首页 > 最新文献

Estonian Journal of Earth Sciences最新文献

英文 中文
Coupled extinction–regression episodes revisited in mid-oceanic settings for comparative extinction study during the Palaeozoic in view of non-bolide extraterrestrial causes 在非地球成因的情况下,为了比较古生代的灭绝研究,重新考察了大洋中背景下的耦合灭绝-回归事件
IF 1.1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.3176/earth.2023.58
Y. Isozaki
Received 9 April2023 Accepted 11 May 2023 Available online 14 June 2023
2023年4月9日收稿,2023年5月11日接收,2023年6月14日在线发表
{"title":"Coupled extinction–regression episodes revisited in mid-oceanic settings for comparative extinction study during the Palaeozoic in view of non-bolide extraterrestrial causes","authors":"Y. Isozaki","doi":"10.3176/earth.2023.58","DOIUrl":"https://doi.org/10.3176/earth.2023.58","url":null,"abstract":"Received 9 April2023 Accepted 11 May 2023 Available online 14 June 2023","PeriodicalId":50498,"journal":{"name":"Estonian Journal of Earth Sciences","volume":"64 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88773945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using 3-D mapping to understand an Upper Ordovician buildup and facies complex in the upper Lexington Limestone, central Kentucky, USA 利用三维制图技术了解美国肯塔基州中部上莱克星顿灰岩的上奥陶统构造和相复合体
IF 1.1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.3176/earth.2023.81
S. Davis, F. Ettensohn, W. Andrews, G. Martins
{"title":"Using 3-D mapping to understand an Upper Ordovician buildup and facies complex in the upper Lexington Limestone, central Kentucky, USA","authors":"S. Davis, F. Ettensohn, W. Andrews, G. Martins","doi":"10.3176/earth.2023.81","DOIUrl":"https://doi.org/10.3176/earth.2023.81","url":null,"abstract":"","PeriodicalId":50498,"journal":{"name":"Estonian Journal of Earth Sciences","volume":"1 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77118264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A methodological scheme to analyse the early Palaeozoic biodiversification with the example of echinoderms 以棘皮动物为例分析早古生代生物多样性的方法方案
IF 1.1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.3176/earth.2023.32
P. Guenser, M. Nohejlová, E. Nardin, B. Lefebvre
{"title":"A methodological scheme to analyse the early Palaeozoic biodiversification with the example of echinoderms","authors":"P. Guenser, M. Nohejlová, E. Nardin, B. Lefebvre","doi":"10.3176/earth.2023.32","DOIUrl":"https://doi.org/10.3176/earth.2023.32","url":null,"abstract":"","PeriodicalId":50498,"journal":{"name":"Estonian Journal of Earth Sciences","volume":"14 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81563770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The morphological disparity, ecological evolution and palaeobiogeography of Palaeozoic hyoliths 古生代水蛭岩的形态差异、生态演化与古生物地理
IF 1.1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.3176/earth.2023.17
F. Liu, T. Topper, L. Strotz, Y. Liang, C. Skovsted, Z. Zhang
{"title":"The morphological disparity, ecological evolution and palaeobiogeography of Palaeozoic hyoliths","authors":"F. Liu, T. Topper, L. Strotz, Y. Liang, C. Skovsted, Z. Zhang","doi":"10.3176/earth.2023.17","DOIUrl":"https://doi.org/10.3176/earth.2023.17","url":null,"abstract":"","PeriodicalId":50498,"journal":{"name":"Estonian Journal of Earth Sciences","volume":"25 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78496343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ichnologic signature of deep-sea colonization during the Ordovician radiation 奥陶系辐射时期深海殖民的技术特征
IF 1.1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.3176/earth.2023.08
L. Buatois, M. Mángano, M. Paz, N. Minter, K. Zhou
