The sound velocity of Fe3C was measured at pressures from 33 to 86 GPa and at ambient and high temperatures up to 2300 K using inelastic X-ray scattering (IXS) from laser-heated samples in diamond anvil cells (DACs). The compressional velocity (VP) and density of Fe3C at room temperature were observed to follow a linear relationship (Birch's law). The temperature dependency of Birch's law was not clearly observed and can be ignored. Birch's law for Fe3C is expressed by: . The result indicates that VP and VS (shear velocity) of the preliminary reference Earth model (PREM) inner core at the Inner Core Boundary (ICB) were by 12% and 48% smaller than those of Fe3C, which could be accounted for by the premelting effect by analogy from pure Fe or by partial melting of the Fe–Fe3C mixture in the inner core.
{"title":"Sound velocity of Fe3C at high pressure and high temperature determined by inelastic X-ray scattering","authors":"Suguru Takahashi , Eiji Ohtani , Tatsuya Sakamaki , Seiji Kamada , Hiroshi Fukui , Satoshi Tsutsui , Hiroshi Uchiyama , Daisuke Ishikawa , Naohisa Hirao , Yasuo Ohishi , Alfred Q.R. Baron","doi":"10.1016/j.crte.2018.09.005","DOIUrl":"10.1016/j.crte.2018.09.005","url":null,"abstract":"<div><p>The sound velocity of Fe<sub>3</sub>C was measured at pressures from 33 to 86<!--> <!-->GPa and at ambient and high temperatures up to 2300<!--> <!-->K using inelastic X-ray scattering (IXS) from laser-heated samples in diamond anvil cells (DACs). The compressional velocity (<em>V</em><sub>P</sub>) and density of Fe<sub>3</sub>C at room temperature were observed to follow a linear relationship (Birch's law). The temperature dependency of Birch's law was not clearly observed and can be ignored. Birch's law for Fe<sub>3</sub>C is expressed by: <span><math><mrow><msub><mi>V</mi><mtext>P</mtext></msub><mo>=</mo><mn>1.09</mn><mfenced><mrow><mo>±</mo><mn>0.14</mn></mrow></mfenced><mo>×</mo><mi>ρ</mi><mo>−</mo><mn>1.79</mn><mfenced><mrow><mo>±</mo><mn>1.26</mn></mrow></mfenced></mrow></math></span>. The result indicates that <em>V</em><sub>P</sub> and <em>V</em><sub>S</sub> (shear velocity) of the preliminary reference Earth model (PREM) inner core at the Inner Core Boundary (ICB) were by 12% and 48% smaller than those of Fe<sub>3</sub>C, which could be accounted for by the premelting effect by analogy from pure Fe or by partial melting of the Fe–Fe<sub>3</sub>C mixture in the inner core.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 190-196"},"PeriodicalIF":1.4,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.09.005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48441207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-01DOI: 10.1016/j.crte.2018.07.007
Fei Qin , Xiang Wu , Shan Qin , Dongzhou Zhang , Vatali B. Prakapenka , Steven D. Jacobsen
We present a synchrotron-based, single-crystal X-ray diffraction and Raman spectroscopy study of natural green dioptase (Cu6Si6O18·6H2O) up to ∼30 GPa at room temperature. The lattice parameters of dioptase exhibit continuous compression behavior up to ∼14.5 GPa, whereupon a structural transition is observed. Pressure–volume data below 14.5 GPa were fitted to a second-order Birch–Murnaghan equation of state with V0 = 1440(2) Å3 and K0 = 107(2) GPa, with K0′ = 4(fixed). The low-pressure form of dioptase exhibits anisotropic compression with axial compressibility βa > βc in a ratio of 1.14:1.00. Based on the diffraction data and Raman spectroscopy, the new high-pressure phase could be regarded as a dehydrated form of dioptase in the same symmetry group. Pressure-induced dehydration of dioptase contributes broadly to our understanding of the high-pressure crystal chemistry of hydrous silicates containing molecular water groups.
