Pub Date : 2024-02-14DOI: 10.3389/frobt.2024.1379661
Dimitrios Kanoulas, Shehryar Khattak, Giuseppe Loianno
{"title":"Editorial: Rising stars in field robotics: 2022","authors":"Dimitrios Kanoulas, Shehryar Khattak, Giuseppe Loianno","doi":"10.3389/frobt.2024.1379661","DOIUrl":"https://doi.org/10.3389/frobt.2024.1379661","url":null,"abstract":"","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"58 28","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139777752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-14DOI: 10.3389/frobt.2024.1379661
Dimitrios Kanoulas, Shehryar Khattak, Giuseppe Loianno
{"title":"Editorial: Rising stars in field robotics: 2022","authors":"Dimitrios Kanoulas, Shehryar Khattak, Giuseppe Loianno","doi":"10.3389/frobt.2024.1379661","DOIUrl":"https://doi.org/10.3389/frobt.2024.1379661","url":null,"abstract":"","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"158 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139837515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.3389/frobt.2024.1370948
Marcello Calisti, Li Wen
{"title":"Editorial: The future of bio-inspired robotics: an early career scientists’ perspective","authors":"Marcello Calisti, Li Wen","doi":"10.3389/frobt.2024.1370948","DOIUrl":"https://doi.org/10.3389/frobt.2024.1370948","url":null,"abstract":"","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139779986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-09DOI: 10.3389/frobt.2024.1341580
Omar Coser, C. Tamantini, Paolo Soda, Loredana Zollo
Over the past few years, there has been a noticeable surge in efforts to design novel tools and approaches that incorporate Artificial Intelligence (AI) into rehabilitation of persons with lower-limb impairments, using robotic exoskeletons. The potential benefits include the ability to implement personalized rehabilitation therapies by leveraging AI for robot control and data analysis, facilitating personalized feedback and guidance. Despite this, there is a current lack of literature review specifically focusing on AI applications in lower-limb rehabilitative robotics. To address this gap, our work aims at performing a review of 37 peer-reviewed papers. This review categorizes selected papers based on robotic application scenarios or AI methodologies. Additionally, it uniquely contributes by providing a detailed summary of input features, AI model performance, enrolled populations, exoskeletal systems used in the validation process, and specific tasks for each paper. The innovative aspect lies in offering a clear understanding of the suitability of different algorithms for specific tasks, intending to guide future developments and support informed decision-making in the realm of lower-limb exoskeleton and AI applications.
{"title":"AI-based methodologies for exoskeleton-assisted rehabilitation of the lower limb: a review","authors":"Omar Coser, C. Tamantini, Paolo Soda, Loredana Zollo","doi":"10.3389/frobt.2024.1341580","DOIUrl":"https://doi.org/10.3389/frobt.2024.1341580","url":null,"abstract":"Over the past few years, there has been a noticeable surge in efforts to design novel tools and approaches that incorporate Artificial Intelligence (AI) into rehabilitation of persons with lower-limb impairments, using robotic exoskeletons. The potential benefits include the ability to implement personalized rehabilitation therapies by leveraging AI for robot control and data analysis, facilitating personalized feedback and guidance. Despite this, there is a current lack of literature review specifically focusing on AI applications in lower-limb rehabilitative robotics. To address this gap, our work aims at performing a review of 37 peer-reviewed papers. This review categorizes selected papers based on robotic application scenarios or AI methodologies. Additionally, it uniquely contributes by providing a detailed summary of input features, AI model performance, enrolled populations, exoskeletal systems used in the validation process, and specific tasks for each paper. The innovative aspect lies in offering a clear understanding of the suitability of different algorithms for specific tasks, intending to guide future developments and support informed decision-making in the realm of lower-limb exoskeleton and AI applications.","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"61 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139849381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-09DOI: 10.3389/frobt.2024.1341580
Omar Coser, C. Tamantini, Paolo Soda, Loredana Zollo
Over the past few years, there has been a noticeable surge in efforts to design novel tools and approaches that incorporate Artificial Intelligence (AI) into rehabilitation of persons with lower-limb impairments, using robotic exoskeletons. The potential benefits include the ability to implement personalized rehabilitation therapies by leveraging AI for robot control and data analysis, facilitating personalized feedback and guidance. Despite this, there is a current lack of literature review specifically focusing on AI applications in lower-limb rehabilitative robotics. To address this gap, our work aims at performing a review of 37 peer-reviewed papers. This review categorizes selected papers based on robotic application scenarios or AI methodologies. Additionally, it uniquely contributes by providing a detailed summary of input features, AI model performance, enrolled populations, exoskeletal systems used in the validation process, and specific tasks for each paper. The innovative aspect lies in offering a clear understanding of the suitability of different algorithms for specific tasks, intending to guide future developments and support informed decision-making in the realm of lower-limb exoskeleton and AI applications.
