Pub Date : 2023-02-01DOI: 10.1016/j.coph.2022.102332
Laura Muraine, Mona Bensalah, Gillian Butler-Browne, Anne Bigot, Capucine Trollet, Vincent Mouly, Elisa Negroni
Fibrosis, defined as an excessive accumulation of extracellular matrix, is the end point of a defective regenerative process, unresolved inflammation and/or chronic damage. Numerous muscle disorders (MD) are characterized by high levels of fibrosis associated with muscle wasting and weakness. Fibrosis alters muscle homeostasis/regeneration and fiber environment and may interfere with gene and cell therapies. Slowing down or reversing fibrosis is a crucial therapeutic goal to maintain muscle identity in the context of therapies. Several pathways are implicated in the modulation of the fibrotic progression and multiple therapeutic compounds targeting fibrogenic signals have been tested in MDs, mostly in the context of Duchenne Muscular Dystrophy. In this review, we present an up-to-date overview of pharmacotherapies that have been tested to reduce fibrosis in the skeletal muscle.
{"title":"Update on anti-fibrotic pharmacotherapies in skeletal muscle disease","authors":"Laura Muraine, Mona Bensalah, Gillian Butler-Browne, Anne Bigot, Capucine Trollet, Vincent Mouly, Elisa Negroni","doi":"10.1016/j.coph.2022.102332","DOIUrl":"10.1016/j.coph.2022.102332","url":null,"abstract":"<div><p>Fibrosis, defined as an excessive accumulation of extracellular matrix, is the end point of a defective regenerative process, unresolved inflammation and/or chronic damage. Numerous muscle disorders (MD) are characterized by high levels of fibrosis associated with muscle wasting and weakness. Fibrosis alters muscle homeostasis/regeneration and fiber environment and may interfere with gene and cell therapies. Slowing down or reversing fibrosis is a crucial therapeutic goal to maintain muscle identity in the context of therapies. Several pathways are implicated in the modulation of the fibrotic progression and multiple therapeutic compounds targeting fibrogenic signals have been tested in MDs, mostly in the context of Duchenne Muscular Dystrophy. In this review, we present an up-to-date overview of pharmacotherapies that have been tested to reduce fibrosis in the skeletal muscle.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"68 ","pages":"Article 102332"},"PeriodicalIF":4.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9339909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1016/j.coph.2022.102322
Kai Dong , Gang Wei , Honglin Sun , Di Gu , Junli Liu , Linhui Wang
As one of the largest endocrine organs with a wide distribution in organisms, adipose tissue secretes multiple adipokines, cytokines, metabolites, and exosomes to promote tumour development. Elaborating the crosstalk between cancer cells and adipocytes provides a tissue-level perspective of cancer progression, which reflects the heterogeneity and complexity of human tumours. Three main types of adipose tissues, white, brown, and beige adipose tissue, have been described. Thermogenic capacity is a prominent characteristic of brown and beige adipocytes. Most studies so far mainly focus on the contribution of white adipocytes to the tumour microenvironment. However, the role of thermogenic adipose tissue in malignant cancer behaviour has been largely overlooked. Recently, emerging evidence suggests that beige/brown adipocytes play a key role in the development and progression of various cancers. This review focuses on the bidirectional communication between tumour cells and thermogenic adipocytes and the therapeutic strategies to disrupt this interaction.
