Alejandro Marrero, Eduardo Segredo, Coromoto León, Emma Hart
Gathering sufficient instance data to either train algorithm-selection models or understand algorithm footprints within an instance space can be challenging. We propose an approach to generating synthetic instances that are tailored to perform well with respect to a target algorithm belonging to a predefined portfolio but are also diverse with respect to their features. Our approach uses a novelty search algorithm with a linearly weighted fitness function that balances novelty and performance to generate a large set of diverse and discriminatory instances in a single run of the algorithm. We consider two definitions of novelty: (1) with respect to discriminatory performance within a portfolio of solvers; (2) with respect to the features of the evolved instances. We evaluate the proposed method with respect to its ability to generate diverse and discriminatory instances in two domains (knapsack and bin-packing), comparing to another well-known quality diversity method, Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) and an evolutionary algorithm that only evolves for discriminatory behaviour. The results demonstrate that the novelty search method outperforms its competitors in terms of coverage of the space and its ability to generate instances that are diverse regarding the relative size of the "performance gap" between the target solver and the remaining solvers in the portfolio. Moreover, for the Knapsack domain, we also show that we are able to generate novel instances in regions of an instance space not covered by existing benchmarks using a portfolio of state-of-the-art solvers. Finally, we demonstrate that the method is robust to different portfolios of solvers (stochastic approaches, deterministic heuristics and state-of-the-art methods), thereby providing further evidence of its generality.
{"title":"Synthesising Diverse and Discriminatory Sets of Instances using Novelty Search in Combinatorial Domains.","authors":"Alejandro Marrero, Eduardo Segredo, Coromoto León, Emma Hart","doi":"10.1162/evco_a_00350","DOIUrl":"https://doi.org/10.1162/evco_a_00350","url":null,"abstract":"<p><p>Gathering sufficient instance data to either train algorithm-selection models or understand algorithm footprints within an instance space can be challenging. We propose an approach to generating synthetic instances that are tailored to perform well with respect to a target algorithm belonging to a predefined portfolio but are also diverse with respect to their features. Our approach uses a novelty search algorithm with a linearly weighted fitness function that balances novelty and performance to generate a large set of diverse and discriminatory instances in a single run of the algorithm. We consider two definitions of novelty: (1) with respect to discriminatory performance within a portfolio of solvers; (2) with respect to the features of the evolved instances. We evaluate the proposed method with respect to its ability to generate diverse and discriminatory instances in two domains (knapsack and bin-packing), comparing to another well-known quality diversity method, Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) and an evolutionary algorithm that only evolves for discriminatory behaviour. The results demonstrate that the novelty search method outperforms its competitors in terms of coverage of the space and its ability to generate instances that are diverse regarding the relative size of the \"performance gap\" between the target solver and the remaining solvers in the portfolio. Moreover, for the Knapsack domain, we also show that we are able to generate novel instances in regions of an instance space not covered by existing benchmarks using a portfolio of state-of-the-art solvers. Finally, we demonstrate that the method is robust to different portfolios of solvers (stochastic approaches, deterministic heuristics and state-of-the-art methods), thereby providing further evidence of its generality.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-41"},"PeriodicalIF":6.8,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Isidro M Alvarez, Trung B Nguyen, Will N Browne, Mengjie Zhang
Evolutionary Computation (EC) often throws away learned knowledge as it is reset for each new problem addressed. Conversely, humans can learn from small-scale problems, retain this knowledge (plus functionality) and then successfully reuse them in larger-scale and/or related problems. Linking solutions to problems together has been achieved through layered learning, where an experimenter sets a series of simpler related problems to solve a more complex task. Recent works on Learning Classifier Systems (LCSs) has shown that knowledge reuse through the adoption of Code Fragments, GP-like tree-based programs, is plausible. However, random reuse is inefficient. Thus, the research question is how LCS can adopt a layered-learning framework, such that increasingly complex problems can be solved efficiently? An LCS (named XCSCF*) has been developed to include the required base axioms necessary for learning, refined methods for transfer learning and learning recast as a decomposition into a series of subordinate problems. These subordinate problems can be set as a curriculum by a teacher, but this does not mean that an agent can learn from it. Especially if it only extracts over-fitted knowledge of each problem rather than the underlying scalable patterns and functions. Results show that from a conventional tabula rasa, with only a vague notion of what subordinate problems might be relevant, XCSCF* captures the general logic behind the tested domains and therefore can solve any n-bit Multiplexer, n-bit Carry-one, n-bit Majority-on, and n-bit Even-parity problems. This work demonstrates a step towards continual learning as learned knowledge is effectively reused in subsequent problems.
