首页 > 最新文献

International Journal of Modeling, Simulation, and Scientific Computing最新文献

英文 中文
Physics-Informed Neural Networks for Parameter Estimation and Simulation of a Two-Group Epidemiological Model 用于两组流行病学模型参数估计和模拟的物理信息神经网络
Pub Date : 2024-07-05 DOI: 10.1142/s1793962324500429
Kawtar Idhammou Ouyoussef, J. El Karkri, L. M. Tine, R. Aboulaich
{"title":"Physics-Informed Neural Networks for Parameter Estimation and Simulation of a Two-Group Epidemiological Model","authors":"Kawtar Idhammou Ouyoussef, J. El Karkri, L. M. Tine, R. Aboulaich","doi":"10.1142/s1793962324500429","DOIUrl":"https://doi.org/10.1142/s1793962324500429","url":null,"abstract":"","PeriodicalId":505809,"journal":{"name":"International Journal of Modeling, Simulation, and Scientific Computing","volume":" 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141674786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harmonic Drive Friction Loss Based on an Integrated Joint for Collaborative Robots 基于协作机器人集成关节的谐波驱动摩擦损耗
Pub Date : 2024-07-05 DOI: 10.1142/s1793962325500072
Ya Chen, Rongqing Wu, Peng Wang, Dianjun Wang, Linlin Gao, Shujing Liu, Zhongkang Song
{"title":"Harmonic Drive Friction Loss Based on an Integrated Joint for Collaborative Robots","authors":"Ya Chen, Rongqing Wu, Peng Wang, Dianjun Wang, Linlin Gao, Shujing Liu, Zhongkang Song","doi":"10.1142/s1793962325500072","DOIUrl":"https://doi.org/10.1142/s1793962325500072","url":null,"abstract":"","PeriodicalId":505809,"journal":{"name":"International Journal of Modeling, Simulation, and Scientific Computing","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141676410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distributed denial of service (ddos) attacks and mitigation method using logistic regression based googlenet for real-time in security games 分布式拒绝服务(ddos)攻击和基于逻辑回归的实时安全游戏 googlenet 的缓解方法
Pub Date : 2024-06-07 DOI: 10.1142/s1793962324410204
Ajit Kumar Singh Yadav, R. Radhika, V.R. Balaji, D. Sivaganesan, J. Cynthia, M. Thomas Jeyanth
{"title":"Distributed denial of service (ddos) attacks and mitigation method using logistic regression based googlenet for real-time in security games","authors":"Ajit Kumar Singh Yadav, R. Radhika, V.R. Balaji, D. Sivaganesan, J. Cynthia, M. Thomas Jeyanth","doi":"10.1142/s1793962324410204","DOIUrl":"https://doi.org/10.1142/s1793962324410204","url":null,"abstract":"","PeriodicalId":505809,"journal":{"name":"International Journal of Modeling, Simulation, and Scientific Computing","volume":" 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Association between the motor units and the central pattern generator in terms of the synaptic connection 运动单元与中央模式发生器之间的突触联系
Pub Date : 2024-06-07 DOI: 10.1142/s179396232450034x
Qiang Lu, Wenxuan Lu, Juan Tian
{"title":"Association between the motor units and the central pattern generator in terms of the synaptic connection","authors":"Qiang Lu, Wenxuan Lu, Juan Tian","doi":"10.1142/s179396232450034x","DOIUrl":"https://doi.org/10.1142/s179396232450034x","url":null,"abstract":"","PeriodicalId":505809,"journal":{"name":"International Journal of Modeling, Simulation, and Scientific Computing","volume":" 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141370866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling and Analysis of a Novel 6-DOF Magnetic Levitation System with Experimental Verification 新型 6-DOF 磁悬浮系统的建模与分析及实验验证
Pub Date : 2024-05-17 DOI: 10.1142/s1793962325500047
Shinan Cao, Pingjuan Niu, Shan Sheng, Bin Wang, Qiang Liu, Bangchen Han
{"title":"Modeling and Analysis of a Novel 6-DOF Magnetic Levitation System with Experimental Verification","authors":"Shinan Cao, Pingjuan Niu, Shan Sheng, Bin Wang, Qiang Liu, Bangchen Han","doi":"10.1142/s1793962325500047","DOIUrl":"https://doi.org/10.1142/s1793962325500047","url":null,"abstract":"","PeriodicalId":505809,"journal":{"name":"International Journal of Modeling, Simulation, and Scientific Computing","volume":"26 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140963119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the Waves of Mis and Disinformation from Social Media 揭开社交媒体误导和虚假信息浪潮的面纱
