首页 > 最新文献

Distributed and Parallel Databases最新文献

英文 中文
On accurate POI recommendation via transfer learning 基于迁移学习的准确POI推荐
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-06-15 DOI: 10.1007/s10619-020-07299-7
Hao Zhang, Siyi Wei, Xiaojiao Hu, Ying Li, Jiajie Xu
{"title":"On accurate POI recommendation via transfer learning","authors":"Hao Zhang, Siyi Wei, Xiaojiao Hu, Ying Li, Jiajie Xu","doi":"10.1007/s10619-020-07299-7","DOIUrl":"https://doi.org/10.1007/s10619-020-07299-7","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"38 1","pages":"585 - 599"},"PeriodicalIF":1.2,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10619-020-07299-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47111403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
A framework for dependency estimation in heterogeneous data streams 异构数据流中依赖估计的框架
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-06-06 DOI: 10.1007/s10619-020-07295-x
Edouard Fouché, Alan Mazankiewicz, Florian Kalinke, Klemens Böhm
{"title":"A framework for dependency estimation in heterogeneous data streams","authors":"Edouard Fouché, Alan Mazankiewicz, Florian Kalinke, Klemens Böhm","doi":"10.1007/s10619-020-07295-x","DOIUrl":"https://doi.org/10.1007/s10619-020-07295-x","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"39 1","pages":"415 - 444"},"PeriodicalIF":1.2,"publicationDate":"2020-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10619-020-07295-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52191630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A data distribution model for RDF RDF的数据分布模型
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-05-16 DOI: 10.1007/s10619-020-07296-w
Rebeca Schroeder, Raqueline R. M. Penteado, Carmem S. Hara
{"title":"A data distribution model for RDF","authors":"Rebeca Schroeder, Raqueline R. M. Penteado, Carmem S. Hara","doi":"10.1007/s10619-020-07296-w","DOIUrl":"https://doi.org/10.1007/s10619-020-07296-w","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"39 1","pages":"129 - 167"},"PeriodicalIF":1.2,"publicationDate":"2020-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10619-020-07296-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52191653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
LSTM-based deep learning for spatial–temporal software testing 基于lstm的时空软件测试深度学习
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-05-09 DOI: 10.1007/s10619-020-07291-1
Lei Xiao, Huai-kou Miao, Tingting Shi, Yu Hong
{"title":"LSTM-based deep learning for spatial–temporal software testing","authors":"Lei Xiao, Huai-kou Miao, Tingting Shi, Yu Hong","doi":"10.1007/s10619-020-07291-1","DOIUrl":"https://doi.org/10.1007/s10619-020-07291-1","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"38 1","pages":"687 - 712"},"PeriodicalIF":1.2,"publicationDate":"2020-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10619-020-07291-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52191595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Self-adapting data migration in the context of schema evolution in NoSQL databases NoSQL数据库模式进化背景下的自适应数据迁移
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-04-01 DOI: 10.1109/ICDEW49219.2020.00013
Andrea Hillenbrand, U. Störl, Shamil Nabiyev, Meike Klettke
When NoSQL database systems are used in an agile software development setting, data model changes occur frequently and thus, data is routinely stored in different versions. The management of versioned data leads to an overhead potentially impeding the software development. Several data migration strategies exist that handle legacy data differently during data accesses, each of which can be characterized by certain advantages and disadvantages. Depending on the requirements for the software application, we evaluate and compare different migration strategies through metrics like migration costs and latency as well as precision and recall. Ideally, exactly that strategy should be selected whose characteristics fulfill service-level agreements and match the migration scenario, which depends on the query workload and the changes in the data model which imply an evolution of the database schema. In this paper, we present a methodology of self-adapting data migration, which automatically adjusts migration strategies and their parameters with respect to the migration scenario and service-level agreements, thereby contributing to the self-management of database systems and supporting agile development.
