Pub Date : 2024-01-01Epub Date: 2024-01-17DOI: 10.1080/14789450.2024.2305432
Andreas Thomas, Mario Thevis
Introduction: The analysis of doping control samples is preferably performed by mass spectrometry, because obtained results meet the highest analytical standards and ensure an impressive degree of reliability. The advancement in mass spectrometry and all its associated technologies thus allow for continuous improvements in doping control analysis.
Areas covered: Modern mass spectrometric systems have reached a status of increased sensitivity, robustness, and specificity within the last decade. The improved sensitivity in particular has, on the other hand, also led to the detection of drug residues that were attributable to scenarios where the prohibited substances were not administered consciously but rather by the unconscious ingestion of or exposure to contaminated products. These scenarios and their doubtless clarification represent a great challenge. Here, too, modern MS systems and their applications can provide good insights in the interpretation of dose-related metabolism of prohibited substances. In addition to the development of new instruments itself, software-assisted analysis of the sometimes highly complex data is playing an increasingly important role and facilitating the work of doping control laboratories.
Expert opinion: The sensitive analysis and evaluation of a higher number of samples in a shorter time is made possible by the ongoing developments in mass spectrometry.
{"title":"Recent advances in mass spectrometry for the detection of doping.","authors":"Andreas Thomas, Mario Thevis","doi":"10.1080/14789450.2024.2305432","DOIUrl":"10.1080/14789450.2024.2305432","url":null,"abstract":"<p><strong>Introduction: </strong>The analysis of doping control samples is preferably performed by mass spectrometry, because obtained results meet the highest analytical standards and ensure an impressive degree of reliability. The advancement in mass spectrometry and all its associated technologies thus allow for continuous improvements in doping control analysis.</p><p><strong>Areas covered: </strong>Modern mass spectrometric systems have reached a status of increased sensitivity, robustness, and specificity within the last decade. The improved sensitivity in particular has, on the other hand, also led to the detection of drug residues that were attributable to scenarios where the prohibited substances were not administered consciously but rather by the unconscious ingestion of or exposure to contaminated products. These scenarios and their doubtless clarification represent a great challenge. Here, too, modern MS systems and their applications can provide good insights in the interpretation of dose-related metabolism of prohibited substances. In addition to the development of new instruments itself, software-assisted analysis of the sometimes highly complex data is playing an increasingly important role and facilitating the work of doping control laboratories.</p><p><strong>Expert opinion: </strong>The sensitive analysis and evaluation of a higher number of samples in a shorter time is made possible by the ongoing developments in mass spectrometry.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"27-39"},"PeriodicalIF":3.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139425907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-23DOI: 10.1080/14789450.2024.2320810
Peng Ge, Yalan Luo, Guixin Zhang, Hailong Chen
Introduction: Around 20% of individuals diagnosed with acute pancreatitis (AP) may develop severe acute pancreatitis (SAP), possibly resulting in a mortality rate ranging from 15% to 35%. There is an urgent need to thoroughly understand the molecular phenotypes of SAP resulting from diverse etiologies. The field of translational research on AP has seen the use of several innovative proteomic methodologies via the ongoing improvement of isolation, tagging, and quantification methods.
Areas covered: This paper provides a comprehensive overview of differentially abundant proteins (DAPs) identified in AP by searching the PubMed/MEDLINE database (2003-2023) and adds significantly to the current theoretical framework.
Expert opinion: DAPs for potentially diagnosing AP based on proteomic identification need to be confirmed by multi-center studies that include larger samples. The discovery of DAPs in various organs at different AP stages via proteomic technologies is essential better to understand the pathophysiology of AP-related multiple organ dysfunction syndrome. Regarding the translational research of AP, novel approaches like single-cell proteomics and imaging using mass spectrometry may be used as soon as they become available.