{"title":"AI-based methodologies for exoskeleton-assisted rehabilitation of the lower limb: a review","authors":"Omar Coser, C. Tamantini, Paolo Soda, Loredana Zollo","doi":"10.3389/frobt.2024.1341580","DOIUrl":"https://doi.org/10.3389/frobt.2024.1341580","url":null,"abstract":"Over the past few years, there has been a noticeable surge in efforts to design novel tools and approaches that incorporate Artificial Intelligence (AI) into rehabilitation of persons with lower-limb impairments, using robotic exoskeletons. The potential benefits include the ability to implement personalized rehabilitation therapies by leveraging AI for robot control and data analysis, facilitating personalized feedback and guidance. Despite this, there is a current lack of literature review specifically focusing on AI applications in lower-limb rehabilitative robotics. To address this gap, our work aims at performing a review of 37 peer-reviewed papers. This review categorizes selected papers based on robotic application scenarios or AI methodologies. Additionally, it uniquely contributes by providing a detailed summary of input features, AI model performance, enrolled populations, exoskeletal systems used in the validation process, and specific tasks for each paper. The innovative aspect lies in offering a clear understanding of the suitability of different algorithms for specific tasks, intending to guide future developments and support informed decision-making in the realm of lower-limb exoskeleton and AI applications.","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":" 29","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139789570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.3389/frobt.2024.1309220
Gongxin Li, Wei Qiu, Mindong Wang, Yazhou Zhu, Fei Liu
Colorectal cancer as a major disease that poses a serious threat to human health continues to rise in incidence. And the timely colon examinations are crucial for the prevention, diagnosis, and treatment of this disease. Clinically, gastroscopy is used as a universal means of examination, prevention and diagnosis of this disease, but this detection method is not patient-friendly and can easily cause damage to the intestinal mucosa. Soft robots as an emerging technology offer a promising approach to examining, diagnosing, and treating intestinal diseases due to their high flexibility and patient-friendly interaction. However, existing research on intestinal soft robots mainly focuses on controlled movement and observation within the colon or colon-like environments, lacking additional functionalities such as sample collection from the intestine. Here, we designed and developed an earthworm-like soft robot specifically for colon sampling. It consists of a robot body with an earthworm-like structure for movement in the narrow and soft pipe-environments, and a sampling part with a flexible arm structure resembling an elephant trunk for bidirectional bending sampling. This soft robot is capable of flexible movement and sample collection within an colon-like environment. By successfully demonstrating the feasibility of utilizing soft robots for colon sampling, this work introduces a novel method for non-destructive inspection and sampling in the colon. It represents a significant advancement in the field of medical robotics, offering a potential solution for more efficient and accurate examination and diagnosis of intestinal diseases, specifically for colorectal cancer.
{"title":"Development of an earthworm-based soft robot for colon sampling","authors":"Gongxin Li, Wei Qiu, Mindong Wang, Yazhou Zhu, Fei Liu","doi":"10.3389/frobt.2024.1309220","DOIUrl":"https://doi.org/10.3389/frobt.2024.1309220","url":null,"abstract":"Colorectal cancer as a major disease that poses a serious threat to human health continues to rise in incidence. And the timely colon examinations are crucial for the prevention, diagnosis, and treatment of this disease. Clinically, gastroscopy is used as a universal means of examination, prevention and diagnosis of this disease, but this detection method is not patient-friendly and can easily cause damage to the intestinal mucosa. Soft robots as an emerging technology offer a promising approach to examining, diagnosing, and treating intestinal diseases due to their high flexibility and patient-friendly interaction. However, existing research on intestinal soft robots mainly focuses on controlled movement and observation within the colon or colon-like environments, lacking additional functionalities such as sample collection from the intestine. Here, we designed and developed an earthworm-like soft robot specifically for colon sampling. It consists of a robot body with an earthworm-like structure for movement in the narrow and soft pipe-environments, and a sampling part with a flexible arm structure resembling an elephant trunk for bidirectional bending sampling. This soft robot is capable of flexible movement and sample collection within an colon-like environment. By successfully demonstrating the feasibility of utilizing soft robots for colon sampling, this work introduces a novel method for non-destructive inspection and sampling in the colon. It represents a significant advancement in the field of medical robotics, offering a potential solution for more efficient and accurate examination and diagnosis of intestinal diseases, specifically for colorectal cancer.","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"6 19","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139796352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.3389/frobt.2024.1123762
