首页 > 最新文献

Journal of Computational and Nonlinear Dynamics最新文献

英文 中文
A Social Activity-Based Control Model for Rumor Propagation 基于社交活动的谣言传播控制模型
Pub Date : 2024-01-11 DOI: 10.1115/1.4064200
Qingyi Zhu, Ziqi Fan, Chenquan Gan, Kefei Cheng, Yu Wu, Lu-Xing Yang
In this paper, we introduce the concept of “social activity” to describe individual behavior on social networks, acknowledging its potential impact on rumor propagation within complex networks. With this in mind, we develop a dynamic model of rumor propagation based on social behavior and analyze the influence of various parameters on the scale of rumors through static comparison. Using this model, we investigate an optimal solution that balances costs and benefits. Numerical simulations and comparative experiments demonstrate the practical value of these findings for strategies aimed at suppressing rumors.
在本文中,我们引入了 "社交活动 "的概念来描述社交网络中的个人行为,并承认其对复杂网络中谣言传播的潜在影响。有鉴于此,我们建立了一个基于社交行为的谣言传播动态模型,并通过静态比较分析了各种参数对谣言规模的影响。利用该模型,我们研究了一种平衡成本与收益的最优解决方案。数字模拟和对比实验证明了这些发现对于旨在抑制谣言的策略的实用价值。
{"title":"A Social Activity-Based Control Model for Rumor Propagation","authors":"Qingyi Zhu, Ziqi Fan, Chenquan Gan, Kefei Cheng, Yu Wu, Lu-Xing Yang","doi":"10.1115/1.4064200","DOIUrl":"https://doi.org/10.1115/1.4064200","url":null,"abstract":"\u0000 In this paper, we introduce the concept of “social activity” to describe individual behavior on social networks, acknowledging its potential impact on rumor propagation within complex networks. With this in mind, we develop a dynamic model of rumor propagation based on social behavior and analyze the influence of various parameters on the scale of rumors through static comparison. Using this model, we investigate an optimal solution that balances costs and benefits. Numerical simulations and comparative experiments demonstrate the practical value of these findings for strategies aimed at suppressing rumors.","PeriodicalId":506262,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":" 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139626830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fault Diagnosis for Road Heading Bearings Based On a Multiscale Enhanced Cascaded Difference Filter 基于多尺度增强级联差分滤波器的路面轴承故障诊断技术
Pub Date : 2024-01-06 DOI: 10.1115/1.4064407
Xiaofei Qu, Yongkang Zhang, Li Yin
In this paper, a novel multiscale morphological filter, called multiscale enhanced cascaded difference filter (MECDF), is proposed for the fault detection of road heading bearings. Firstly, the cascaded morphological operators are established based on the cascade of the basic morphological operators with similar properties, and then the morphological difference operation is introduced to propose the cascaded difference operators. Subsequently, the enhanced cascaded difference operator (ECDO) is constructed through the convolution of cascaded difference operators. Moreover, since the scale range of structure element (SE) also determines the filtering performance of multiscale morphological filter, an improved multiscale analysis method is presented to select the optimal scale range. Finally, the bearing experimental signals are implemented to validate the effectiveness of MECDF. Experimental results testify that the scale range determined by the MECDF is better than other multiscale morphological filters. Meanwhile, the feature extraction capability of ECDO is also better than other existing morphological difference operators.
本文提出了一种新型多尺度形态滤波器,称为多尺度增强级联差分滤波器(MECDF),用于道路航向轴承的故障检测。首先,在具有相似性质的基本形态算子级联的基础上建立级联形态算子,然后引入形态差分运算,提出级联差分算子。随后,通过级联差分算子的卷积,构建了增强级联差分算子(ECDO)。此外,由于结构元素(SE)的尺度范围也决定了多尺度形态滤波器的滤波性能,因此提出了一种改进的多尺度分析方法来选择最佳尺度范围。最后,通过轴承实验信号来验证 MECDF 的有效性。实验结果证明,MECDF 确定的尺度范围优于其他多尺度形态滤波器。同时,ECDO 的特征提取能力也优于其他现有的形态学差分算子。
{"title":"Fault Diagnosis for Road Heading Bearings Based On a Multiscale Enhanced Cascaded Difference Filter","authors":"Xiaofei Qu, Yongkang Zhang, Li Yin","doi":"10.1115/1.4064407","DOIUrl":"https://doi.org/10.1115/1.4064407","url":null,"abstract":"\u0000 In this paper, a novel multiscale morphological filter, called multiscale enhanced cascaded difference filter (MECDF), is proposed for the fault detection of road heading bearings. Firstly, the cascaded morphological operators are established based on the cascade of the basic morphological operators with similar properties, and then the morphological difference operation is introduced to propose the cascaded difference operators. Subsequently, the enhanced cascaded difference operator (ECDO) is constructed through the convolution of cascaded difference operators. Moreover, since the scale range of structure element (SE) also determines the filtering performance of multiscale morphological filter, an improved multiscale analysis method is presented to select the optimal scale range. Finally, the bearing experimental signals are implemented to validate the effectiveness of MECDF. Experimental results testify that the scale range determined by the MECDF is better than other multiscale morphological filters. Meanwhile, the feature extraction capability of ECDO is also better than other existing morphological difference operators.","PeriodicalId":506262,"journal":{"name":"Journal of Computational and Nonlinear Dynamics","volume":"7 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139380809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Computational and Nonlinear Dynamics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1