简介在确诊为急性胰腺炎(AP)的患者中,约有 20% 的人可能会发展为重症急性胰腺炎(SAP),可能导致 15% 至 35% 的死亡率。目前迫切需要彻底了解不同病因导致的 SAP 的分子表型。通过不断改进分离、标记和定量方法,一些创新的蛋白质组学方法已被应用于有关 AP 的转化研究领域:本文通过检索 PubMed/MEDLINE 数据库(2003-2023 年),全面概述了在 AP 中发现的差异丰度蛋白(DAPs),为当前的理论框架增添了重要内容:专家观点:基于蛋白质组鉴定而可能诊断 AP 的 DAPs 需要通过包含更多样本的多中心研究来证实。通过蛋白质组学技术在AP不同阶段的不同器官中发现DAPs,对于更好地理解AP相关多器官功能障碍综合征的病理生理学至关重要。在 AP 的转化研究方面,单细胞蛋白质组学和质谱成像等新方法一旦问世,就会立即得到应用。
{"title":"The role of proteomics in acute pancreatitis: new and old knowledge.","authors":"Peng Ge, Yalan Luo, Guixin Zhang, Hailong Chen","doi":"10.1080/14789450.2024.2320810","DOIUrl":"10.1080/14789450.2024.2320810","url":null,"abstract":"<p><strong>Introduction: </strong>Around 20% of individuals diagnosed with acute pancreatitis (AP) may develop severe acute pancreatitis (SAP), possibly resulting in a mortality rate ranging from 15% to 35%. There is an urgent need to thoroughly understand the molecular phenotypes of SAP resulting from diverse etiologies. The field of translational research on AP has seen the use of several innovative proteomic methodologies via the ongoing improvement of isolation, tagging, and quantification methods.</p><p><strong>Areas covered: </strong>This paper provides a comprehensive overview of differentially abundant proteins (DAPs) identified in AP by searching the PubMed/MEDLINE database (2003-2023) and adds significantly to the current theoretical framework.</p><p><strong>Expert opinion: </strong>DAPs for potentially diagnosing AP based on proteomic identification need to be confirmed by multi-center studies that include larger samples. The discovery of DAPs in various organs at different AP stages via proteomic technologies is essential better to understand the pathophysiology of AP-related multiple organ dysfunction syndrome. Regarding the translational research of AP, novel approaches like single-cell proteomics and imaging using mass spectrometry may be used as soon as they become available.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"115-123"},"PeriodicalIF":3.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139900823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Due to the segmented functions and complexity of the human brain, the characterization of molecular profiles within specific areas such as brain structures and biofluids is essential to unveil the molecular basis for structure specialization as well as the molecular imbalance associated with neurodegenerative and psychiatric diseases.
Areas covered: Much of our knowledge about brain functionality derives from neurophysiological, anatomical, and transcriptomic approaches. More recently, laser capture and imaging proteomics, technological and computational developments in LC-MS/MS, as well as antibody/aptamer-based platforms have allowed the generation of novel cellular, spatial, and posttranslational dimensions as well as innovative facets in biomarker validation and druggable target identification.
Expert opinion: Proteomics is a powerful toolbox to functionally characterize, quantify, and localize the extensive protein catalog of the human brain across physiological and pathological states. Brain function depends on multi-dimensional protein homeostasis, and its elucidation will help us to characterize biological pathways that are essential to properly maintain cognitive functions. In addition, comprehensive human brain pathological proteomes may be the basis in computational drug-repositioning methods as a strategy for unveiling potential new therapies in neurodegenerative and psychiatric disorders.
{"title":"Mapping the human brain proteome: opportunities, challenges, and clinical potential.","authors":"Paz Cartas-Cejudo, Adriana Cortés, Mercedes Lachén-Montes, Elena Anaya-Cubero, Erika Peral, Karina Ausín, Ramón Díaz-Peña, Joaquín Fernández-Irigoyen, Enrique Santamaría","doi":"10.1080/14789450.2024.2313073","DOIUrl":"10.1080/14789450.2024.2313073","url":null,"abstract":"<p><strong>Introduction: </strong>Due to the segmented functions and complexity of the human brain, the characterization of molecular profiles within specific areas such as brain structures and biofluids is essential to unveil the molecular basis for structure specialization as well as the molecular imbalance associated with neurodegenerative and psychiatric diseases.</p><p><strong>Areas covered: </strong>Much of our knowledge about brain functionality derives from neurophysiological, anatomical, and transcriptomic approaches. More recently, laser capture and imaging proteomics, technological and computational developments in LC-MS/MS, as well as antibody/aptamer-based platforms have allowed the generation of novel cellular, spatial, and posttranslational dimensions as well as innovative facets in biomarker validation and druggable target identification.</p><p><strong>Expert opinion: </strong>Proteomics is a powerful toolbox to functionally characterize, quantify, and localize the extensive protein catalog of the human brain across physiological and pathological states. Brain function depends on multi-dimensional protein homeostasis, and its elucidation will help us to characterize biological pathways that are essential to properly maintain cognitive functions. In addition, comprehensive human brain pathological proteomes may be the basis in computational drug-repositioning methods as a strategy for unveiling potential new therapies in neurodegenerative and psychiatric disorders.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"55-63"},"PeriodicalIF":3.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction: Cell-surface proteins are extremely important for many cellular events, such as regulating cell-cell communication and cell-matrix interactions. Aberrant alterations in surface protein expression, modification (especially glycosylation), and interactions are directly related to human diseases. Systematic investigation of surface proteins advances our understanding of protein functions, cellular activities, and disease mechanisms, which will lead to identifying surface proteins as disease biomarkers and drug targets.