Ehsan Zibaei, Robin Borth
Finding actual causes of unmanned aerial vehicle (UAV) failures can be split into two main tasks: building causal models and performing actual causality analysis (ACA) over them. While there are available solutions in the literature to perform ACA, building comprehensive causal models is still an open problem. The expensive and time-consuming process of building such models, typically performed manually by domain experts, has hindered the widespread application of causality-based diagnosis solutions in practice. This study proposes a methodology based on natural language processing for automating causal model generation for UAVs. After collecting textual data from online resources, causal keywords are identified in sentences. Next, cause–effect phrases are extracted from sentences based on predefined dependency rules between tokens. Finally, the extracted cause–effect pairs are merged to form a causal graph, which we then use for ACA. To demonstrate the applicability of our framework, we scrape online text resources of Ardupilot, an open-source UAV controller software. Our evaluations using real flight logs show that the generated graphs can successfully be used to find the actual causes of unwanted events. Moreover, our hybrid cause–effect extraction module performs better than a purely deep-learning based tool (i.e., CiRA) by 32% in precision and 25% in recall in our Ardupilot use case.
{"title":"Building causal models for finding actual causes of unmanned aerial vehicle failures","authors":"Ehsan Zibaei, Robin Borth","doi":"10.3389/frobt.2024.1123762","DOIUrl":"https://doi.org/10.3389/frobt.2024.1123762","url":null,"abstract":"Finding actual causes of unmanned aerial vehicle (UAV) failures can be split into two main tasks: building causal models and performing actual causality analysis (ACA) over them. While there are available solutions in the literature to perform ACA, building comprehensive causal models is still an open problem. The expensive and time-consuming process of building such models, typically performed manually by domain experts, has hindered the widespread application of causality-based diagnosis solutions in practice. This study proposes a methodology based on natural language processing for automating causal model generation for UAVs. After collecting textual data from online resources, causal keywords are identified in sentences. Next, cause–effect phrases are extracted from sentences based on predefined dependency rules between tokens. Finally, the extracted cause–effect pairs are merged to form a causal graph, which we then use for ACA. To demonstrate the applicability of our framework, we scrape online text resources of Ardupilot, an open-source UAV controller software. Our evaluations using real flight logs show that the generated graphs can successfully be used to find the actual causes of unwanted events. Moreover, our hybrid cause–effect extraction module performs better than a purely deep-learning based tool (i.e., CiRA) by 32% in precision and 25% in recall in our Ardupilot use case.","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"51 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139797692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.3389/frobt.2024.1123762
Ehsan Zibaei, Robin Borth
Finding actual causes of unmanned aerial vehicle (UAV) failures can be split into two main tasks: building causal models and performing actual causality analysis (ACA) over them. While there are available solutions in the literature to perform ACA, building comprehensive causal models is still an open problem. The expensive and time-consuming process of building such models, typically performed manually by domain experts, has hindered the widespread application of causality-based diagnosis solutions in practice. This study proposes a methodology based on natural language processing for automating causal model generation for UAVs. After collecting textual data from online resources, causal keywords are identified in sentences. Next, cause–effect phrases are extracted from sentences based on predefined dependency rules between tokens. Finally, the extracted cause–effect pairs are merged to form a causal graph, which we then use for ACA. To demonstrate the applicability of our framework, we scrape online text resources of Ardupilot, an open-source UAV controller software. Our evaluations using real flight logs show that the generated graphs can successfully be used to find the actual causes of unwanted events. Moreover, our hybrid cause–effect extraction module performs better than a purely deep-learning based tool (i.e., CiRA) by 32% in precision and 25% in recall in our Ardupilot use case.