The fossil record of deep-marine environments is notoriously poor in comparison with that of their shallow-marine counterparts. Notably, deep-marine deposits are typically host to diverse and abundant trace-fossil assemblages, providing evidence of the ancient deep-sea benthos. To analyze the early colonization of the deep sea, we constructed a global dataset of trace-fossil occurrences from a survey of Ediacaran–Devonian stratigraphic units. This analysis highlights the importance of the Ordovician radiation as a pivotal time in the colonization of the deep sea. Ediacaran deep-marine trace fossils consist of very simple trails and burrows. Global and alpha ichnodiversity, as well as ichnodisparity, were extremely low. Nonspecialized grazing trails reveal the exploitation of microbial mats. These strategies persisted in the Cambrian, although with an increase in ichnodiversity (both global and alpha) and ichnodisparity. An increase in the complexity of morphologic patterns, as illustrated by the undermat mining ichnogenus Oldhamia , is apparent during the Cambrian. The face of the deep sea started to change during the end of the Cambrian and beginning of the Ordovician with the protracted expansion of farming and trapping strategies. The main architectural designs of deep-marine trace fossils (e.g. regular networks, delicate spiral burrows, guided meandering graphoglyptids) were established in the deep sea by the Early Ordovician, recording the first appearance of the Nereites Ichnofacies. Lower to Middle Ordovician deep-marine ichnofaunas are moderately diverse, and fodinichnia commonly dominates rather than graphoglyptids. A significant ichnodiversity and ichnodisparity increase occurred in the Late Ordovician–early Silurian, with ichnofaunas recording higher proportions of graphoglyptids and evidencing the establishment of a deep-marine ecosystem of modern aspect. The distinction between the Nereites and Paleodictyon ichnosubfacies, with the former characterized by the dominance of feeding traces in muddy turbidites and the later by the dominance of graphoglyptids in sandy turbidites, can also be tracked back to the Ordovician radiation. This trend of increased colonization of the deep sea continued through all the Silurian and the Devonian. However, colonization of carbonate turbidites may have lagged behind that of siliciclastic turbidites. The progressive increase in abundance and diversity of graphoglyptids resulted in an increased role of gallery biodiffusers. This faunal turnover in the deep sea was coincident with an increase in oxygenation in slope and base-of-slope settings, which is thought to have been a driver of Ordovician biodiversifications. The formation of permanent open bur-rows in the deep sea may have increased bioirrigation in the uppermost zone of the deep-sea sediment, therefore increasing ventilation and potentially generating a feedback loop between bioturbation and oxygenation, with the endobenthos engineering its env
与浅海环境相比,深海环境的化石记录是出了名的贫乏。值得注意的是,深海沉积物通常拥有多样化和丰富的痕迹化石组合,为古代深海底栖动物提供了证据。为了分析深海的早期殖民,我们从埃迪卡拉-泥盆纪地层单位的调查中构建了一个全球痕迹化石出现的数据集。这一分析强调了奥陶纪辐射作为深海殖民的关键时期的重要性。埃迪卡拉纪深海痕迹化石由非常简单的痕迹和洞穴组成。总体和α多样性以及技术差异极低。非专业放牧路径揭示了微生物席的开发。这些策略在寒武纪持续存在,尽管物种多样性(全球和α)和物种差异有所增加。在寒武纪期间,形态模式的复杂性明显增加,如地下采矿石属Oldhamia所示。在寒武纪末期和奥陶纪初期,随着农业和捕鲸策略的长期扩张,深海的面貌开始发生变化。早奥陶世在深海中形成了规则的网状、精细的螺旋状洞穴、引导蜿蜒的字形化石等主要建筑图案,标志着浅海岩鱼相的首次出现。下至中奥陶统的深海鱼动物群具有中等的多样性,通常以fodinichnia为主,而不是graphoglypides。晚奥陶世—早志留世的鱼类多样性和差异显著增加,石雕类的比例较高,证明了现代深海生态系统的建立。泥灰岩与古二叠统鱼亚相的区别也可以追溯到奥陶系的辐射,泥灰岩以泥质浊积岩中的摄食痕迹为主,而泥灰岩以砂质浊积岩中的绘形体为主。在整个志留纪和泥盆纪,这种向深海扩张的趋势一直持续着。然而,碳酸盐浊积岩的定植可能落后于硅屑浊积岩。字形生物的丰度和多样性的逐渐增加导致了画廊生物扩散器的作用增加。这种深海动物更替与斜坡和坡底环境中氧合作用的增加是一致的,这被认为是奥陶纪生物多样性的驱动因素。深海中永久开放洞穴的形成可能增加了深海沉积物最上层的生物灌溉,因此增加了通风,并可能在生物扰动和氧化作用之间产生反馈回路,而底栖生物则对其环境进行了改造。