进化计算(EC)通常会丢弃已学知识,因为每解决一个新问题,都要重新设置这些知识。相反,人类可以从小规模的问题中学习,保留这些知识(以及功能),然后成功地在更大规模和/或相关的问题中重复使用。通过分层学习,实验者可以设置一系列较简单的相关问题来解决较复杂的任务,从而将问题的解决方案联系在一起。最近关于学习分类器系统(LCS)的研究表明,通过采用代码片段(类似于 GP 的树状程序)进行知识重用是可行的。然而,随机重用的效率很低。因此,研究的问题是学习分类系统如何采用分层学习框架,从而高效地解决日益复杂的问题?我们开发了一种 LCS(名为 XCSCF*),其中包括学习所需的基本公理、迁移学习的精炼方法以及分解为一系列下级问题的学习重构。这些下属问题可以由教师设置为课程,但这并不意味着代理可以从中学习。特别是如果它只是提取每个问题的过度拟合知识,而不是潜在的可扩展模式和函数。结果表明,XCSCF*能从传统的表格中捕捉到测试领域背后的一般逻辑,因此能解决任何n位多路复用器、n位携带一、n位多数开和n位偶奇偶问题。这项工作展示了向持续学习迈出的一步,因为学到的知识可以在后续问题中有效地重复使用。
{"title":"A Layered Learning Approach to Scaling in Learning Classifier Systems for Boolean Problems.","authors":"Isidro M Alvarez, Trung B Nguyen, Will N Browne, Mengjie Zhang","doi":"10.1162/evco_a_00351","DOIUrl":"https://doi.org/10.1162/evco_a_00351","url":null,"abstract":"<p><p>Evolutionary Computation (EC) often throws away learned knowledge as it is reset for each new problem addressed. Conversely, humans can learn from small-scale problems, retain this knowledge (plus functionality) and then successfully reuse them in larger-scale and/or related problems. Linking solutions to problems together has been achieved through layered learning, where an experimenter sets a series of simpler related problems to solve a more complex task. Recent works on Learning Classifier Systems (LCSs) has shown that knowledge reuse through the adoption of Code Fragments, GP-like tree-based programs, is plausible. However, random reuse is inefficient. Thus, the research question is how LCS can adopt a layered-learning framework, such that increasingly complex problems can be solved efficiently? An LCS (named XCSCF*) has been developed to include the required base axioms necessary for learning, refined methods for transfer learning and learning recast as a decomposition into a series of subordinate problems. These subordinate problems can be set as a curriculum by a teacher, but this does not mean that an agent can learn from it. Especially if it only extracts over-fitted knowledge of each problem rather than the underlying scalable patterns and functions. Results show that from a conventional tabula rasa, with only a vague notion of what subordinate problems might be relevant, XCSCF* captures the general logic behind the tested domains and therefore can solve any n-bit Multiplexer, n-bit Carry-one, n-bit Majority-on, and n-bit Even-parity problems. This work demonstrates a step towards continual learning as learned knowledge is effectively reused in subsequent problems.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-25"},"PeriodicalIF":6.8,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Kaufmann, Maxime Larcher, Johannes Lengler, Xun Zou
We study the (1:s+1) success rule for controlling the population size of the (1,λ)- EA. It was shown by Hevia Fajardo and Sudholt that this parameter control mechanism can run into problems for large s if the fitness landscape is too easy. They conjectured that this problem is worst for the ONEMAX benchmark, since in some well-established sense ONEMAX is known to be the easiest fitness landscape. In this paper we disprove this conjecture. We show that there exist s and ɛ such that the self-adjusting (1,λ)-EA with the (1:s+1)-rule optimizes ONEMAX efficiently when started with ɛn zero-bits, but does not find the optimum in polynomial time on DYNAMIC BINVAL. Hence, we show that there are landscapes where the problem of the (1:s+1)-rule for controlling the population size of the (1,λ)-EA is more severe than for ONEMAX. The key insight is that, while ONEMAX is the easiest function for decreasing the distance to the optimum, it is not the easiest fitness landscape with respect to finding fitness-improving steps.