Areas covered: In this review, we summarize mass spectrometry (MS)-based proteomics methods for global analysis of cell-surface proteins. Then, investigations of the dynamics of surface proteins are discussed. Furthermore, we summarize the studies for the surfaceome interaction networks. Additionally, biological applications of MS-based surfaceome analysis are included, particularly highlighting the significance in biomarker identification, drug development, and immunotherapies.
Expert opinion: Modern MS-based proteomics provides an opportunity to systematically characterize proteins. However, due to the complexity of cell-surface proteins, the labor-intensive workflow, and the limit of clinical samples, comprehensive characterization of the surfaceome remains extraordinarily challenging, especially in clinical studies. Developing and optimizing surfaceome enrichment methods and utilizing automated sample preparation workflow can expand the applications of surfaceome analysis and deepen our understanding of the functions of cell-surface proteins.
引言细胞表面蛋白对许多细胞事件极其重要,如调节细胞-细胞通讯和细胞-基质相互作用。表面蛋白表达、修饰(尤其是糖基化)和相互作用的异常改变与人类疾病直接相关。对表面蛋白的系统研究可促进我们对蛋白质功能、细胞活动和疾病机制的了解,从而将表面蛋白确定为疾病生物标志物和药物靶点:在这篇综述中,我们总结了基于质谱(MS)的蛋白质组学方法,用于细胞表面蛋白质的全局分析。然后,讨论了表面蛋白质的动态研究。此外,我们还总结了有关表面组相互作用网络的研究。此外,我们还介绍了基于 MS 的表面组分析的生物学应用,特别强调了其在生物标记物鉴定、药物开发和免疫疗法方面的重要意义:基于 MS 的现代蛋白质组学提供了系统描述蛋白质特征的机会。然而,由于细胞表面蛋白的复杂性、劳动密集型工作流程以及临床样本的局限性,表面组的全面表征仍然极具挑战性,尤其是在临床研究中。开发和优化表面组富集方法并利用自动化样品制备工作流程可以扩大表面组分析的应用范围,加深我们对细胞表面蛋白功能的理解。
{"title":"Mass spectrometry-based methods for investigating the dynamics and organization of the surfaceome: exploring potential clinical implications.","authors":"Xing Xu, Kejun Yin, Senhan Xu, Zeyu Wang, Ronghu Wu","doi":"10.1080/14789450.2024.2314148","DOIUrl":"10.1080/14789450.2024.2314148","url":null,"abstract":"<p><strong>Introduction: </strong>Cell-surface proteins are extremely important for many cellular events, such as regulating cell-cell communication and cell-matrix interactions. Aberrant alterations in surface protein expression, modification (especially glycosylation), and interactions are directly related to human diseases. Systematic investigation of surface proteins advances our understanding of protein functions, cellular activities, and disease mechanisms, which will lead to identifying surface proteins as disease biomarkers and drug targets.</p><p><strong>Areas covered: </strong>In this review, we summarize mass spectrometry (MS)-based proteomics methods for global analysis of cell-surface proteins. Then, investigations of the dynamics of surface proteins are discussed. Furthermore, we summarize the studies for the surfaceome interaction networks. Additionally, biological applications of MS-based surfaceome analysis are included, particularly highlighting the significance in biomarker identification, drug development, and immunotherapies.</p><p><strong>Expert opinion: </strong>Modern MS-based proteomics provides an opportunity to systematically characterize proteins. However, due to the complexity of cell-surface proteins, the labor-intensive workflow, and the limit of clinical samples, comprehensive characterization of the surfaceome remains extraordinarily challenging, especially in clinical studies. Developing and optimizing surfaceome enrichment methods and utilizing automated sample preparation workflow can expand the applications of surfaceome analysis and deepen our understanding of the functions of cell-surface proteins.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"99-113"},"PeriodicalIF":3.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139652081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-08DOI: 10.1080/14789450.2024.2314143
Antonio Drago
Introduction: Every year about 800,000 complete suicide events occur. The identification of biologic markers to identify subjects at risk would be helpful in targeting specific support treatments.