{"title":"Building causal models for finding actual causes of unmanned aerial vehicle failures","authors":"Ehsan Zibaei, Robin Borth","doi":"10.3389/frobt.2024.1123762","DOIUrl":"https://doi.org/10.3389/frobt.2024.1123762","url":null,"abstract":"Finding actual causes of unmanned aerial vehicle (UAV) failures can be split into two main tasks: building causal models and performing actual causality analysis (ACA) over them. While there are available solutions in the literature to perform ACA, building comprehensive causal models is still an open problem. The expensive and time-consuming process of building such models, typically performed manually by domain experts, has hindered the widespread application of causality-based diagnosis solutions in practice. This study proposes a methodology based on natural language processing for automating causal model generation for UAVs. After collecting textual data from online resources, causal keywords are identified in sentences. Next, cause–effect phrases are extracted from sentences based on predefined dependency rules between tokens. Finally, the extracted cause–effect pairs are merged to form a causal graph, which we then use for ACA. To demonstrate the applicability of our framework, we scrape online text resources of Ardupilot, an open-source UAV controller software. Our evaluations using real flight logs show that the generated graphs can successfully be used to find the actual causes of unwanted events. Moreover, our hybrid cause–effect extraction module performs better than a purely deep-learning based tool (i.e., CiRA) by 32% in precision and 25% in recall in our Ardupilot use case.","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"283 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139857355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-07DOI: 10.3389/frobt.2024.1309220
Gongxin Li, Wei Qiu, Mindong Wang, Yazhou Zhu, Fei Liu
Colorectal cancer as a major disease that poses a serious threat to human health continues to rise in incidence. And the timely colon examinations are crucial for the prevention, diagnosis, and treatment of this disease. Clinically, gastroscopy is used as a universal means of examination, prevention and diagnosis of this disease, but this detection method is not patient-friendly and can easily cause damage to the intestinal mucosa. Soft robots as an emerging technology offer a promising approach to examining, diagnosing, and treating intestinal diseases due to their high flexibility and patient-friendly interaction. However, existing research on intestinal soft robots mainly focuses on controlled movement and observation within the colon or colon-like environments, lacking additional functionalities such as sample collection from the intestine. Here, we designed and developed an earthworm-like soft robot specifically for colon sampling. It consists of a robot body with an earthworm-like structure for movement in the narrow and soft pipe-environments, and a sampling part with a flexible arm structure resembling an elephant trunk for bidirectional bending sampling. This soft robot is capable of flexible movement and sample collection within an colon-like environment. By successfully demonstrating the feasibility of utilizing soft robots for colon sampling, this work introduces a novel method for non-destructive inspection and sampling in the colon. It represents a significant advancement in the field of medical robotics, offering a potential solution for more efficient and accurate examination and diagnosis of intestinal diseases, specifically for colorectal cancer.
{"title":"Development of an earthworm-based soft robot for colon sampling","authors":"Gongxin Li, Wei Qiu, Mindong Wang, Yazhou Zhu, Fei Liu","doi":"10.3389/frobt.2024.1309220","DOIUrl":"https://doi.org/10.3389/frobt.2024.1309220","url":null,"abstract":"Colorectal cancer as a major disease that poses a serious threat to human health continues to rise in incidence. And the timely colon examinations are crucial for the prevention, diagnosis, and treatment of this disease. Clinically, gastroscopy is used as a universal means of examination, prevention and diagnosis of this disease, but this detection method is not patient-friendly and can easily cause damage to the intestinal mucosa. Soft robots as an emerging technology offer a promising approach to examining, diagnosing, and treating intestinal diseases due to their high flexibility and patient-friendly interaction. However, existing research on intestinal soft robots mainly focuses on controlled movement and observation within the colon or colon-like environments, lacking additional functionalities such as sample collection from the intestine. Here, we designed and developed an earthworm-like soft robot specifically for colon sampling. It consists of a robot body with an earthworm-like structure for movement in the narrow and soft pipe-environments, and a sampling part with a flexible arm structure resembling an elephant trunk for bidirectional bending sampling. This soft robot is capable of flexible movement and sample collection within an colon-like environment. By successfully demonstrating the feasibility of utilizing soft robots for colon sampling, this work introduces a novel method for non-destructive inspection and sampling in the colon. It represents a significant advancement in the field of medical robotics, offering a potential solution for more efficient and accurate examination and diagnosis of intestinal diseases, specifically for colorectal cancer.","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"25 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139855924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-06DOI: 10.3389/frobt.2024.1281060
Shemonto Das, Vinicius Prado da Fonseca, Amilcar Soares
Accurate texture classification empowers robots to improve their perception and comprehension of the environment, enabling informed decision-making and appropriate responses to diverse materials and surfaces. Still, there are challenges for texture classification regarding the vast amount of time series data generated from robots’ sensors. For instance, robots are anticipated to leverage human feedback during interactions with the environment, particularly in cases of misclassification or uncertainty. With the diversity of objects and textures in daily activities, Active Learning (AL) can be employed to minimize the number of samples the robot needs to request from humans, streamlining the learning process. In the present work, we use AL to select the most informative samples for annotation, thus reducing the human labeling effort required to achieve high performance for classifying textures. We also use a sliding window strategy for extracting features from the sensor’s time series used in our experiments. Our multi-class dataset (e.g., 12 textures) challenges traditional AL strategies since standard techniques cannot control the number of instances per class selected to be labeled. Therefore, we propose a novel class-balancing instance selection algorithm that we integrate with standard AL strategies. Moreover, we evaluate the effect of sliding windows of two-time intervals (3 and 6 s) on our AL Strategies. Finally, we analyze in our experiments the performance of AL strategies, with and without the balancing algorithm, regarding f1-score, and positive effects are observed in terms of performance when using our proposed data pipeline. Our results show that the training data can be reduced to 70% using an AL strategy regardless of the machine learning model and reach, and in many cases, surpass a baseline performance. Finally, exploring the textures with a 6-s window achieves the best performance, and using either Extra Trees produces an average f1-score of 90.21% in the texture classification data set.
