首页 > 最新文献

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering最新文献

英文 中文
Fragility Analysis and Resilience Assessment of the Single-Column Pier Steel-Concrete Composite Bridge Subjected to Seismic Loads 承受地震荷载的单柱墩钢-混凝土组合桥的脆性分析和复原力评估
Tong Wang, Q. Gao, Yidian Dong, Hao Xu, Yang Liu
With the advantages of a small footprint, wide under-bridge view, and beautiful appearance, single-column pier bridges are widely used in urban bridge networks. However, single-column pier bridges are prone to damage during earthquakes or heavy vehicle use, which can seriously affect normal operations and post-disaster recoveries. Therefore, there is an urgent need to carry out the seismic resilience assessment of single-column pier bridges and formulate disaster prevention and mitigation measures from the aspects of design, maintenance, and post-earthquake recovery. This paper first establishes a resilience assessment framework for the single-column pier bridge and optimizes a functionality recovery model after an earthquake. Then, a numerical model of a sample bridge is built for resilience fragility analysis. Nonlinear dynamic time history analysis is performed to build a probabilistic seismic demand model, and moment-curvature analysis is performed to build a probabilistic seismic capacity model. Finally, a seismic resilience assessment of the single-column pier bridge is obtained based on the seismic fragility, and a sensitivity analysis is carried out for the pier height, pier section dimension, span and vehicle load level to improve the resilience of the single-column pier bridge.
单柱墩桥具有占地面积小、桥下视野开阔、外形美观等优点,被广泛应用于城市桥梁网络中。然而,单柱墩桥在地震或重载车辆使用时容易损坏,严重影响正常运营和灾后恢复。因此,迫切需要对单柱墩桥梁进行抗震性评估,并从设计、养护、震后恢复等方面制定防灾减灾措施。本文首先建立了单柱墩桥的抗震评估框架,并优化了震后功能恢复模型。然后,建立了一座样本桥梁的数值模型,用于复原脆性分析。通过非线性动态时间历程分析建立了概率地震需求模型,通过弯矩曲率分析建立了概率地震承载力模型。最后,根据地震脆性得出单柱墩桥的抗震能力评估,并对桥墩高度、桥墩截面尺寸、跨度和车辆荷载水平进行敏感性分析,以提高单柱墩桥的抗震能力。
{"title":"Fragility Analysis and Resilience Assessment of the Single-Column Pier Steel-Concrete Composite Bridge Subjected to Seismic Loads","authors":"Tong Wang, Q. Gao, Yidian Dong, Hao Xu, Yang Liu","doi":"10.1115/1.4064647","DOIUrl":"https://doi.org/10.1115/1.4064647","url":null,"abstract":"\u0000 With the advantages of a small footprint, wide under-bridge view, and beautiful appearance, single-column pier bridges are widely used in urban bridge networks. However, single-column pier bridges are prone to damage during earthquakes or heavy vehicle use, which can seriously affect normal operations and post-disaster recoveries. Therefore, there is an urgent need to carry out the seismic resilience assessment of single-column pier bridges and formulate disaster prevention and mitigation measures from the aspects of design, maintenance, and post-earthquake recovery. This paper first establishes a resilience assessment framework for the single-column pier bridge and optimizes a functionality recovery model after an earthquake. Then, a numerical model of a sample bridge is built for resilience fragility analysis. Nonlinear dynamic time history analysis is performed to build a probabilistic seismic demand model, and moment-curvature analysis is performed to build a probabilistic seismic capacity model. Finally, a seismic resilience assessment of the single-column pier bridge is obtained based on the seismic fragility, and a sensitivity analysis is carried out for the pier height, pier section dimension, span and vehicle load level to improve the resilience of the single-column pier bridge.","PeriodicalId":504755,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139868364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LSTM Neural Networks Using the SMOTE Algorithm for Wind Turbine Fault Prediction 使用 SMOTE 算法的 LSTM 神经网络用于风力涡轮机故障预测
Júlio Oliveira Schmidt, Lucas França Aires, G. R. Hubner, Humberto Pinheiro, Daniel Fernando Tello Gamarra
This work proposes a method using a long short-term memory neural network as a diagnostic tool to detect wind turbine rotor mass imbalance. The method uses the synthetic minority oversampling technique for data augmentation in an unbalanced dataset. For this purpose, a 1.5 MW three-bladed wind turbine model was simulated at Turbsim, FAST, and Matlab Simulink to generate rotor speed data for different scenarios, simulating different wind speeds and creating a mass imbalance by changing the density of the blades in the software. Features extraction and power spectral density were also used to improve the Neural Network results. The results were compared to nine different classifiers with four different combinations of datasets and demonstrated that the technique is promising for mass imbalance detection.