{"title":"Metabolic crosstalk between thermogenic adipocyte and cancer cell: Dysfunction and therapeutics","authors":"Kai Dong , Gang Wei , Honglin Sun , Di Gu , Junli Liu , Linhui Wang","doi":"10.1016/j.coph.2022.102322","DOIUrl":"10.1016/j.coph.2022.102322","url":null,"abstract":"<div><p><span>As one of the largest endocrine organs with a wide distribution in organisms, adipose tissue secretes multiple </span>adipokines<span>, cytokines, metabolites, and exosomes to promote tumour development. Elaborating the crosstalk between cancer cells and adipocytes provides a tissue-level perspective of cancer progression, which reflects the heterogeneity and complexity of human tumours. Three main types of adipose tissues, white, brown, and beige adipose tissue, have been described. Thermogenic capacity is a prominent characteristic of brown and beige adipocytes. Most studies so far mainly focus on the contribution of white adipocytes to the tumour microenvironment<span>. However, the role of thermogenic adipose tissue in malignant cancer behaviour has been largely overlooked. Recently, emerging evidence suggests that beige/brown adipocytes play a key role in the development and progression of various cancers. This review focuses on the bidirectional communication between tumour cells and thermogenic adipocytes and the therapeutic strategies to disrupt this interaction.</span></span></p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"68 ","pages":"Article 102322"},"PeriodicalIF":4.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10773140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1016/j.coph.2022.102320
Christian A. Fernandez
Tumor necrosis factor alpha (TNFα) inhibitors are a mainstay of treatment for rheumatoid arthritis (RA) patients after failed responses to conventional disease-modifying antirheumatic drugs (DMARDs). Despite the clinical efficacy of TNFα inhibitors (TNFi), many RA patients experience TNFi treatment failure due to the development of anti-drug antibodies (ADAs) that can neutralize drug levels and lead to RA disease relapse. Methotrexate (MTX) therapy with concomitant TNFα inhibitors decreases the risk of TNFi immunogenicity, but additional and/or alternative strategies are needed to reduce MTX-associated toxicities and to further increase its potency for preventing TNFα inhibitor immunogenicity. In this review, we highlight the limitations of MTX for mitigating TNFα inhibitor immunogenicity, and we discuss potential alternative pharmacological targets for decreasing the risk of immunogenicity during TNFα inhibitor therapy based on the key kinases, second messengers, and shared signaling mechanisms of lymphocyte receptor signaling.
{"title":"Pharmacological strategies for mitigating anti-TNF biologic immunogenicity in rheumatoid arthritis patients","authors":"Christian A. Fernandez","doi":"10.1016/j.coph.2022.102320","DOIUrl":"10.1016/j.coph.2022.102320","url":null,"abstract":"<div><p><span><span>Tumor necrosis factor alpha<span> (TNFα) inhibitors are a mainstay of treatment for rheumatoid arthritis (RA) patients after failed responses to conventional disease-modifying antirheumatic drugs (DMARDs). Despite the clinical efficacy of TNFα inhibitors (TNFi), many RA patients experience TNFi treatment failure due to the development of anti-drug antibodies (ADAs) that can neutralize drug levels and lead to RA disease relapse. </span></span>Methotrexate (MTX) therapy with concomitant TNFα inhibitors decreases the risk of TNFi </span>immunogenicity<span>, but additional and/or alternative strategies are needed to reduce MTX-associated toxicities and to further increase its potency for preventing TNFα inhibitor immunogenicity. In this review, we highlight the limitations of MTX for mitigating TNFα inhibitor immunogenicity, and we discuss potential alternative pharmacological targets for decreasing the risk of immunogenicity during TNFα inhibitor therapy based on the key kinases, second messengers, and shared signaling mechanisms of lymphocyte receptor signaling.</span></p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"68 ","pages":"Article 102320"},"PeriodicalIF":4.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540078/pdf/nihms-1931652.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10157351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1016/j.coph.2022.102329
Concetta Altamura, Ilaria Saltarella, Carmen Campanale, Paola Laghetti, Jean-François Desaphy
Skeletal muscle ion channelopathies are rare genetic diseases mainly characterized by myotonia (muscle stiffness) or periodic paralysis (muscle weakness). Here, we reviewed the available therapeutic options in non-dystrophic myotonias (NDM) and periodic paralyses (PP), which consists essentially in drug repositioning to address stiffness or weakness attacks. Empirical use followed by successful randomized clinical trials eventually led to the orphan drug designation and marketing authorization granting of mexiletine for NDM and dichlorphenamide for PP. Yet, these treatments neither consider the genetic cause of the diseases nor address the individual variability in drug response. Thus, ongoing research aims at the identification of repurposed drugs alternative to mexiletine and dichlorphenamide to allow personalization of treatment. This review highlights how drug repurposing may represent an efficient strategy in rare diseases, allowing reduction of drug development time and costs in a context in which the return on investment may be particularly challenging.