当在敏捷软件开发环境中使用NoSQL数据库系统时,数据模型经常发生变化,因此,数据通常存储在不同的版本中。对版本化数据的管理会导致可能阻碍软件开发的开销。存在几种数据迁移策略,它们在数据访问期间以不同的方式处理遗留数据,每种策略都有一定的优点和缺点。根据软件应用程序的要求,我们通过迁移成本、延迟以及精度和召回率等指标来评估和比较不同的迁移策略。理想情况下,应该选择其特征符合服务级别协议并与迁移场景匹配的策略,迁移场景取决于查询工作负载和数据模型的变化,这意味着数据库模式的演变。在本文中,我们提出了一种自适应数据迁移方法,该方法根据迁移场景和服务级别协议自动调整迁移策略及其参数,从而有助于数据库系统的自我管理,支持敏捷开发。
{"title":"Self-adapting data migration in the context of schema evolution in NoSQL databases","authors":"Andrea Hillenbrand, U. Störl, Shamil Nabiyev, Meike Klettke","doi":"10.1109/ICDEW49219.2020.00013","DOIUrl":"https://doi.org/10.1109/ICDEW49219.2020.00013","url":null,"abstract":"When NoSQL database systems are used in an agile software development setting, data model changes occur frequently and thus, data is routinely stored in different versions. The management of versioned data leads to an overhead potentially impeding the software development. Several data migration strategies exist that handle legacy data differently during data accesses, each of which can be characterized by certain advantages and disadvantages. Depending on the requirements for the software application, we evaluate and compare different migration strategies through metrics like migration costs and latency as well as precision and recall. Ideally, exactly that strategy should be selected whose characteristics fulfill service-level agreements and match the migration scenario, which depends on the query workload and the changes in the data model which imply an evolution of the database schema. In this paper, we present a methodology of self-adapting data migration, which automatically adjusts migration strategies and their parameters with respect to the migration scenario and service-level agreements, thereby contributing to the self-management of database systems and supporting agile development.","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"40 1","pages":"5 - 25"},"PeriodicalIF":1.2,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICDEW49219.2020.00013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48202535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Selective caching: a persistent memory approach for multi-dimensional index structures 选择性缓存:用于多维索引结构的持久内存方法
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-04-01 DOI: 10.1109/ICDEW49219.2020.00010
M. Jibril, Philipp Götze, David Broneske, K. Sattler
After the introduction of Persistent Memory in the form of Intel’s Optane DC Persistent Memory on the market in 2019, it has found its way into manifold applications and systems. As Google and other cloud infrastructure providers are starting to incorporate Persistent Memory into their portfolio, it is only logical that cloud applications have to exploit its inherent properties. Persistent Memory can serve as a DRAM substitute, but guarantees persistence at the cost of compromised read/write performance compared to standard DRAM. These properties particularly affect the performance of index structures, since they are subject to frequent updates and queries. However, adapting each and every index structure to exploit the properties of Persistent Memory is tedious. Hence, we require a general technique that hides this access gap, e.g., by using DRAM caching strategies. To exploit Persistent Memory properties for analytical index structures, we propose selective caching . It is based on a mixture of dynamic and static caching of tree nodes in DRAM to reach near-DRAM access speeds for index structures. In this paper, we evaluate selective caching on the OLAP-optimized main-memory index structure Elf, because its memory layout allows for an easy caching. Our experiments show that if configured well, selective caching with a suitable replacement strategy can keep pace with pure DRAM storage of Elf while guaranteeing persistence. These results are also reflected when selective caching is used for parallel workloads.
在2019年以英特尔Optane DC Persistent Memory的形式在市场上推出Persistent Memory之后,它已经进入了多种应用和系统。随着b谷歌和其他云基础设施提供商开始将持久性内存整合到他们的产品组合中,云应用程序必须利用其固有属性是合乎逻辑的。持久性内存可以作为DRAM的替代品,但与标准DRAM相比,它以牺牲读/写性能为代价来保证持久性。这些属性特别影响索引结构的性能,因为它们受到频繁更新和查询的影响。然而,调整每个索引结构来利用持久性内存的属性是很繁琐的。因此,我们需要一种通用的技术来隐藏这种访问间隙,例如,通过使用DRAM缓存策略。为了利用分析索引结构的持久内存属性,我们提出了选择性缓存。它基于DRAM中树节点的动态和静态缓存的混合,以达到接近DRAM的索引结构访问速度。在本文中,我们评估了olap优化的主内存索引结构Elf上的选择性缓存,因为它的内存布局允许简单的缓存。我们的实验表明,如果配置得当,具有合适替换策略的选择性缓存可以与Elf的纯DRAM存储保持同步,同时保证持久性。当对并行工作负载使用选择性缓存时,也会反映出这些结果。
{"title":"Selective caching: a persistent memory approach for multi-dimensional index structures","authors":"M. Jibril, Philipp Götze, David Broneske, K. Sattler","doi":"10.1109/ICDEW49219.2020.00010","DOIUrl":"https://doi.org/10.1109/ICDEW49219.2020.00010","url":null,"abstract":"After the introduction of Persistent Memory in the form of Intel’s Optane DC Persistent Memory on the market in 2019, it has found its way into manifold applications and systems. As Google and other cloud infrastructure providers are starting to incorporate Persistent Memory into their portfolio, it is only logical that cloud applications have to exploit its inherent properties. Persistent Memory can serve as a DRAM substitute, but guarantees persistence at the cost of compromised read/write performance compared to standard DRAM. These properties particularly affect the performance of index structures, since they are subject to frequent updates and queries. However, adapting each and every index structure to exploit the properties of Persistent Memory is tedious. Hence, we require a general technique that hides this access gap, e.g., by using DRAM caching strategies. To exploit Persistent Memory properties for analytical index structures, we propose selective caching . It is based on a mixture of dynamic and static caching of tree nodes in DRAM to reach near-DRAM access speeds for index structures. In this paper, we evaluate selective caching on the OLAP-optimized main-memory index structure Elf, because its memory layout allows for an easy caching. Our experiments show that if configured well, selective caching with a suitable replacement strategy can keep pace with pure DRAM storage of Elf while guaranteeing persistence. These results are also reflected when selective caching is used for parallel workloads.","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"40 1","pages":"47-66"},"PeriodicalIF":1.2,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICDEW49219.2020.00010","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47157551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
On the necessity of explicit cross-layer data formats in near-data processing systems 近数据处理系统中显式跨层数据格式的必要性
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-04-01 DOI: 10.1109/ICDEW49219.2020.00009
Tobias Vinçon, Arthur Bernhardt, Lukas Weber, A. Koch, Ilia Petrov
Massive data transfers in modern data-intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-Data processing (NDP) and a shift to code-to-data designs may represent a viable solution as packaging combinations of storage and compute elements on the same device has become feasible. The shift towards NDP system architectures calls for revision of established principles. Abstractions such as data formats and layouts typically spread multiple layers in traditional DBMS, the way they are processed is encapsulated within these layers of abstraction. The NDP-style processing requires an explicit definition of cross-layer data formats and accessors to ensure in-situ executions optimally utilizing the properties of the underlying NDP storage and compute elements. In this paper, we make the case for such data format definitions and investigate the performance benefits under RocksDB and the COSMOS hardware platform.