{"title":"OneMax is not the Easiest Function for Fitness Improvements.","authors":"Marc Kaufmann, Maxime Larcher, Johannes Lengler, Xun Zou","doi":"10.1162/evco_a_00348","DOIUrl":"https://doi.org/10.1162/evco_a_00348","url":null,"abstract":"<p><p>We study the (1:s+1) success rule for controlling the population size of the (1,λ)- EA. It was shown by Hevia Fajardo and Sudholt that this parameter control mechanism can run into problems for large s if the fitness landscape is too easy. They conjectured that this problem is worst for the ONEMAX benchmark, since in some well-established sense ONEMAX is known to be the easiest fitness landscape. In this paper we disprove this conjecture. We show that there exist s and ɛ such that the self-adjusting (1,λ)-EA with the (1:s+1)-rule optimizes ONEMAX efficiently when started with ɛn zero-bits, but does not find the optimum in polynomial time on DYNAMIC BINVAL. Hence, we show that there are landscapes where the problem of the (1:s+1)-rule for controlling the population size of the (1,λ)-EA is more severe than for ONEMAX. The key insight is that, while ONEMAX is the easiest function for decreasing the distance to the optimum, it is not the easiest fitness landscape with respect to finding fitness-improving steps.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-30"},"PeriodicalIF":6.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The fitness level method is a popular tool for analyzing the hitting time of elitist evolutionary algorithms. Its idea is to divide the search space into multiple fitness levels and estimate lower and upper bounds on the hitting time using transition probabilities between fitness levels. However, the lower bound generated by this method is often loose. An open question regarding the fitness level method is what are the tightest lower and upper time bounds that can be constructed based on transition probabilities between fitness levels. To answer this question, we combine drift analysis with fitness levels and define the tightest bound problem as a constrained multi-objective optimization problem subject to fitness levels. The tightest metric bounds by fitness levels are constructed and proven for the first time. Then linear bounds are derived from metric bounds and a framework is established that can be used to develop different fitness level methods for different types of linear bounds. The framework is generic and promising, as it can be used to draw tight time bounds on both fitness landscapes with and without shortcuts. This is demonstrated in the example of the (1+1) EA maximizing the TwoMax1 function.
适应度方法是分析精英进化算法命中时间的常用工具。其原理是将搜索空间划分为多个适合度等级,并利用适合度等级之间的过渡概率估算出命中时间的下限和上限。然而,这种方法产生的下限往往比较宽松。关于适合度方法的一个悬而未决的问题是,根据适合度之间的过渡概率,可以构建出最严格的时间下限和上限。为了回答这个问题,我们将漂移分析与适应度水平相结合,并将最严格约束问题定义为受限于适应度水平的多目标优化问题。我们首次构建并证明了适应度水平的最严格度量边界。然后,从度量约束推导出线性约束,并建立了一个框架,可用于为不同类型的线性约束开发不同的适度水平方法。该框架具有通用性和广阔前景,因为它既可以用于绘制有捷径的适度景观,也可以用于绘制无捷径的适度景观。(1+1) EA 最大化 TwoMax1 函数的例子就证明了这一点。
{"title":"Drift Analysis with Fitness Levels for Elitist Evolutionary Algorithms.","authors":"Jun He, Yuren Zhou","doi":"10.1162/evco_a_00349","DOIUrl":"https://doi.org/10.1162/evco_a_00349","url":null,"abstract":"<p><p>The fitness level method is a popular tool for analyzing the hitting time of elitist evolutionary algorithms. Its idea is to divide the search space into multiple fitness levels and estimate lower and upper bounds on the hitting time using transition probabilities between fitness levels. However, the lower bound generated by this method is often loose. An open question regarding the fitness level method is what are the tightest lower and upper time bounds that can be constructed based on transition probabilities between fitness levels. To answer this question, we combine drift analysis with fitness levels and define the tightest bound problem as a constrained multi-objective optimization problem subject to fitness levels. The tightest metric bounds by fitness levels are constructed and proven for the first time. Then linear bounds are derived from metric bounds and a framework is established that can be used to develop different fitness level methods for different types of linear bounds. The framework is generic and promising, as it can be used to draw tight time bounds on both fitness landscapes with and without shortcuts. This is demonstrated in the example of the (1+1) EA maximizing the TwoMax1 function.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-25"},"PeriodicalIF":6.8,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140295207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Editorial for the Special Issue on Reproducibility.","authors":"Manuel López-Ibáñez, Luís Paquete, Mike Preuss","doi":"10.1162/evco_e_00344","DOIUrl":"10.1162/evco_e_00344","url":null,"abstract":"","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":"32 1","pages":"1-2"},"PeriodicalIF":6.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139998205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raúl Martín-Santamaría, Sergio Cavero, Alberto Herrán, Abraham Duarte, J Manuel Colmenar
Reproducibility of experiments is a complex task in stochastic methods such as evolutionary algorithms or metaheuristics in general. Many works from the literature give general guidelines to favor reproducibility. However, none of them provide both a practical set of steps or software tools to help in this process. In this article, we propose a practical methodology to favor reproducibility in optimization problems tackled with stochastic methods. This methodology is divided into three main steps, where the researcher is assisted by software tools which implement state-of-the-art techniques related to this process. The methodology has been applied to study the double-row facility layout problem (DRFLP) where we propose a new algorithm able to obtain better results than the state-of-the-art methods. To this aim, we have also replicated the previous methods in order to complete the study with a new set of larger instances. All the produced artifacts related to the methodology and the study of the target problem are available in Zenodo.