Area covered: A narrative review defines the meta-analytic level of current evidence about the biologic markers of suicide behavior (SB). The meta-analytic evidence gathered so far indicates that the hypothesis-driven research largely failed to identify the biologic markers of suicide. The most consistent and replicated result was reported for: 1) 5-HTR2A T102C, associated with SB in patients with schizophrenia (OR = 1.73 (1.11-2.69)) and 2) BDNF Val66Met (rs6265), with the Met-Val + Val-Val carriers found to be at risk for suicide in the Caucasian population (OR: 1.96 (1.58-2.43)), while Val-Val vs. Val-Met + Met carriers found to be at risk for suicide in the Asian populations (OR: 1.36 (1.04-1.78)). GWAS-based meta-analyses indicate some positive replicated findings regarding the DRD2, Neuroligin gene, estrogen-related genes, and genes involved in gene expression.
Expert opinion: Most consistent results were obtained when analyzing sub-samples of patients. Some promising results come from the implementation of the polygenic risk score. There is no current consensus about an implementable biomarker for SB.
{"title":"Genetic signatures of suicide attempt behavior: insights and applications.","authors":"Antonio Drago","doi":"10.1080/14789450.2024.2314143","DOIUrl":"10.1080/14789450.2024.2314143","url":null,"abstract":"<p><strong>Introduction: </strong>Every year about 800,000 complete suicide events occur. The identification of biologic markers to identify subjects at risk would be helpful in targeting specific support treatments.</p><p><strong>Area covered: </strong>A narrative review defines the meta-analytic level of current evidence about the biologic markers of suicide behavior (SB). The meta-analytic evidence gathered so far indicates that the hypothesis-driven research largely failed to identify the biologic markers of suicide. The most consistent and replicated result was reported for: 1) 5-HTR2A T102C, associated with SB in patients with schizophrenia (OR = 1.73 (1.11-2.69)) and 2) BDNF Val66Met (rs6265), with the Met-Val + Val-Val carriers found to be at risk for suicide in the Caucasian population (OR: 1.96 (1.58-2.43)), while Val-Val vs. Val-Met + Met carriers found to be at risk for suicide in the Asian populations (OR: 1.36 (1.04-1.78)). GWAS-based meta-analyses indicate some positive replicated findings regarding the DRD2, Neuroligin gene, estrogen-related genes, and genes involved in gene expression.</p><p><strong>Expert opinion: </strong>Most consistent results were obtained when analyzing sub-samples of patients. Some promising results come from the implementation of the polygenic risk score. There is no current consensus about an implementable biomarker for SB.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"41-53"},"PeriodicalIF":3.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139693449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-26DOI: 10.1080/14789450.2024.2320166
Julian Uszkoreit, Magnus Palmblad, Veit Schwämmle
{"title":"Tackling reproducibility: lessons for the proteomics community.","authors":"Julian Uszkoreit, Magnus Palmblad, Veit Schwämmle","doi":"10.1080/14789450.2024.2320166","DOIUrl":"10.1080/14789450.2024.2320166","url":null,"abstract":"","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"9-11"},"PeriodicalIF":3.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139742591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-23DOI: 10.1080/14789450.2024.2320158
Danielle Whitham, Pathea Bruno, Norman Haaker, Kathleen F Arcaro, Brian T Pentecost, Costel C Darie
Introduction: Breast cancer is one of the most prevalent cancers among women in the United States. Current research regarding breast milk has been focused on the composition and its role in infant growth and development. There is little information about the proteins, immune cells, and epithelial cells present in breast milk which can be indicative of the emergence of BC cells and tumors.