{"title":"Drug repurposing in skeletal muscle ion channelopathies","authors":"Concetta Altamura, Ilaria Saltarella, Carmen Campanale, Paola Laghetti, Jean-François Desaphy","doi":"10.1016/j.coph.2022.102329","DOIUrl":"10.1016/j.coph.2022.102329","url":null,"abstract":"<div><p><span><span><span>Skeletal muscle ion channelopathies are rare genetic diseases mainly characterized by </span>myotonia (muscle stiffness) or </span>periodic paralysis (muscle weakness). Here, we reviewed the available therapeutic options in non-dystrophic myotonias (NDM) and periodic paralyses (PP), which consists essentially in </span>drug repositioning<span><span> to address stiffness or weakness attacks. Empirical use followed by successful randomized clinical trials<span><span> eventually led to the orphan drug designation and marketing authorization granting of </span>mexiletine for NDM and </span></span>dichlorphenamide<span> for PP. Yet, these treatments neither consider the genetic cause of the diseases nor address the individual variability in drug response. Thus, ongoing research aims at the identification of repurposed drugs alternative to mexiletine and dichlorphenamide to allow personalization of treatment. This review highlights how drug repurposing may represent an efficient strategy in rare diseases, allowing reduction of drug development time and costs in a context in which the return on investment may be particularly challenging.</span></span></p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"68 ","pages":"Article 102329"},"PeriodicalIF":4.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9324632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1016/j.coph.2022.102327
Kavita A. Iyer, Vadim Barnakov, Montserrat Samsó
Mutations in RyR alter the cell's Ca2+ homeostasis and can cause serious health problems for which few effective therapies are available. Until recently, there was little structural context for the hundreds of mutations linked to muscular disorders reported for this large channel. Growing knowledge of the three-dimensional structure of RyR starts to illustrate the fine control of Ca2+ release. Current efforts directed towards understanding how disease mutations impinge in such processes will be crucial for future design of novel therapies. In this review article we discuss the up-to-date information about mutations according to their role in the 3D structure, and classified them to provide context from a structural perspective.
{"title":"Three-dimensional perspective on ryanodine receptor mutations causing skeletal and cardiac muscle-related diseases","authors":"Kavita A. Iyer, Vadim Barnakov, Montserrat Samsó","doi":"10.1016/j.coph.2022.102327","DOIUrl":"10.1016/j.coph.2022.102327","url":null,"abstract":"<div><p>Mutations in RyR alter the cell's Ca<sup>2+</sup><span> homeostasis and can cause serious health problems for which few effective therapies are available. Until recently, there was little structural context for the hundreds of mutations linked to muscular disorders reported for this large channel. Growing knowledge of the three-dimensional structure of RyR starts to illustrate the fine control of Ca</span><sup>2+</sup> release. Current efforts directed towards understanding how disease mutations impinge in such processes will be crucial for future design of novel therapies. In this review article we discuss the up-to-date information about mutations according to their role in the 3D structure, and classified them to provide context from a structural perspective.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"68 ","pages":"Article 102327"},"PeriodicalIF":4.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908851/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10776325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1016/j.coph.2022.102347
Feliciano Protasi , Barbara Girolami , Sara Roccabianca , Daniela Rossi
Store-Operated Ca2+ entry (SOCE) is recognized as a key mechanism in muscle physiology necessary to refill intracellular Ca2+ stores during sustained muscle activity. For many years the cell structures expected to mediate SOCE in skeletal muscle fibres remained unknown. Recently, the identification of Ca2+ Entry Units (CEUs) in exercised muscle fibres opened new insights into the role of extracellular Ca2+ in muscle contraction and, more generally, in intracellular Ca2+ homeostasis. Accordingly, intracellular Ca2+ unbalance due to alterations in SOCE strictly correlates with muscle disfunction and disease. Mutations in proteins involved in SOCE (STIM1, ORAI1, and CASQ1) have been linked to tubular aggregate myopathy (TAM), a disease that causes muscle weakness and myalgia and is characterized by a typical accumulation of highly ordered and packed membrane tubules originated from the sarcoplasmic reticulum (SR). Achieving a full understanding of the molecular pathways activated by alterations in Ca2+ entry mechanisms is a necessary step to design effective therapies for human SOCE-related disorders.