{"title":"A Practical Methodology for Reproducible Experimentation: An Application to the Double-Row Facility Layout Problem.","authors":"Raúl Martín-Santamaría, Sergio Cavero, Alberto Herrán, Abraham Duarte, J Manuel Colmenar","doi":"10.1162/evco_a_00317","DOIUrl":"10.1162/evco_a_00317","url":null,"abstract":"<p><p>Reproducibility of experiments is a complex task in stochastic methods such as evolutionary algorithms or metaheuristics in general. Many works from the literature give general guidelines to favor reproducibility. However, none of them provide both a practical set of steps or software tools to help in this process. In this article, we propose a practical methodology to favor reproducibility in optimization problems tackled with stochastic methods. This methodology is divided into three main steps, where the researcher is assisted by software tools which implement state-of-the-art techniques related to this process. The methodology has been applied to study the double-row facility layout problem (DRFLP) where we propose a new algorithm able to obtain better results than the state-of-the-art methods. To this aim, we have also replicated the previous methods in order to complete the study with a new set of larger instances. All the produced artifacts related to the methodology and the study of the target problem are available in Zenodo.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"69-104"},"PeriodicalIF":6.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40695126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anna V Kononova, Diederick Vermetten, Fabio Caraffini, Madalina-A Mitran, Daniela Zaharie
We argue that results produced by a heuristic optimisation algorithm cannot be considered reproducible unless the algorithm fully specifies what should be done with solutions generated outside the domain, even in the case of simple bound constraints. Currently, in the field of heuristic optimisation, such specification is rarely mentioned or investigated due to the assumed triviality or insignificance of this question. Here, we demonstrate that, at least in algorithms based on Differential Evolution, this choice induces notably different behaviours in terms of performance, disruptiveness, and population diversity. This is shown theoretically (where possible) for standard Differential Evolution in the absence of selection pressure and experimentally for the standard and state-of-the-art Differential Evolution variants, on a special test function and the BBOB benchmarking suite, respectively. Moreover, we demonstrate that the importance of this choice quickly grows with problem dimensionality. Differential Evolution is not at all special in this regard-there is no reason to presume that other heuristic optimisers are not equally affected by the aforementioned algorithmic choice. Thus, we urge the heuristic optimisation community to formalise and adopt the idea of a new algorithmic component in heuristic optimisers, which we refer to as the strategy of dealing with infeasible solutions. This component needs to be consistently: (a) specified in algorithmic descriptions to guarantee reproducibility of results, (b) studied to better understand its impact on an algorithm's performance in a wider sense (i.e., convergence time, robustness, etc.), and (c) included in the (automatic) design of algorithms. All of these should be done even for problems with bound constraints.
