Pub Date : 2024-09-17DOI: 10.1080/10255842.2024.2405084
Yanlong Chen,Haiquan Feng,Juan Su
Owing to its low incidence, small trauma, fast recovery, and high efficiency, left atrial appendage occlusion has become a new strategy for preventing stroke caused by atrial fibrillation. Due to a lack of relevant research information on this emerging technology, the effectiveness, stability, or related complications of occluders are mostly observed from a clinical perspective. However, there are fewer studies on the mechanical properties and safety of these occluders. In this study, a new left atrial appendage occluder is proposed, and a complete numerical simulation analysis framework is established through the finite element method to simulate the actual implantation and service process of the left atrial appendage occluder. Besides, the influence of the structural size and release scale of the occluder on its support performance, occluding effect, and safety is also explored. The results demonstrate that the structural size and release scale exert a significant impact on the support performance, occluding effect, and safety of the occluder. The structural optimization of the occluder contributes to enhancing its mechanical performance, thus ensuring its stability and effectiveness after implantation. Overall, these efforts may lay a scientific foundation for the structural optimization, safety evaluation, and effectiveness prediction of the occluder. Furthermore, these findings also provide effective reference for the application of numerical simulation technology in the research on the left atrial appendage occlusion.
{"title":"Fatigue strength analysis of a new left atrial appendage occluder at different release scales.","authors":"Yanlong Chen,Haiquan Feng,Juan Su","doi":"10.1080/10255842.2024.2405084","DOIUrl":"https://doi.org/10.1080/10255842.2024.2405084","url":null,"abstract":"Owing to its low incidence, small trauma, fast recovery, and high efficiency, left atrial appendage occlusion has become a new strategy for preventing stroke caused by atrial fibrillation. Due to a lack of relevant research information on this emerging technology, the effectiveness, stability, or related complications of occluders are mostly observed from a clinical perspective. However, there are fewer studies on the mechanical properties and safety of these occluders. In this study, a new left atrial appendage occluder is proposed, and a complete numerical simulation analysis framework is established through the finite element method to simulate the actual implantation and service process of the left atrial appendage occluder. Besides, the influence of the structural size and release scale of the occluder on its support performance, occluding effect, and safety is also explored. The results demonstrate that the structural size and release scale exert a significant impact on the support performance, occluding effect, and safety of the occluder. The structural optimization of the occluder contributes to enhancing its mechanical performance, thus ensuring its stability and effectiveness after implantation. Overall, these efforts may lay a scientific foundation for the structural optimization, safety evaluation, and effectiveness prediction of the occluder. Furthermore, these findings also provide effective reference for the application of numerical simulation technology in the research on the left atrial appendage occlusion.","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-17DOI: 10.1080/10255842.2024.2404541
Miao Cai, Jie Hong
Motor imagery brain computer interface (BCI) systems are considered one of the most crucial paradigms and have received extensive attention from researchers worldwide. However, the non-stationary f...
{"title":"Joint multi-feature extraction and transfer learning in motor imagery brain computer interface","authors":"Miao Cai, Jie Hong","doi":"10.1080/10255842.2024.2404541","DOIUrl":"https://doi.org/10.1080/10255842.2024.2404541","url":null,"abstract":"Motor imagery brain computer interface (BCI) systems are considered one of the most crucial paradigms and have received extensive attention from researchers worldwide. However, the non-stationary f...","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The surge in popularity of running has led to a multitude of designs in running shoe technology, notably, there is an increasing trend in toe spring elevation. However, the impact of this design on foot structures during running remains an essential exploration. To investigate the effects of toe spring on the foot during forefoot running, we employed finite element simulation to create two sole models with different toe spring heights (6.5 cm and 8 cm) and ground contact angles (5°, 10°, and 15°). We established and validated two foot-shoe coupling models and compared stress variations in metatarsal bones and the big toe under identical loading and environmental conditions. Higher toe spring resulted in lower peak stress and reduced stress concentration in metatarsal bones. The fourth and fifth metatarsals exhibited increasing stress trends with ground contact angle, with the fifth metatarsal experiencing the most significant stress concentration. In the case of low toe spring, stress on the fifth metatarsal increased from 15.917 MPa (5°) to 27.791 MPa (15°), indicating a rise of 11.874 MPa. Conversely, the first metatarsal showed lower stress, indicating relative safety but reduced functional significance. Moreover, higher toe spring running shoes exerted less pressure on the big toe, with an increasing trend in stress on the big toe with an increase in ground contact angle. Shoes with a higher toe spring design result in reduced pressure on the big toe. Therefore, it is advisable to avoid landing angles greater than 15° to prevent stress fractures resulting from repetitive loading.