{"title":"Store-operated calcium entry: From physiology to tubular aggregate myopathy","authors":"Feliciano Protasi , Barbara Girolami , Sara Roccabianca , Daniela Rossi","doi":"10.1016/j.coph.2022.102347","DOIUrl":"10.1016/j.coph.2022.102347","url":null,"abstract":"<div><p>Store-Operated Ca<sup>2+</sup> entry (SOCE) is recognized as a key mechanism in muscle physiology necessary to refill intracellular Ca<sup>2+</sup> stores during sustained muscle activity. For many years the cell structures expected to mediate SOCE in skeletal muscle fibres remained unknown. Recently, the identification of Ca<sup>2+</sup> Entry Units (CEUs) in exercised muscle fibres opened new insights into the role of extracellular Ca<sup>2+</sup> in muscle contraction and, more generally, in intracellular Ca<sup>2+</sup> homeostasis. Accordingly, intracellular Ca<sup>2+</sup><span> unbalance due to alterations in SOCE strictly correlates with muscle disfunction and disease. Mutations in proteins involved in SOCE (STIM1, ORAI1, and CASQ1) have been linked to tubular aggregate myopathy<span><span> (TAM), a disease that causes muscle weakness and myalgia and is characterized by a typical accumulation of highly ordered and packed membrane tubules originated from the </span>sarcoplasmic reticulum (SR). Achieving a full understanding of the molecular pathways activated by alterations in Ca</span></span><sup>2+</sup> entry mechanisms is a necessary step to design effective therapies for human SOCE-related disorders.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"68 ","pages":"Article 102347"},"PeriodicalIF":4.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10776862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1016/j.coph.2022.102328
Charlotte Gineste, Jocelyn Laporte
Congenital myopathies are rare and severe genetic diseases affecting the skeletal muscle function in children and adults. They present a variable spectrum of phenotypes and a genetic heterogeneity. Subgroups are defined according to the clinical and histopathological features and encompass core myopathy, centronuclear myopathy, nemaline myopathy and other rare congenital myopathies. No approved treatment exists to date for any congenital myopathies. To tackle this important unmet need, an increased number of proof-of-concept studies recently assessed the therapeutic potential of various strategies, either pharmacological or genetic-based, aiming at counteracting muscle weakness or/and cure the pathology. Here, we list the implicated genes and cellular pathways, and review the therapeutic approaches preclinically tested and the ongoing/completed clinical trials for the different types of congenital myopathies.
{"title":"Therapeutic approaches in different congenital myopathies","authors":"Charlotte Gineste, Jocelyn Laporte","doi":"10.1016/j.coph.2022.102328","DOIUrl":"10.1016/j.coph.2022.102328","url":null,"abstract":"<div><p>Congenital myopathies are rare and severe genetic diseases affecting the skeletal muscle function in children and adults. They present a variable spectrum of phenotypes and a genetic heterogeneity. Subgroups are defined according to the clinical and histopathological features and encompass core myopathy, centronuclear myopathy, nemaline myopathy and other rare congenital myopathies. No approved treatment exists to date for any congenital myopathies. To tackle this important unmet need, an increased number of proof-of-concept studies recently assessed the therapeutic potential of various strategies, either pharmacological or genetic-based, aiming at counteracting muscle weakness or/and cure the pathology. Here, we list the implicated genes and cellular pathways, and review the therapeutic approaches preclinically tested and the ongoing/completed clinical trials for the different types of congenital myopathies.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"68 ","pages":"Article 102328"},"PeriodicalIF":4.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10834378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1016/j.coph.2022.102330
Isabelle Marty, Mathilde Beaufils, Julien Fauré, John Rendu
Myopathies related to variations in the RYR1 gene are genetic diseases for which the therapeutic options are sparse, in part because of the very large size of the gene and protein, and of the distribution of variations all along the sequence. Taking advantage of the progress made in the gene therapy field, different approaches can be applied to the different genetic variations, either at the mRNA level or directly at the DNA level, specifically with the new gene editing tools. Some of those have already been tested in cellulo and/or in vivo, and for the development of the most innovative gene editing technology, inspiration can be sought in other genetic diseases.