{"title":"The Importance of Being Constrained: Dealing with Infeasible Solutions in Differential Evolution and Beyond.","authors":"Anna V Kononova, Diederick Vermetten, Fabio Caraffini, Madalina-A Mitran, Daniela Zaharie","doi":"10.1162/evco_a_00333","DOIUrl":"10.1162/evco_a_00333","url":null,"abstract":"<p><p>We argue that results produced by a heuristic optimisation algorithm cannot be considered reproducible unless the algorithm fully specifies what should be done with solutions generated outside the domain, even in the case of simple bound constraints. Currently, in the field of heuristic optimisation, such specification is rarely mentioned or investigated due to the assumed triviality or insignificance of this question. Here, we demonstrate that, at least in algorithms based on Differential Evolution, this choice induces notably different behaviours in terms of performance, disruptiveness, and population diversity. This is shown theoretically (where possible) for standard Differential Evolution in the absence of selection pressure and experimentally for the standard and state-of-the-art Differential Evolution variants, on a special test function and the BBOB benchmarking suite, respectively. Moreover, we demonstrate that the importance of this choice quickly grows with problem dimensionality. Differential Evolution is not at all special in this regard-there is no reason to presume that other heuristic optimisers are not equally affected by the aforementioned algorithmic choice. Thus, we urge the heuristic optimisation community to formalise and adopt the idea of a new algorithmic component in heuristic optimisers, which we refer to as the strategy of dealing with infeasible solutions. This component needs to be consistently: (a) specified in algorithmic descriptions to guarantee reproducibility of results, (b) studied to better understand its impact on an algorithm's performance in a wider sense (i.e., convergence time, robustness, etc.), and (c) included in the (automatic) design of algorithms. All of these should be done even for problems with bound constraints.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"3-48"},"PeriodicalIF":6.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9474478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reproducibility is important for having confidence in evolutionary machine learning algorithms. Although the focus of reproducibility is usually to recreate an aggregate prediction error score using fixed random seeds, this is not sufficient. Firstly, multiple runs of an algorithm, without a fixed random seed, should ideally return statistically equivalent results. Secondly, it should be confirmed whether the expected behaviour of an algorithm matches its actual behaviour, in terms of how an algorithm targets a reduction in prediction error. Confirming the behaviour of an algorithm is not possible when using a total error aggregate score. Using an error decomposition framework as a methodology for improving the reproducibility of results in evolutionary computation addresses both of these factors. By estimating decomposed error using multiple runs of an algorithm and multiple training sets, the framework provides a greater degree of certainty about the prediction error. Also, decomposing error into bias, variance due to the algorithm (internal variance), and variance due to the training data (external variance) more fully characterises evolutionary algorithms. This allows the behaviour of an algorithm to be confirmed. Applying the framework to a number of evolutionary algorithms shows that their expected behaviour can be different to their actual behaviour. Identifying a behaviour mismatch is important in terms of understanding how to further refine an algorithm as well as how to effectively apply an algorithm to a problem.
{"title":"Using Decomposed Error for Reproducing Implicit Understanding of Algorithms.","authors":"Caitlin A Owen, Grant Dick, Peter A Whigham","doi":"10.1162/evco_a_00321","DOIUrl":"10.1162/evco_a_00321","url":null,"abstract":"<p><p>Reproducibility is important for having confidence in evolutionary machine learning algorithms. Although the focus of reproducibility is usually to recreate an aggregate prediction error score using fixed random seeds, this is not sufficient. Firstly, multiple runs of an algorithm, without a fixed random seed, should ideally return statistically equivalent results. Secondly, it should be confirmed whether the expected behaviour of an algorithm matches its actual behaviour, in terms of how an algorithm targets a reduction in prediction error. Confirming the behaviour of an algorithm is not possible when using a total error aggregate score. Using an error decomposition framework as a methodology for improving the reproducibility of results in evolutionary computation addresses both of these factors. By estimating decomposed error using multiple runs of an algorithm and multiple training sets, the framework provides a greater degree of certainty about the prediction error. Also, decomposing error into bias, variance due to the algorithm (internal variance), and variance due to the training data (external variance) more fully characterises evolutionary algorithms. This allows the behaviour of an algorithm to be confirmed. Applying the framework to a number of evolutionary algorithms shows that their expected behaviour can be different to their actual behaviour. Identifying a behaviour mismatch is important in terms of understanding how to further refine an algorithm as well as how to effectively apply an algorithm to a problem.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"49-68"},"PeriodicalIF":6.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9084698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Describing the properties of complex systems that evolve over time is a crucial requirement for monitoring and understanding them. Signal Temporal Logic (STL) is a framework that proved to be effective for this aim because it is expressive and allows state properties as human-readable formulae. Crafting STL formulae that fit a particular system is, however, a difficult task. For this reason, a few approaches have been proposed recently for the automatic learning of STL formulae starting from observations of the system. In this paper, we propose BUSTLE (Bi-level Universal STL Evolver), an approach based on evolutionary computation for learning STL formulae from data. BUSTLE advances the state-of-the-art because it (i) applies to a broader class of problems, in terms of what is known about the state of the system during its observation, and (ii) generates both the structure and the values of the parameters of the formulae employing a bi-level search mechanism (global for the structure, local for the parameters). We consider two cases where (a) observations of the system in both anomalous and regular state are available, or (b) only observations of regular state are available. We experimentally evaluate BUSTLE on problem instances corresponding to the two cases and compare it against previous approaches. We show that the evolved STL formulae are effective and human-readable: the versatility of BUSTLE does not come at the cost of lower effectiveness.