{"title":"The impact of toe spring and foot strike angle on forefoot running biomechanics: a finite element analysis.","authors":"Fengping Li, Dong Sun, Chengyuan Zhu, Qiaolin Zhang, Yang Song, Xuanzhen Cen, Yining Xu, Zhiyi Zheng, Yaodong Gu","doi":"10.1080/10255842.2024.2402860","DOIUrl":"https://doi.org/10.1080/10255842.2024.2402860","url":null,"abstract":"<p><p>The surge in popularity of running has led to a multitude of designs in running shoe technology, notably, there is an increasing trend in toe spring elevation. However, the impact of this design on foot structures during running remains an essential exploration. To investigate the effects of toe spring on the foot during forefoot running, we employed finite element simulation to create two sole models with different toe spring heights (6.5 cm and 8 cm) and ground contact angles (5°, 10°, and 15°). We established and validated two foot-shoe coupling models and compared stress variations in metatarsal bones and the big toe under identical loading and environmental conditions. Higher toe spring resulted in lower peak stress and reduced stress concentration in metatarsal bones. The fourth and fifth metatarsals exhibited increasing stress trends with ground contact angle, with the fifth metatarsal experiencing the most significant stress concentration. In the case of low toe spring, stress on the fifth metatarsal increased from 15.917 MPa (5°) to 27.791 MPa (15°), indicating a rise of 11.874 MPa. Conversely, the first metatarsal showed lower stress, indicating relative safety but reduced functional significance. Moreover, higher toe spring running shoes exerted less pressure on the big toe, with an increasing trend in stress on the big toe with an increase in ground contact angle. Shoes with a higher toe spring design result in reduced pressure on the big toe. Therefore, it is advisable to avoid landing angles greater than 15° to prevent stress fractures resulting from repetitive loading.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Posteromedial tibial plateau fracture is one of the most challenging traumatic fractures. We aimed to compare and explain the biomechanical advantages and disadvantages of different internal fixati...
{"title":"Finite element analysis of three internal fixations for the posteromedial split fracture fragment in tibial plateau fractures","authors":"Wupeng Zhang, Cheng Xu, Zhengfeng Jia, Daofeng Wang, Weilu Gao, Jiantao Li, Licheng Zhang, Peifu Tang","doi":"10.1080/10255842.2024.2399036","DOIUrl":"https://doi.org/10.1080/10255842.2024.2399036","url":null,"abstract":"Posteromedial tibial plateau fracture is one of the most challenging traumatic fractures. We aimed to compare and explain the biomechanical advantages and disadvantages of different internal fixati...","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-14DOI: 10.1080/10255842.2024.2402878
Agnieszka Sabik
The most popular model of the bone healing considers the fracture callus as poroelastic medium. As such it requires an assumption of the callus’ external permeability. In this work a systematic stu...
{"title":"Comment on permeability conditions in finite element simulation of bone fracture healing","authors":"Agnieszka Sabik","doi":"10.1080/10255842.2024.2402878","DOIUrl":"https://doi.org/10.1080/10255842.2024.2402878","url":null,"abstract":"The most popular model of the bone healing considers the fracture callus as poroelastic medium. As such it requires an assumption of the callus’ external permeability. In this work a systematic stu...","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-13DOI: 10.1080/10255842.2024.2401918
Lu Wang, Junkongshuai Wang, Haolong Su, Xueze Zhang, Lihua Zhang, Xiaoyang Kang
The brain-computer interface (BCI) systems based on motor imagery typically rely on a large number of electrode channels to acquire information. The rational selection of electroencephalography (EE...
{"title":"A zero precision loss framework for EEG channel selection: enhancing efficiency and maintaining interpretability","authors":"Lu Wang, Junkongshuai Wang, Haolong Su, Xueze Zhang, Lihua Zhang, Xiaoyang Kang","doi":"10.1080/10255842.2024.2401918","DOIUrl":"https://doi.org/10.1080/10255842.2024.2401918","url":null,"abstract":"The brain-computer interface (BCI) systems based on motor imagery typically rely on a large number of electrode channels to acquire information. The rational selection of electroencephalography (EE...","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142269597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1080/10255842.2024.2399769
Alberto Girelli
This paper presents a one-dimensional model that describes fluid flow in lymphangions, the segments of lymphatic vessels between valves, using quasilinear hyperbolic systems. The model incorporates...