{"title":"The ichnologic signature of deep-sea colonization during the Ordovician radiation","authors":"L. Buatois, M. Mángano, M. Paz, N. Minter, K. Zhou","doi":"10.3176/earth.2023.08","DOIUrl":"https://doi.org/10.3176/earth.2023.08","url":null,"abstract":"The fossil record of deep-marine environments is notoriously poor in comparison with that of their shallow-marine counterparts. Notably, deep-marine deposits are typically host to diverse and abundant trace-fossil assemblages, providing evidence of the ancient deep-sea benthos. To analyze the early colonization of the deep sea, we constructed a global dataset of trace-fossil occurrences from a survey of Ediacaran–Devonian stratigraphic units. This analysis highlights the importance of the Ordovician radiation as a pivotal time in the colonization of the deep sea. Ediacaran deep-marine trace fossils consist of very simple trails and burrows. Global and alpha ichnodiversity, as well as ichnodisparity, were extremely low. Nonspecialized grazing trails reveal the exploitation of microbial mats. These strategies persisted in the Cambrian, although with an increase in ichnodiversity (both global and alpha) and ichnodisparity. An increase in the complexity of morphologic patterns, as illustrated by the undermat mining ichnogenus Oldhamia , is apparent during the Cambrian. The face of the deep sea started to change during the end of the Cambrian and beginning of the Ordovician with the protracted expansion of farming and trapping strategies. The main architectural designs of deep-marine trace fossils (e.g. regular networks, delicate spiral burrows, guided meandering graphoglyptids) were established in the deep sea by the Early Ordovician, recording the first appearance of the Nereites Ichnofacies. Lower to Middle Ordovician deep-marine ichnofaunas are moderately diverse, and fodinichnia commonly dominates rather than graphoglyptids. A significant ichnodiversity and ichnodisparity increase occurred in the Late Ordovician–early Silurian, with ichnofaunas recording higher proportions of graphoglyptids and evidencing the establishment of a deep-marine ecosystem of modern aspect. The distinction between the Nereites and Paleodictyon ichnosubfacies, with the former characterized by the dominance of feeding traces in muddy turbidites and the later by the dominance of graphoglyptids in sandy turbidites, can also be tracked back to the Ordovician radiation. This trend of increased colonization of the deep sea continued through all the Silurian and the Devonian. However, colonization of carbonate turbidites may have lagged behind that of siliciclastic turbidites. The progressive increase in abundance and diversity of graphoglyptids resulted in an increased role of gallery biodiffusers. This faunal turnover in the deep sea was coincident with an increase in oxygenation in slope and base-of-slope settings, which is thought to have been a driver of Ordovician biodiversifications. The formation of permanent open bur-rows in the deep sea may have increased bioirrigation in the uppermost zone of the deep-sea sediment, therefore increasing ventilation and potentially generating a feedback loop between bioturbation and oxygenation, with the endobenthos engineering its env","PeriodicalId":50498,"journal":{"name":"Estonian Journal of Earth Sciences","volume":"74 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88385631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ordovician Bryozoa of Estonia 爱沙尼亚奥陶纪苔藓虫
IF 1.1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.3176/earth.2023.04
A. Ernst
Received 24 March 2023 Accepted 4 April 2023 Available online 8 June 2023
2023年3月24日收稿,2023年4月4日接收,2023年6月8日在线发表