Areas covered: We summarize all breast milk studies previously done in our group using proteomics. These studies include 1D-PAGE and 2D-PAGE analysis of breast milk samples, which include within woman and across woman comparisons to identify dysregulated proteins in breast milk and the roles of these proteins in both the development of BC and its diagnosis. Our projected outlook for the use of milk for cancer detection is also discussed.
Expert opinion: Analyzing the samples by multiple methods allows one to interrogate a set of samples with various biochemical methods that complement each other, thus providing a more comprehensive proteome. Complementing methods like 1D-PAGE, 2D-PAGE, in-solution digestion and proteomics analysis with PTM-omics, peptidomics, degradomics, or interactomics will provide a better understanding of the dysregulated proteins, but also the modifications or interactions between these proteins.
导言:乳腺癌是美国妇女中最常见的癌症之一。目前有关母乳的研究主要集中在母乳的成分及其在婴儿生长发育中的作用。而关于母乳中的蛋白质、免疫细胞和上皮细胞的信息却很少,而这些可能是乳腺癌细胞和肿瘤出现的指标:我们总结了本研究小组之前利用蛋白质组学方法进行的所有母乳研究。这些研究包括对母乳样本进行 1D-PAGE 和 2D-PAGE 分析,其中包括女性内部和女性之间的比较,以确定母乳中的失调蛋白以及这些蛋白在 BC 的发展和诊断中的作用。我们还讨论了利用乳汁检测癌症的前景预测:通过多种方法分析样本可以用各种生化方法对一组样本进行检测,这些方法可以相互补充,从而提供更全面的蛋白质组。通过PTM组学、肽组学、降解组学或相互作用组学对1D-PAGE、2D-PAGE、溶液消化和蛋白质组学分析等方法进行补充,可以更好地了解调控失调的蛋白质,以及这些蛋白质之间的修饰或相互作用。
{"title":"Deciphering a proteomic signature for the early detection of breast cancer from breast milk: the role of quantitative proteomics.","authors":"Danielle Whitham, Pathea Bruno, Norman Haaker, Kathleen F Arcaro, Brian T Pentecost, Costel C Darie","doi":"10.1080/14789450.2024.2320158","DOIUrl":"10.1080/14789450.2024.2320158","url":null,"abstract":"<p><strong>Introduction: </strong>Breast cancer is one of the most prevalent cancers among women in the United States. Current research regarding breast milk has been focused on the composition and its role in infant growth and development. There is little information about the proteins, immune cells, and epithelial cells present in breast milk which can be indicative of the emergence of BC cells and tumors.</p><p><strong>Areas covered: </strong>We summarize all breast milk studies previously done in our group using proteomics. These studies include 1D-PAGE and 2D-PAGE analysis of breast milk samples, which include within woman and across woman comparisons to identify dysregulated proteins in breast milk and the roles of these proteins in both the development of BC and its diagnosis. Our projected outlook for the use of milk for cancer detection is also discussed.</p><p><strong>Expert opinion: </strong>Analyzing the samples by multiple methods allows one to interrogate a set of samples with various biochemical methods that complement each other, thus providing a more comprehensive proteome. Complementing methods like 1D-PAGE, 2D-PAGE, in-solution digestion and proteomics analysis with PTM-omics, peptidomics, degradomics, or interactomics will provide a better understanding of the dysregulated proteins, but also the modifications or interactions between these proteins.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"81-98"},"PeriodicalIF":3.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139906789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01Epub Date: 2024-02-15DOI: 10.1080/14789450.2024.2315193
Paulina Gątarek, Joanna Kałużna-Czaplińska
Introduction: Metabolomics and proteomics are two growing fields of science which may shed light on the molecular mechanisms that contribute to neurodegenerative diseases. Studies focusing on these aspects can reveal specific metabolites and proteins that can halt or reverse the progressive neurodegenerative process leading to dopaminergic cell death in the brain.
