ngp作为枚举设备,并分析了它们的计算能力。首先对模型进行了定义,并将其定义为并行遗传算法。在建立了两种形式主义的对应关系后,我们在形式语言理论的研究框架下对ngp的生成能力进行了研究。我们研究了该模型的处理器数量与其生成能力之间的关系。我们的研究结果表明,处理器的数量对于将模型的生成能力提高到一个上限是很重要的,并且如果将ngp表述为生成设备,则它们是通用的计算模型。这使我们可以肯定,在某些限制下工作的并行遗传算法可以被认为等同于图灵机,因此,它们是计算的通用模型。
{"title":"Generating networks of genetic processors","authors":"Campos, Marcelino, Sempere, José M.","doi":"10.1007/s10710-021-09423-7","DOIUrl":"https://doi.org/10.1007/s10710-021-09423-7","url":null,"abstract":"<p>The Networks of Genetic Processors (NGPs) are non-conventional models of computation based on genetic operations over strings, namely mutation and crossover operations as it was established in genetic algorithms. Initially, they have been proposed as acceptor machines which are decision problem solvers. In that case, it has been shown that they are universal computing models equivalent to Turing machines. In this work, we propose NGPs as enumeration devices and we analyze their computational power. First, we define the model and we propose its definition as parallel genetic algorithms. Once the correspondence between the two formalisms has been established, we carry out a study of the generation capacity of the NGPs under the research framework of the theory of formal languages. We investigate the relationships between the number of processors of the model and its generative power. Our results show that the number of processors is important to increase the generative capability of the model up to an upper bound, and that NGPs are universal models of computation if they are formulated as generation devices. This allows us to affirm that parallel genetic algorithms working under certain restrictions can be considered equivalent to Turing machines and, therefore, they are universal models of computation.</p>","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"29 4","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138496055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A semantic genetic programming framework based on dynamic targets 基于动态目标的语义遗传规划框架
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-10-05 DOI: 10.1007/s10710-021-09419-3
Stefano Ruberto, Valerio Terragni, Jason H. Moore
{"title":"A semantic genetic programming framework based on dynamic targets","authors":"Stefano Ruberto, Valerio Terragni, Jason H. Moore","doi":"10.1007/s10710-021-09419-3","DOIUrl":"https://doi.org/10.1007/s10710-021-09419-3","url":null,"abstract":"","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"22 1","pages":"463 - 493"},"PeriodicalIF":2.6,"publicationDate":"2021-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46475728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Semantically-oriented mutation operator in cartesian genetic programming for evolutionary circuit design 进化电路设计中笛卡儿遗传规划的语义导向突变算子
IF 2.6 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2021-10-02 DOI: 10.1007/s10710-021-09416-6
Hodan, David, Mrazek, Vojtech, Vasicek, Zdenek

Cartesian genetic programming (CGP) represents the most efficient method for the evolution of digital circuits. Despite many successful applications, however, CGP suffers from limited scalability, especially when used for evolutionary circuit design, i.e. design of circuits from a randomly initialized population. Considering the multiplier design problem, for example, the 5(times)5-bit multiplier represents the most complex circuit designed by the evolution from scratch. The efficiency of CGP highly depends on the performance of the point mutation operator, however, this operator is purely stochastic. This contrasts with the recent developments in genetic programming (GP), where advanced informed approaches such as semantic-aware operators are incorporated to improve the search space exploration capability of GP. In this paper, we propose a semantically-oriented mutation operator ((mathrm {SOMO}^k)) suitable for the evolutionary design of combinational circuits. In contrast to standard point mutation modifying the values of the mutated genes randomly, the proposed operator uses semantics to determine the best value for each mutated gene. Compared to the common CGP and its variants, the proposed method converges on common Boolean benchmarks substantially faster while keeping the phenotype size relatively small. The successfully evolved instances presented in this paper include 10-bit parity, 10 + 10-bit adder and 5(times)5-bit multiplier. The most complex circuits were evolved in less than one hour with a single-thread implementation running on a common CPU.

笛卡尔遗传规划(CGP)代表了数字电路进化的最有效方法。尽管有许多成功的应用,但是,CGP的可扩展性有限,特别是当用于进化电路设计时,即从随机初始化的群体设计电路。以乘法器设计问题为例,5 (times) 5位乘法器代表了从零开始进化设计的最复杂的电路。CGP的效率很大程度上取决于点突变算子的性能,但该算子是纯随机的。这与遗传规划(GP)的最新发展形成对比,遗传规划采用了先进的知情方法,如语义感知算子,以提高GP的搜索空间探索能力。本文提出了一种适合组合电路进化设计的面向语义的突变算子((mathrm {SOMO}^k))。与随机修改突变基因值的标准点突变不同,该算子利用语义来确定每个突变基因的最佳值。与常见的CGP及其变体相比,所提出的方法在保持表型大小相对较小的同时,在常见的布尔基准上收敛得更快。本文提出的成功进化实例包括10位奇偶校验、10 + 10位加法器和5 (times) 5位乘法器。最复杂的电路在不到一个小时的时间里进化出来,在一个普通的CPU上运行单线程实现。
{"title":"Semantically-oriented mutation operator in cartesian genetic programming for evolutionary circuit design","authors":"Hodan, David, Mrazek, Vojtech, Vasicek, Zdenek","doi":"10.1007/s10710-021-09416-6","DOIUrl":"https://doi.org/10.1007/s10710-021-09416-6","url":null,"abstract":"<p>Cartesian genetic programming (CGP) represents the most efficient method for the evolution of digital circuits. Despite many successful applications, however, CGP suffers from limited scalability, especially when used for evolutionary circuit design, i.e. design of circuits from a randomly initialized population. Considering the multiplier design problem, for example, the 5<span>(times)</span>5-bit multiplier represents the most complex circuit designed by the evolution from scratch. The efficiency of CGP highly depends on the performance of the point mutation operator, however, this operator is purely stochastic. This contrasts with the recent developments in genetic programming (GP), where advanced informed approaches such as semantic-aware operators are incorporated to improve the search space exploration capability of GP. In this paper, we propose a semantically-oriented mutation operator (<span>(mathrm {SOMO}^k)</span>) suitable for the evolutionary design of combinational circuits. In contrast to standard point mutation modifying the values of the mutated genes randomly, the proposed operator uses semantics to determine the best value for each mutated gene. Compared to the common CGP and its variants, the proposed method converges on common Boolean benchmarks substantially faster while keeping the phenotype size relatively small. The successfully evolved instances presented in this paper include 10-bit parity, 10 + 10-bit adder and 5<span>(times)</span>5-bit multiplier. The most complex circuits were evolved in less than one hour with a single-thread implementation running on a common CPU.</p>","PeriodicalId":50424,"journal":{"name":"Genetic Programming and Evolvable Machines","volume":"29 7","pages":""},"PeriodicalIF":2.6,"publicationDate":"2021-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138496051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Genetic Programming and Evolvable Machines
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1