{"title":"A quasilinear hyperbolic one-dimensional model of the lymph flow through a lymphangion with valve dynamics and a contractile wall","authors":"Alberto Girelli","doi":"10.1080/10255842.2024.2399769","DOIUrl":"https://doi.org/10.1080/10255842.2024.2399769","url":null,"abstract":"This paper presents a one-dimensional model that describes fluid flow in lymphangions, the segments of lymphatic vessels between valves, using quasilinear hyperbolic systems. The model incorporates...","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142223418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-11DOI: 10.1080/10255842.2024.2400325
Yu Shi,Junhua Fang,Jiayi Li,Kaiwen Yu,Jingbo Zhu,Yan Lu
Fracture risk among individuals with diabetes poses significant clinical challenges due to the multifaceted relationship between diabetes and bone health. Diabetes not only affects bone density but also alters bone quality and structure, thereby increases the susceptibility to fractures. Given the rising prevalence of diabetes worldwide and its associated complications, accurate prediction of fracture risk in diabetic individuals has emerged as a pressing clinical need. This study aims to investigate the factors influencing fracture risk among diabetic patients. We propose a framework that combines Lasso feature selection with eight classification algorithms. Initially, Lasso regression is employed to select 24 significant features. Subsequently, we utilize grid search and 5-fold cross-validation to train and tune the selected classification algorithms, including KNN, Naive Bayes, Decision Tree, Random Forest, AdaBoost, XGBoost, Multi-layer Perceptron (MLP), and Support Vector Machine (SVM). Among models trained using these important features, Random Forest exhibits the highest performance with a predictive accuracy of 93.87%. Comparative analysis across all features, important features, and remaining features demonstrate the crucial role of features selected by Lasso regression in predicting fracture risk among diabetic patients. Besides, by using a feature importance ranking algorithm, we find several features that hold significant reference values for predicting early bone fracture risk in diabetic individuals.
{"title":"Fracture risk prediction in diabetes patients based on Lasso feature selection and Machine Learning.","authors":"Yu Shi,Junhua Fang,Jiayi Li,Kaiwen Yu,Jingbo Zhu,Yan Lu","doi":"10.1080/10255842.2024.2400325","DOIUrl":"https://doi.org/10.1080/10255842.2024.2400325","url":null,"abstract":"Fracture risk among individuals with diabetes poses significant clinical challenges due to the multifaceted relationship between diabetes and bone health. Diabetes not only affects bone density but also alters bone quality and structure, thereby increases the susceptibility to fractures. Given the rising prevalence of diabetes worldwide and its associated complications, accurate prediction of fracture risk in diabetic individuals has emerged as a pressing clinical need. This study aims to investigate the factors influencing fracture risk among diabetic patients. We propose a framework that combines Lasso feature selection with eight classification algorithms. Initially, Lasso regression is employed to select 24 significant features. Subsequently, we utilize grid search and 5-fold cross-validation to train and tune the selected classification algorithms, including KNN, Naive Bayes, Decision Tree, Random Forest, AdaBoost, XGBoost, Multi-layer Perceptron (MLP), and Support Vector Machine (SVM). Among models trained using these important features, Random Forest exhibits the highest performance with a predictive accuracy of 93.87%. Comparative analysis across all features, important features, and remaining features demonstrate the crucial role of features selected by Lasso regression in predicting fracture risk among diabetic patients. Besides, by using a feature importance ranking algorithm, we find several features that hold significant reference values for predicting early bone fracture risk in diabetic individuals.","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hallux valgus is a common foot deformity characterized by outward tilting and twisting of the big toe, often accompanied by a medial prominence at the base. Minimally invasive surgical techniques a...