Areas covered: In this article, an overview of the current status of metabolomic and proteomic profiling in the neurodegenerative disease such as Parkinson's disease (PD) is presented. We discuss the importance of state-of-the-art metabolomics and proteomics using advanced analytical methodologies and their potential for discovering new biomarkers in PD. We critically review the research to date, highlighting how metabolomics and proteomics can have an important impact on early disease diagnosis, future therapy development and the identification of new biomarkers. Finally, we will discuss interactions between lipids and α-synuclein (SNCA) and also consider the role of SNCA in lipid metabolism.
Expert opinion: Metabolomic and proteomic studies contribute to understanding the biological basis of PD pathogenesis, identifying potential biomarkers and introducing new therapeutic strategies. The complexity and multifactorial nature of this disease requires a comprehensive approach, which can be achieved by integrating just these two omic studies.
{"title":"Integrated metabolomics and proteomics analysis of plasma lipid metabolism in Parkinson's disease.","authors":"Paulina Gątarek, Joanna Kałużna-Czaplińska","doi":"10.1080/14789450.2024.2315193","DOIUrl":"10.1080/14789450.2024.2315193","url":null,"abstract":"<p><strong>Introduction: </strong>Metabolomics and proteomics are two growing fields of science which may shed light on the molecular mechanisms that contribute to neurodegenerative diseases. Studies focusing on these aspects can reveal specific metabolites and proteins that can halt or reverse the progressive neurodegenerative process leading to dopaminergic cell death in the brain.</p><p><strong>Areas covered: </strong>In this article, an overview of the current status of metabolomic and proteomic profiling in the neurodegenerative disease such as Parkinson's disease (PD) is presented. We discuss the importance of state-of-the-art metabolomics and proteomics using advanced analytical methodologies and their potential for discovering new biomarkers in PD. We critically review the research to date, highlighting how metabolomics and proteomics can have an important impact on early disease diagnosis, future therapy development and the identification of new biomarkers. Finally, we will discuss interactions between lipids and α-synuclein (SNCA) and also consider the role of SNCA in lipid metabolism.</p><p><strong>Expert opinion: </strong>Metabolomic and proteomic studies contribute to understanding the biological basis of PD pathogenesis, identifying potential biomarkers and introducing new therapeutic strategies. The complexity and multifactorial nature of this disease requires a comprehensive approach, which can be achieved by integrating just these two omic studies.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":" ","pages":"13-25"},"PeriodicalIF":3.4,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139724844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-20DOI: 10.1080/14789450.2023.2295861
Helen A. Jordan, Stefani N. Thomas
An estimated 20,000 women in the United States will receive a diagnosis of ovarian cancer in 2023. Late-stage diagnosis is associated with poor prognosis. There is a need for novel diagnostic bioma...
{"title":"Novel proteomic technologies to address gaps in pre-clinical ovarian cancer biomarker discovery efforts","authors":"Helen A. Jordan, Stefani N. Thomas","doi":"10.1080/14789450.2023.2295861","DOIUrl":"https://doi.org/10.1080/14789450.2023.2295861","url":null,"abstract":"An estimated 20,000 women in the United States will receive a diagnosis of ovarian cancer in 2023. Late-stage diagnosis is associated with poor prognosis. There is a need for novel diagnostic bioma...","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":"66 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138819290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-18DOI: 10.1080/14789450.2023.2295866
Shereen M. Aleidi, Hiba Al Fahmawi, Afshan Masoud, Anas Abdel Rahman
Diabetes Mellitus (DM) is a chronic heterogeneous metabolic disorder characterized by hyperglycemia due to the destruction of insulin-producing pancreatic β cells and/or insulin resistance. It is n...
{"title":"Metabolomics in diabetes mellitus: clinical insight","authors":"Shereen M. Aleidi, Hiba Al Fahmawi, Afshan Masoud, Anas Abdel Rahman","doi":"10.1080/14789450.2023.2295866","DOIUrl":"https://doi.org/10.1080/14789450.2023.2295866","url":null,"abstract":"Diabetes Mellitus (DM) is a chronic heterogeneous metabolic disorder characterized by hyperglycemia due to the destruction of insulin-producing pancreatic β cells and/or insulin resistance. It is n...","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":"4 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138818876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}