本研究提出了一种使用长短期记忆神经网络作为诊断工具来检测风力涡轮机转子质量不平衡的方法。该方法在不平衡数据集中使用合成少数超采样技术进行数据扩增。为此,在 Turbsim、FAST 和 Matlab Simulink 中模拟了 1.5 兆瓦三叶片风力涡轮机模型,以生成不同场景下的转子速度数据,模拟不同的风速,并通过改变软件中叶片的密度来产生质量失衡。特征提取和功率谱密度也用于改进神经网络的结果。利用四种不同的数据集组合,将结果与九种不同的分类器进行了比较,结果表明该技术在质量失衡检测方面大有可为。
{"title":"LSTM Neural Networks Using the SMOTE Algorithm for Wind Turbine Fault Prediction","authors":"Júlio Oliveira Schmidt, Lucas França Aires, G. R. Hubner, Humberto Pinheiro, Daniel Fernando Tello Gamarra","doi":"10.1115/1.4064375","DOIUrl":"https://doi.org/10.1115/1.4064375","url":null,"abstract":"\u0000 This work proposes a method using a long short-term memory neural network as a diagnostic tool to detect wind turbine rotor mass imbalance. The method uses the synthetic minority oversampling technique for data augmentation in an unbalanced dataset. For this purpose, a 1.5 MW three-bladed wind turbine model was simulated at Turbsim, FAST, and Matlab Simulink to generate rotor speed data for different scenarios, simulating different wind speeds and creating a mass imbalance by changing the density of the blades in the software. Features extraction and power spectral density were also used to improve the Neural Network results. The results were compared to nine different classifiers with four different combinations of datasets and demonstrated that the technique is promising for mass imbalance detection.","PeriodicalId":504755,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139683921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical Approaches for the Reduction of Measurement Errors in Metrology 减少计量测量误差的统计方法
Marc Gille, Pierre Beaurepaire, N. Gayton, Antoine Dumas, T. Yalamas
Metrology is extensively used in the manufacturing industry to determine whether the dimensions of parts are within their tolerance interval. However, errors cannot be avoided. Metrology experts are of course aware of it, and able to identify the different sources that contribute to making errors. In this paper, the probability density function of measurement errors is assumed to be given as an input. Very little research has been made in metrology to develop methods that take into account such data. This work deals with a batch of measures and its statistical properties. A first method is proposed to correct the effects of the measurement errors on the distribution that characterizes the entire batch. Then a second method is proposed to estimate the true value that is hidden behind each single measure, by removing the measurement error statistically. The second method is based on the output knowledge of the first, which is integrated with Bayesian statistics. The relevance of these two methods is shown through two examples applied on simulated data.