在现代数据密集型系统中,由于低数据局部性和数据到代码的系统设计导致大量数据传输损害了系统的性能和可扩展性。近数据处理(NDP)和向代码到数据设计的转变可能是一种可行的解决方案,因为在同一设备上封装存储和计算元素的组合已经变得可行。向新发展方案系统架构的转变要求修订既定原则。在传统的DBMS中,诸如数据格式和布局之类的抽象通常分布在多个层,它们的处理方式被封装在这些抽象层中。NDP风格的处理需要明确定义跨层数据格式和访问器,以确保最佳地利用底层NDP存储和计算元素的属性进行原位执行。在本文中,我们对这样的数据格式定义进行了说明,并研究了在RocksDB和COSMOS硬件平台下的性能优势。
{"title":"On the necessity of explicit cross-layer data formats in near-data processing systems","authors":"Tobias Vinçon, Arthur Bernhardt, Lukas Weber, A. Koch, Ilia Petrov","doi":"10.1109/ICDEW49219.2020.00009","DOIUrl":"https://doi.org/10.1109/ICDEW49219.2020.00009","url":null,"abstract":"Massive data transfers in modern data-intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-Data processing (NDP) and a shift to code-to-data designs may represent a viable solution as packaging combinations of storage and compute elements on the same device has become feasible. The shift towards NDP system architectures calls for revision of established principles. Abstractions such as data formats and layouts typically spread multiple layers in traditional DBMS, the way they are processed is encapsulated within these layers of abstraction. The NDP-style processing requires an explicit definition of cross-layer data formats and accessors to ensure in-situ executions optimally utilizing the properties of the underlying NDP storage and compute elements. In this paper, we make the case for such data format definitions and investigate the performance benefits under RocksDB and the COSMOS hardware platform.","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"40 1","pages":"27-45"},"PeriodicalIF":1.2,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ICDEW49219.2020.00009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44187166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
A gray-box modeling methodology for runtime prediction of Apache Spark jobs 用于Apache Spark作业运行时预测的灰盒建模方法
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-03-10 DOI: 10.1007/s10619-020-07286-y
Hani Al-Sayeh, Stefan Hagedorn, K. Sattler
{"title":"A gray-box modeling methodology for runtime prediction of Apache Spark jobs","authors":"Hani Al-Sayeh, Stefan Hagedorn, K. Sattler","doi":"10.1007/s10619-020-07286-y","DOIUrl":"https://doi.org/10.1007/s10619-020-07286-y","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"1 1","pages":"1-21"},"PeriodicalIF":1.2,"publicationDate":"2020-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10619-020-07286-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52191488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Multi-objective spatial keyword query with semantics: a distance-owner based approach 具有语义的多目标空间关键字查询:一种基于距离所有者的方法
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-02-08 DOI: 10.1007/s10619-020-07283-1
Jiajie Xu, J. Chen, Lihua Yin
{"title":"Multi-objective spatial keyword query with semantics: a distance-owner based approach","authors":"Jiajie Xu, J. Chen, Lihua Yin","doi":"10.1007/s10619-020-07283-1","DOIUrl":"https://doi.org/10.1007/s10619-020-07283-1","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"69 1","pages":"625 - 647"},"PeriodicalIF":1.2,"publicationDate":"2020-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10619-020-07283-1","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52191439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Secrecy and performance models for query processing on outsourced graph data 外包图数据查询处理的保密和性能模型
IF 1.2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Pub Date : 2020-01-29 DOI: 10.1007/s10619-020-07284-0
Gabriela Suntaxi, Aboubakr Achraf El Ghazi, Klemens Böhm
{"title":"Secrecy and performance models for query processing on outsourced graph data","authors":"Gabriela Suntaxi, Aboubakr Achraf El Ghazi, Klemens Böhm","doi":"10.1007/s10619-020-07284-0","DOIUrl":"https://doi.org/10.1007/s10619-020-07284-0","url":null,"abstract":"","PeriodicalId":50568,"journal":{"name":"Distributed and Parallel Databases","volume":"39 1","pages":"35 - 77"},"PeriodicalIF":1.2,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10619-020-07284-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"52191462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Distributed and Parallel Databases
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1