{"title":"Biomechanical model of minimally invasive hallux valgus surgery","authors":"Yueyang Zhang, Yibo Ren, Jiateng Pan, Zihe Liu, Wanan Xiao, Yu Zhan","doi":"10.1080/10255842.2024.2400321","DOIUrl":"https://doi.org/10.1080/10255842.2024.2400321","url":null,"abstract":"Hallux valgus is a common foot deformity characterized by outward tilting and twisting of the big toe, often accompanied by a medial prominence at the base. Minimally invasive surgical techniques a...","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-10DOI: 10.1080/10255842.2024.2399018
Y W Teong,K B Mustapha,Morufu Olusola Ibitoye
Prior studies have revealed that the structural design of stents is critical to reducing some of the alarming post-operative complications associated with stent-related intervention. However, the technical search for stents that guarantee robustness against stent-induced post-intervention complications remains an open problem. Along this objective, this study investigates a re-entrant auxetic stent's structural response and performance optimizations. In pursuit of the goal, a nonlinear finite element analysis (FEA) is employed to uncover metrics characterizing the auxetic stent's mechanical behavior. Subsequently, the non-dominated sorting genetic algorithm (NSGA-II) is implemented to simultaneously minimize the stent's von Mises stress and the elastic radial recoil (ERR). Results from the FEA revealed a tight connection between the stent's response and the features of the base auxetic building block (the rib length, strut width, and the re-entrant angle). It is observed that the auxetic stent exhibits a much lower ERR. Besides, larger values of its rib length and re-entrant angle are noticed to favor smaller von Mises stress. The Pareto-optimal front from the NSGA-II-based optimization scheme revealed a sharp trade-off in the simultaneous minimization of the von Mises stress and the ERR. Moreover, an optimal combination of the auxetic unit cell's geometric parameters is found to yield a much lower maximum von Mises stress of ≈403 MPa and ERR of ≈0.4%.
先前的研究表明,支架的结构设计对于减少与支架相关的介入治疗引起的一些令人担忧的术后并发症至关重要。然而,如何从技术上寻求支架,以确保其坚固耐用,防止支架引发介入术后并发症,仍是一个有待解决的问题。根据这一目标,本研究对再入式辅助支架的结构响应和性能优化进行了研究。为了实现这一目标,我们采用了非线性有限元分析(FEA)来揭示辅助支架机械行为的特征指标。随后,采用非支配排序遗传算法(NSGA-II)同时最小化支架的冯米塞斯应力和弹性径向反冲(ERR)。有限元分析的结果表明,支架的响应与基础辅助构件的特征(肋骨长度、支柱宽度和再入角等)密切相关。可以看出,辅助支架的等效误差要小得多。此外,肋长和再入角值越大,von Mises 应力越小。基于 NSGA-II 的优化方案得出的帕累托最优前沿显示,在同时最小化 von Mises 应力和 ERR 的过程中,存在着急剧的权衡。此外,还发现辅助单元几何参数的最佳组合可产生更低的最大 von Mises 应力(≈403 兆帕)和ERR(≈0.4%)。
{"title":"Finite element analysis and surrogate-optimized design of a nature-inspired auxetic stent.","authors":"Y W Teong,K B Mustapha,Morufu Olusola Ibitoye","doi":"10.1080/10255842.2024.2399018","DOIUrl":"https://doi.org/10.1080/10255842.2024.2399018","url":null,"abstract":"Prior studies have revealed that the structural design of stents is critical to reducing some of the alarming post-operative complications associated with stent-related intervention. However, the technical search for stents that guarantee robustness against stent-induced post-intervention complications remains an open problem. Along this objective, this study investigates a re-entrant auxetic stent's structural response and performance optimizations. In pursuit of the goal, a nonlinear finite element analysis (FEA) is employed to uncover metrics characterizing the auxetic stent's mechanical behavior. Subsequently, the non-dominated sorting genetic algorithm (NSGA-II) is implemented to simultaneously minimize the stent's von Mises stress and the elastic radial recoil (ERR). Results from the FEA revealed a tight connection between the stent's response and the features of the base auxetic building block (the rib length, strut width, and the re-entrant angle). It is observed that the auxetic stent exhibits a much lower ERR. Besides, larger values of its rib length and re-entrant angle are noticed to favor smaller von Mises stress. The Pareto-optimal front from the NSGA-II-based optimization scheme revealed a sharp trade-off in the simultaneous minimization of the von Mises stress and the ERR. Moreover, an optimal combination of the auxetic unit cell's geometric parameters is found to yield a much lower maximum von Mises stress of ≈403 MPa and ERR of ≈0.4%.","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142178299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}