{"title":"Gene therapies for RyR1-related myopathies","authors":"Isabelle Marty, Mathilde Beaufils, Julien Fauré, John Rendu","doi":"10.1016/j.coph.2022.102330","DOIUrl":"10.1016/j.coph.2022.102330","url":null,"abstract":"<div><p><span>Myopathies related to variations in the </span><span><em>RYR1</em></span> gene are genetic diseases for which the therapeutic options are sparse, in part because of the very large size of the gene and protein, and of the distribution of variations all along the sequence. Taking advantage of the progress made in the gene therapy field, different approaches can be applied to the different genetic variations, either at the mRNA level or directly at the DNA level, specifically with the new gene editing tools. Some of those have already been tested <em>in cellulo</em> and/or <em>in vivo</em>, and for the development of the most innovative gene editing technology, inspiration can be sought in other genetic diseases.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"68 ","pages":"Article 102330"},"PeriodicalIF":4.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9339897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1016/j.coph.2022.102343
Maliha Nusrat, Rona Yaeger
About half of colorectal cancers harbor mutations in the KRAS gene. The presence of these mutations is associated with worse prognosis and, until now, the absence of matched targeted therapy options. In this review, we discuss clinical efforts to target KRAS in colorectal cancer from studies of downstream inhibitors to recent direct inhibitors of KRASG12C and other KRAS mutants. Early clinical trial data, however, suggest more limited activity for these novel inhibitors in colorectal cancer compared to other cancer types, and we discuss the role of receptor tyrosine kinase signaling and parallel signaling pathways in modulating response to these inhibitors. We also review the effect of KRAS mutations on the tumor-immune microenvironment and efforts to induce an immune response against these tumors.
{"title":"KRAS inhibition in metastatic colorectal cancer: An update","authors":"Maliha Nusrat, Rona Yaeger","doi":"10.1016/j.coph.2022.102343","DOIUrl":"10.1016/j.coph.2022.102343","url":null,"abstract":"<div><p><span>About half of colorectal cancers harbor mutations in the </span><span><em>KRAS</em></span> gene. The presence of these mutations is associated with worse prognosis and, until now, the absence of matched targeted therapy options. In this review, we discuss clinical efforts to target KRAS in colorectal cancer from studies of downstream inhibitors to recent direct inhibitors of KRAS<sup>G12C</sup><span><span> and other KRAS mutants. Early clinical trial data, however, suggest more limited activity for these novel inhibitors in colorectal cancer compared to other cancer types, and we discuss the role of </span>receptor tyrosine kinase signaling and parallel signaling pathways in modulating response to these inhibitors. We also review the effect of </span><em>KRAS</em> mutations on the tumor-immune microenvironment and efforts to induce an immune response against these tumors.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"68 ","pages":"Article 102343"},"PeriodicalIF":4.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9908842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9325155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1016/j.coph.2022.102324
Léane Heliez , Charles Ricordel , Philippe Becuwe , Rémy Pedeux
The INhibitor of Growth (ING) proteins (ING1, ING2, ING3, ING4 and ING5) are a family of epigenetic regulators. Their decreased expression in numerous cancers led to identifying the ING proteins as gatekeeper tumor suppressors as they regulate cell cycle progression, apoptosis and senescence. Subsequently, they were also described as caretaker tumor suppressors through their involvement in DNA replication and the DNA damage response (DDR). Recent studies have identified new interactions of the ING proteins with proteins or pathways implicated in cell proliferation, the maintenance of stem cells pluripotency or the DDR. Furthermore, the ING proteins have been identified as regulators of ribosomal RNA synthesis and of mRNA stability and as regulators of mitochondrial DNA transcription resulting in the regulation of metabolism. These new findings highlight new antitumorigenic activities of the ING proteins that are potential targets for cancer treatment.
{"title":"Newly identified tumor suppressor functions of ING proteins","authors":"Léane Heliez , Charles Ricordel , Philippe Becuwe , Rémy Pedeux","doi":"10.1016/j.coph.2022.102324","DOIUrl":"10.1016/j.coph.2022.102324","url":null,"abstract":"<div><p>The <u>IN</u>hibitor of <u>G</u>rowth (ING) proteins (ING1, ING2, ING3, ING4 and ING5) are a family of epigenetic regulators. Their decreased expression in numerous cancers led to identifying the ING proteins as gatekeeper tumor suppressors as they regulate cell cycle progression, apoptosis and senescence. Subsequently, they were also described as caretaker tumor suppressors through their involvement in DNA replication and the DNA damage response (DDR). Recent studies have identified new interactions of the ING proteins with proteins or pathways implicated in cell proliferation, the maintenance of stem cells pluripotency or the DDR. Furthermore, the ING proteins have been identified as regulators of ribosomal RNA synthesis and of mRNA stability and as regulators of mitochondrial DNA transcription resulting in the regulation of metabolism. These new findings highlight new antitumorigenic activities of the ING proteins that are potential targets for cancer treatment.</p></div>","PeriodicalId":50603,"journal":{"name":"Current Opinion in Pharmacology","volume":"68 ","pages":"Article 102324"},"PeriodicalIF":4.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10773144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}