{"title":"BUSTLE: a Versatile Tool for the Evolutionary Learning of STL Specifications from Data.","authors":"Federico Pigozzi, Laura Nenzi, Eric Medvet","doi":"10.1162/evco_a_00347","DOIUrl":"https://doi.org/10.1162/evco_a_00347","url":null,"abstract":"<p><p>Describing the properties of complex systems that evolve over time is a crucial requirement for monitoring and understanding them. Signal Temporal Logic (STL) is a framework that proved to be effective for this aim because it is expressive and allows state properties as human-readable formulae. Crafting STL formulae that fit a particular system is, however, a difficult task. For this reason, a few approaches have been proposed recently for the automatic learning of STL formulae starting from observations of the system. In this paper, we propose BUSTLE (Bi-level Universal STL Evolver), an approach based on evolutionary computation for learning STL formulae from data. BUSTLE advances the state-of-the-art because it (i) applies to a broader class of problems, in terms of what is known about the state of the system during its observation, and (ii) generates both the structure and the values of the parameters of the formulae employing a bi-level search mechanism (global for the structure, local for the parameters). We consider two cases where (a) observations of the system in both anomalous and regular state are available, or (b) only observations of regular state are available. We experimentally evaluate BUSTLE on problem instances corresponding to the two cases and compare it against previous approaches. We show that the evolved STL formulae are effective and human-readable: the versatility of BUSTLE does not come at the cost of lower effectiveness.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-24"},"PeriodicalIF":6.8,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan Boldi, Martin Briesch, Dominik Sobania, Alexander Lalejini, Thomas Helmuth, Franz Rothlauf, Charles Ofria, Lee Spector
Genetic Programming (GP) often uses large training sets and requires all individuals to be evaluated on all training cases during selection. Random down-sampled lexicase selection evaluates individuals on only a random subset of the training cases allowing for more individuals to be explored with the same amount of program executions. However, sampling randomly can exclude important cases from the down-sample for a number of generations, while cases that measure the same behavior (synonymous cases) may be overused. In this work, we introduce Informed Down-Sampled Lexicase Selection. This method leverages population statistics to build down-samples that contain more distinct and therefore informative training cases. Through an empirical investigation across two different GP systems (PushGP and Grammar-Guided GP), we find that informed down-sampling significantly outperforms random down-sampling on a set of contemporary program synthesis benchmark problems. Through an analysis of the created down-samples, we find that important training cases are included in the down-sample consistently across independent evolutionary runs and systems. We hypothesize that this improvement can be attributed to the ability of Informed Down-Sampled Lexicase Selection to maintain more specialist individuals over the course of evolution, while still benefiting from reduced per-evaluation costs.
{"title":"Informed Down-Sampled Lexicase Selection: Identifying productive training cases for efficient problem solving.","authors":"Ryan Boldi, Martin Briesch, Dominik Sobania, Alexander Lalejini, Thomas Helmuth, Franz Rothlauf, Charles Ofria, Lee Spector","doi":"10.1162/evco_a_00346","DOIUrl":"https://doi.org/10.1162/evco_a_00346","url":null,"abstract":"<p><p>Genetic Programming (GP) often uses large training sets and requires all individuals to be evaluated on all training cases during selection. Random down-sampled lexicase selection evaluates individuals on only a random subset of the training cases allowing for more individuals to be explored with the same amount of program executions. However, sampling randomly can exclude important cases from the down-sample for a number of generations, while cases that measure the same behavior (synonymous cases) may be overused. In this work, we introduce Informed Down-Sampled Lexicase Selection. This method leverages population statistics to build down-samples that contain more distinct and therefore informative training cases. Through an empirical investigation across two different GP systems (PushGP and Grammar-Guided GP), we find that informed down-sampling significantly outperforms random down-sampling on a set of contemporary program synthesis benchmark problems. Through an analysis of the created down-samples, we find that important training cases are included in the down-sample consistently across independent evolutionary runs and systems. We hypothesize that this improvement can be attributed to the ability of Informed Down-Sampled Lexicase Selection to maintain more specialist individuals over the course of evolution, while still benefiting from reduced per-evaluation costs.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-32"},"PeriodicalIF":6.8,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}