{"title":"Ordovician Bryozoa of Estonia","authors":"A. Ernst","doi":"10.3176/earth.2023.04","DOIUrl":"https://doi.org/10.3176/earth.2023.04","url":null,"abstract":"Received 24 March 2023 Accepted 4 April 2023 Available online 8 June 2023","PeriodicalId":50498,"journal":{"name":"Estonian Journal of Earth Sciences","volume":"43 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73800829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distribution pattern of the Ordovician black shale constrained by graptolite zonation in the western margin of the Ordos Block, North-West China 鄂尔多斯地块西缘受笔石带约束的奥陶系黑色页岩分布格局
IF 1.1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.3176/earth.2023.71
C. Wang, Y. Hu
{"title":"Distribution pattern of the Ordovician black shale constrained by graptolite zonation in the western margin of the Ordos Block, North-West China","authors":"C. Wang, Y. Hu","doi":"10.3176/earth.2023.71","DOIUrl":"https://doi.org/10.3176/earth.2023.71","url":null,"abstract":"","PeriodicalId":50498,"journal":{"name":"Estonian Journal of Earth Sciences","volume":"13 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89799601","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limitations in detectability of air-filled gypsum karst cavity by electrical resistivity tomography: a case study from the Baltic Devonian sedimentary basin 电阻率层析成像探测充气石膏岩溶洞的局限性:以波罗的海泥盆纪沉积盆地为例
4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.3176/earth.2023.84
J Karušs, P Džeriņš, K Lamsters, J Ješkins, G Stinkulis
{"title":"Limitations in detectability of air-filled gypsum karst cavity by electrical resistivity tomography: a case study from the Baltic Devonian sedimentary basin","authors":"J Karušs, P Džeriņš, K Lamsters, J Ješkins, G Stinkulis","doi":"10.3176/earth.2023.84","DOIUrl":"https://doi.org/10.3176/earth.2023.84","url":null,"abstract":"","PeriodicalId":50498,"journal":{"name":"Estonian Journal of Earth Sciences","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135104315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The late Katian Elkhorn event: precursor to the Late Ordovician mass extinction 晚Katian Elkhorn事件:晚奥陶世大灭绝的前兆
IF 1.1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.3176/earth.2023.46
P. McLaughlin, T. Vandenbroucke, C. Esteves, A. Bancroft, T. Paton, M. Williams, C. Brett, C. Farnam, P. Emsbo
{"title":"The late Katian Elkhorn event: precursor to the Late Ordovician mass extinction","authors":"P. McLaughlin, T. Vandenbroucke, C. Esteves, A. Bancroft, T. Paton, M. Williams, C. Brett, C. Farnam, P. Emsbo","doi":"10.3176/earth.2023.46","DOIUrl":"https://doi.org/10.3176/earth.2023.46","url":null,"abstract":"","PeriodicalId":50498,"journal":{"name":"Estonian Journal of Earth Sciences","volume":"65 5 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87752612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oxygen isotope compositions of conodonts – analytical challenges of in situ SIMS studies 牙形刺的氧同位素组成-原位SIMS研究的分析挑战
IF 1.1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY Pub Date : 2023-01-01 DOI: 10.3176/earth.2023.39
A. Wudarska, M. Wiedenbeck, O. Hints, P. Männik, A. Lepland, M. Joachimski, F. Couffignal, M. Scicchitano, F. Wilke
{"title":"Oxygen isotope compositions of conodonts – analytical challenges of in situ SIMS studies","authors":"A. Wudarska, M. Wiedenbeck, O. Hints, P. Männik, A. Lepland, M. Joachimski, F. Couffignal, M. Scicchitano, F. Wilke","doi":"10.3176/earth.2023.39","DOIUrl":"https://doi.org/10.3176/earth.2023.39","url":null,"abstract":"","PeriodicalId":50498,"journal":{"name":"Estonian Journal of Earth Sciences","volume":"14 1","pages":""},"PeriodicalIF":1.1,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77967592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Estonian Journal of Earth Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1