Pub Date : 2024-05-10 DOI: 10.1142/s1793962324500338
Hossein Hassani, Nadejda Komendantova, Elena A. Rovenskaya, M. R. Yeganegi
{"title":"Unveiling the Waves of Mis and Disinformation from Social Media","authors":"Hossein Hassani, Nadejda Komendantova, Elena A. Rovenskaya, M. R. Yeganegi","doi":"10.1142/s1793962324500338","DOIUrl":"https://doi.org/10.1142/s1793962324500338","url":null,"abstract":"","PeriodicalId":505809,"journal":{"name":"International Journal of Modeling, Simulation, and Scientific Computing","volume":" 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140993255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HME-KG: A method of constructing the human motion encoding knowledge graph based on a hierarchical motion model HME-KG:基于分层运动模型的人体运动编码知识图谱构建方法
Pub Date : 2024-05-09 DOI: 10.1142/s1793962324500326
Qi Liu, Tianyu Huang, Xiangchen Li
The diversity, infinity, and nonuniform description of human motion make it challenging for computers to understand human activities. To explore and reuse captured human motion data, this work defines a more comprehensive hierarchical theoretical model of human motion and proposes a standard human posture encoding scheme. We construct a domain knowledge graph (DKG) named the human motion encoding knowledge graph (HME-KG) based on posture codes and action labels. Community detection, similarity analysis, and centrality analysis are used to explore the potential value of motion data. This paper conducts an evaluation and visualization of HME-KG.
人类运动的多样性、无限性和非均匀性使得计算机在理解人类活动时面临挑战。为了探索和重用捕捉到的人体运动数据,这项工作定义了一个更全面的人体运动分层理论模型,并提出了一种标准的人体姿态编码方案。我们基于姿势编码和动作标签构建了一个领域知识图谱(DKG),命名为人类动作编码知识图谱(HME-KG)。我们利用群体检测、相似性分析和中心性分析来挖掘运动数据的潜在价值。本文对 HME-KG 进行了评估和可视化。
{"title":"HME-KG: A method of constructing the human motion encoding knowledge graph based on a hierarchical motion model","authors":"Qi Liu, Tianyu Huang, Xiangchen Li","doi":"10.1142/s1793962324500326","DOIUrl":"https://doi.org/10.1142/s1793962324500326","url":null,"abstract":"The diversity, infinity, and nonuniform description of human motion make it challenging for computers to understand human activities. To explore and reuse captured human motion data, this work defines a more comprehensive hierarchical theoretical model of human motion and proposes a standard human posture encoding scheme. We construct a domain knowledge graph (DKG) named the human motion encoding knowledge graph (HME-KG) based on posture codes and action labels. Community detection, similarity analysis, and centrality analysis are used to explore the potential value of motion data. This paper conducts an evaluation and visualization of HME-KG.","PeriodicalId":505809,"journal":{"name":"International Journal of Modeling, Simulation, and Scientific Computing","volume":" 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140996569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decentralized Edge Computing Approach for Secure and Efficient Preservation of Short-Term Electronic Forensic Evidence through Consensus 通过共识安全高效保存短期电子取证证据的分散边缘计算方法
Pub Date : 2024-05-07 DOI: 10.1142/s1793962325410041
Shan He
{"title":"Decentralized Edge Computing Approach for Secure and Efficient Preservation of Short-Term Electronic Forensic Evidence through Consensus","authors":"Shan He","doi":"10.1142/s1793962325410041","DOIUrl":"https://doi.org/10.1142/s1793962325410041","url":null,"abstract":"","PeriodicalId":505809,"journal":{"name":"International Journal of Modeling, Simulation, and Scientific Computing","volume":"24 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141005103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi teacher knowledge extraction for prostate cancer recognition in medical intelligent assistance systems 医疗智能辅助系统中前列腺癌识别的多教师知识提取
Pub Date : 2024-03-22 DOI: 10.1142/s1793962325500035
Linyuan Li, Qian Zhang, Zhengqi Liu, Xinyi Xi, Haonan Zhang, Yahui Nan