计量学被广泛应用于制造业,以确定零件的尺寸是否在公差范围内。然而,误差是无法避免的。计量专家当然知道这一点,并能识别造成误差的不同来源。本文假定测量误差的概率密度函数作为输入。计量学领域在开发考虑此类数据的方法方面鲜有研究。这项工作涉及一批测量数据及其统计特性。首先提出了一种方法来修正测量误差对整个批量测量分布的影响。然后提出第二种方法,通过统计方法消除测量误差,从而估算出隐藏在每个测量值背后的真实值。第二种方法以第一种方法的输出知识为基础,并与贝叶斯统计学相结合。这两种方法的相关性将通过两个应用于模拟数据的示例来说明。
{"title":"Statistical Approaches for the Reduction of Measurement Errors in Metrology","authors":"Marc Gille, Pierre Beaurepaire, N. Gayton, Antoine Dumas, T. Yalamas","doi":"10.1115/1.4064284","DOIUrl":"https://doi.org/10.1115/1.4064284","url":null,"abstract":"Metrology is extensively used in the manufacturing industry to determine whether the dimensions of parts are within their tolerance interval. However, errors cannot be avoided. Metrology experts are of course aware of it, and able to identify the different sources that contribute to making errors. In this paper, the probability density function of measurement errors is assumed to be given as an input. Very little research has been made in metrology to develop methods that take into account such data. This work deals with a batch of measures and its statistical properties. A first method is proposed to correct the effects of the measurement errors on the distribution that characterizes the entire batch. Then a second method is proposed to estimate the true value that is hidden behind each single measure, by removing the measurement error statistically. The second method is based on the output knowledge of the first, which is integrated with Bayesian statistics. The relevance of these two methods is shown through two examples applied on simulated data.","PeriodicalId":504755,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139178052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Filter Approximations for Random Vibroacoustics of Rigid Porous Media 刚性多孔介质随机振动声学的滤波器近似值
A. Sreekumar, I. Kougioumtzoglou, S. Triantafyllou
An approximate efficient stochastic dynamics technique is developed for determining response statistics of linear systems with frequency-dependent parameters, which are used for modeling wave propagation through rigid porous media subject to stochastic excitation. This is done in conjunction with a filter approximation of the system frequency response function. The technique exhibits the following advantages compared to alternative solution treatments in the literature. First, relying on an input-output relationship in the frequency domain, the response power spectrum matrix is integrated analytically for determining the stationary response covariance matrix, at zero computational cost. Second, the proposed filter approximation facilitates a state-variable formulation of the governing stochastic differential equations in the time domain. This yields a coupled system of deterministic differential equations to be solved numerically for the response covariance matrix. Thus, the non-stationary (transient) response covariance can be computed in the time domain at a relatively low computational cost. Various numerical examples are considered for demonstrating the accuracy and computational efficiency of the herein developed technique. Comparisons with pertinent Monte Carlo simulation data are included as well.
本文开发了一种近似高效随机动力学技术,用于确定具有频率相关参数的线性系统的响应统计量,该系统用于模拟波在受随机激励的刚性多孔介质中的传播。该技术与系统频率响应函数的滤波近似相结合。与文献中的其他求解方法相比,该技术具有以下优势。首先,依靠频域中的输入输出关系,响应功率谱矩阵通过分析积分来确定静态响应协方差矩阵,计算成本为零。其次,所提出的滤波器近似方法有助于在时域中对随机微分方程进行状态变量表述。这就产生了一个耦合的确定性微分方程系统,可以对响应协方差矩阵进行数值求解。因此,非稳态(瞬态)响应协方差可以在时域中以相对较低的计算成本计算出来。为证明本技术的准确性和计算效率,我们考虑了各种数值示例。还包括与相关蒙特卡罗模拟数据的比较。
{"title":"Filter Approximations for Random Vibroacoustics of Rigid Porous Media","authors":"A. Sreekumar, I. Kougioumtzoglou, S. Triantafyllou","doi":"10.1115/1.4064286","DOIUrl":"https://doi.org/10.1115/1.4064286","url":null,"abstract":"An approximate efficient stochastic dynamics technique is developed for determining response statistics of linear systems with frequency-dependent parameters, which are used for modeling wave propagation through rigid porous media subject to stochastic excitation. This is done in conjunction with a filter approximation of the system frequency response function. The technique exhibits the following advantages compared to alternative solution treatments in the literature. First, relying on an input-output relationship in the frequency domain, the response power spectrum matrix is integrated analytically for determining the stationary response covariance matrix, at zero computational cost. Second, the proposed filter approximation facilitates a state-variable formulation of the governing stochastic differential equations in the time domain. This yields a coupled system of deterministic differential equations to be solved numerically for the response covariance matrix. Thus, the non-stationary (transient) response covariance can be computed in the time domain at a relatively low computational cost. Various numerical examples are considered for demonstrating the accuracy and computational efficiency of the herein developed technique. Comparisons with pertinent Monte Carlo simulation data are included as well.","PeriodicalId":504755,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139177892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1