准确的纹理分类有助于机器人提高对环境的感知和理解能力,从而做出明智的决策,并对不同的材料和表面做出适当的反应。然而,从机器人传感器生成的大量时间序列数据来看,纹理分类仍面临挑战。例如,预计机器人在与环境互动时会利用人类的反馈,特别是在分类错误或不确定的情况下。由于日常活动中的物体和纹理多种多样,因此可以采用主动学习(AL)来尽量减少机器人需要向人类请求的样本数量,从而简化学习过程。在本作品中,我们利用主动学习技术选择信息量最大的样本进行标注,从而减少了人工标注的工作量,实现了纹理分类的高性能。我们还使用滑动窗口策略从实验中使用的传感器时间序列中提取特征。我们的多类数据集(例如 12 种纹理)对传统的 AL 策略提出了挑战,因为标准技术无法控制每个类别中需要标记的实例数量。因此,我们提出了一种新颖的类平衡实例选择算法,并将其与标准 AL 策略相结合。此外,我们还评估了两个时间间隔(3 秒和 6 秒)的滑动窗口对我们的 AL 策略的影响。最后,我们在实验中分析了使用和不使用平衡算法的 AL 策略在 f1 分数方面的性能,并观察到使用我们提出的数据管道对性能的积极影响。我们的结果表明,无论采用哪种机器学习模型,使用 AL 策略都能将训练数据减少到 70%,并达到基准性能,在很多情况下甚至超过基准性能。最后,在纹理分类数据集中,使用 6 秒窗口探索纹理取得了最佳性能,使用 Extra Trees 的平均 f1 分数为 90.21%。
{"title":"Active learning strategies for robotic tactile texture recognition tasks","authors":"Shemonto Das, Vinicius Prado da Fonseca, Amilcar Soares","doi":"10.3389/frobt.2024.1281060","DOIUrl":"https://doi.org/10.3389/frobt.2024.1281060","url":null,"abstract":"Accurate texture classification empowers robots to improve their perception and comprehension of the environment, enabling informed decision-making and appropriate responses to diverse materials and surfaces. Still, there are challenges for texture classification regarding the vast amount of time series data generated from robots’ sensors. For instance, robots are anticipated to leverage human feedback during interactions with the environment, particularly in cases of misclassification or uncertainty. With the diversity of objects and textures in daily activities, Active Learning (AL) can be employed to minimize the number of samples the robot needs to request from humans, streamlining the learning process. In the present work, we use AL to select the most informative samples for annotation, thus reducing the human labeling effort required to achieve high performance for classifying textures. We also use a sliding window strategy for extracting features from the sensor’s time series used in our experiments. Our multi-class dataset (e.g., 12 textures) challenges traditional AL strategies since standard techniques cannot control the number of instances per class selected to be labeled. Therefore, we propose a novel class-balancing instance selection algorithm that we integrate with standard AL strategies. Moreover, we evaluate the effect of sliding windows of two-time intervals (3 and 6 s) on our AL Strategies. Finally, we analyze in our experiments the performance of AL strategies, with and without the balancing algorithm, regarding f1-score, and positive effects are observed in terms of performance when using our proposed data pipeline. Our results show that the training data can be reduced to 70% using an AL strategy regardless of the machine learning model and reach, and in many cases, surpass a baseline performance. Finally, exploring the textures with a 6-s window achieves the best performance, and using either Extra Trees produces an average f1-score of 90.21% in the texture classification data set.","PeriodicalId":504612,"journal":{"name":"Frontiers in Robotics and AI","volume":"9 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139798623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}