Designing intelligent diagnosis of prostate diseases in intelligent medical assistance systems has gradually become a research hotspot. However, rectal ultrasound (TRUS) as the main diagnostic tool for prostate diseases remains a challenging issue. (1) Due to limited prostate TRUS imaging data, it is difficult to train a robust deep learning model. (2) Compared with TRUS images of other tissues and organs, the visual features of whether the prostate contains cancer in ultrasound images are similar, so it is difficult for a single neural network model to accurately learn the feature representation of the disease. To address the above problems, we first establish a high-quality dataset for prostate TRUS imaging, and then design multi teacher knowledge distillation to achieve accurate disease recognition. The experimental results show that, compared with knowledge distillation without a teacher model and a single teacher model, knowledge distillation using multiple teacher models can significantly improve the accuracy of prostate TRUS image cancer prediction. As the number of teacher models increases, the accuracy rate is further
在智能医疗辅助系统中设计前列腺疾病的智能诊断已逐渐成为研究热点。然而,直肠超声(TRUS)作为前列腺疾病的主要诊断工具仍是一个具有挑战性的问题。(1) 由于前列腺 TRUS 图像数据有限,要训练一个健壮的深度学习模型非常困难。(2)与其他组织器官的 TRUS 图像相比,超声图像中前列腺是否包含癌症的视觉特征相似,因此单一神经网络模型很难准确学习疾病的特征表示。针对上述问题,我们首先建立了高质量的前列腺 TRUS 成像数据集,然后设计了多教师知识提炼方法来实现准确的疾病识别。实验结果表明,与无教师模型和单教师模型的知识蒸馏相比,使用多教师模型的知识蒸馏能显著提高前列腺 TRUS 图像癌症预测的准确性。随着教师模型数量的增加,准确率会进一步提高。
{"title":"Multi teacher knowledge extraction for prostate cancer recognition in medical intelligent assistance systems","authors":"Linyuan Li, Qian Zhang, Zhengqi Liu, Xinyi Xi, Haonan Zhang, Yahui Nan","doi":"10.1142/s1793962325500035","DOIUrl":"https://doi.org/10.1142/s1793962325500035","url":null,"abstract":"Designing intelligent diagnosis of prostate diseases in intelligent medical assistance systems has gradually become a research hotspot. However, rectal ultrasound (TRUS) as the main diagnostic tool for prostate diseases remains a challenging issue. (1) Due to limited prostate TRUS imaging data, it is difficult to train a robust deep learning model. (2) Compared with TRUS images of other tissues and organs, the visual features of whether the prostate contains cancer in ultrasound images are similar, so it is difficult for a single neural network model to accurately learn the feature representation of the disease. To address the above problems, we first establish a high-quality dataset for prostate TRUS imaging, and then design multi teacher knowledge distillation to achieve accurate disease recognition. The experimental results show that, compared with knowledge distillation without a teacher model and a single teacher model, knowledge distillation using multiple teacher models can significantly improve the accuracy of prostate TRUS image cancer prediction. As the number of teacher models increases, the accuracy rate is further","PeriodicalId":505809,"journal":{"name":"International Journal of Modeling, Simulation, and Scientific Computing","volume":" 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140215239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in Epidemiological Modeling: Bayesian Regularization Neural Networks for Smoke Dynamics 流行病学建模的进展:用于烟雾动力学的贝叶斯正则化神经网络
Pub Date : 2024-03-18 DOI: 10.1142/s1793962325500011
Muhammad Bilal, Eugénio M. Rocha, M. Asif Zahoor Raja, Shafia Bilal, Iftikhar Ahmad, Muhammad Usman, Muhammad Shoaib
{"title":"Advancements in Epidemiological Modeling: Bayesian Regularization Neural Networks for Smoke Dynamics","authors":"Muhammad Bilal, Eugénio M. Rocha, M. Asif Zahoor Raja, Shafia Bilal, Iftikhar Ahmad, Muhammad Usman, Muhammad Shoaib","doi":"10.1142/s1793962325500011","DOIUrl":"https://doi.org/10.1142/s1793962325500011","url":null,"abstract":"","PeriodicalId":505809,"journal":{"name":"International Journal of Modeling, Simulation, and Scientific Computing","volume":"344 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140232773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Modeling, Simulation, and Scientific Computing
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1