{"title":"Pressure-induced dehydration of dioptase: A single-crystal X-ray diffraction and Raman spectroscopy study","authors":"Fei Qin , Xiang Wu , Shan Qin , Dongzhou Zhang , Vatali B. Prakapenka , Steven D. Jacobsen","doi":"10.1016/j.crte.2018.07.007","DOIUrl":"10.1016/j.crte.2018.07.007","url":null,"abstract":"<div><p>We present a synchrotron-based, single-crystal X-ray diffraction and Raman spectroscopy study of natural green dioptase (Cu<sub>6</sub>Si<sub>6</sub>O<sub>18</sub>·6H<sub>2</sub>O) up to ∼30<!--> <!-->GPa at room temperature. The lattice parameters of dioptase exhibit continuous compression behavior up to ∼14.5<!--> <!-->GPa, whereupon a structural transition is observed. Pressure–volume data below 14.5<!--> <!-->GPa were fitted to a second-order Birch–Murnaghan equation of state with <em>V</em><sub>0</sub> <!-->=<!--> <!-->1440(2) Å<sup>3</sup> and <em>K</em><sub>0</sub> <!-->=<!--> <!-->107(2) GPa, with <em>K</em><sub>0</sub>′<!--> <!-->=<!--> <!-->4(fixed). The low-pressure form of dioptase exhibits anisotropic compression with axial compressibility <em>β</em><sub><em>a</em></sub> <!-->><!--> <em>β</em><sub><em>c</em></sub> in a ratio of 1.14:1.00. Based on the diffraction data and Raman spectroscopy, the new high-pressure phase could be regarded as a dehydrated form of dioptase in the same symmetry group. Pressure-induced dehydration of dioptase contributes broadly to our understanding of the high-pressure crystal chemistry of hydrous silicates containing molecular water groups.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 121-128"},"PeriodicalIF":1.4,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.07.007","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41826181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-01DOI: 10.1016/j.crte.2018.06.011
Kamil M. Bulatov , Pavel V. Zinin , Yulia V. Mantrova , Aleksey A. Bykov , Maksim I. Gaponov , Alexsandr S. Machikhin , Ivan A. Troyan , Igor B. Kutuza
In this report, we demonstrate that combining the laser heating system in a diamond anvil cell (LH-DAC) with a tandem acoustic-optical tunable filter (LH-DAC–TAOTF) allows for the simultaneous measurement of (a) the relative infrared (IR, 1070 nm) power distribution on a specimen surface in the DAC; (b) the temperature distribution under laser heating of a specimen under high-pressure in a DAC; it also (c) provides an opportunity to control the shape of the IR laser spot on the surface of the heated specimen. The effect of the π-shaper on the shape and the position of the focus of the IR laser beam on a specimen using a TAOTF is also presented. For a 10× long-working distance objective, the smallest diameter of the IR laser was found to be around 10 μm, when the focal plane coincides with that of the imaging optical system of LH-DAC. The highest diameter of the IR laser was shown to be 20 μm when the rim of the π-shaper was set at 3 μm. It is demonstrated also that the TAOFT not only permits to measure the two-dimensional (2-D) distribution of the IR laser power, but also allows for the alignment of the laser before each heating event at different pressures.
{"title":"Simultaneous measurements of the two-dimensional distribution of infrared laser intensity and temperature in a single-sided laser-heated diamond anvil cell","authors":"Kamil M. Bulatov , Pavel V. Zinin , Yulia V. Mantrova , Aleksey A. Bykov , Maksim I. Gaponov , Alexsandr S. Machikhin , Ivan A. Troyan , Igor B. Kutuza","doi":"10.1016/j.crte.2018.06.011","DOIUrl":"10.1016/j.crte.2018.06.011","url":null,"abstract":"<div><p>In this report, we demonstrate that combining the laser heating system in a diamond anvil cell (LH-DAC) with a tandem acoustic-optical tunable filter (LH-DAC–TAOTF) allows for the simultaneous measurement of (a) the relative infrared (IR, 1070<!--> <!-->nm) power distribution on a specimen surface in the DAC; (b) the temperature distribution under laser heating of a specimen under high-pressure in a DAC; it also (c) provides an opportunity to control the shape of the IR laser spot on the surface of the heated specimen. The effect of the π-shaper on the shape and the position of the focus of the IR laser beam on a specimen using a TAOTF is also presented. For a 10× long-working distance objective, the smallest diameter of the IR laser was found to be around 10<!--> <!-->μm, when the focal plane coincides with that of the imaging optical system of LH-DAC. The highest diameter of the IR laser was shown to be 20<!--> <!-->μm when the rim of the π-shaper was set at 3<!--> <!-->μm. It is demonstrated also that the TAOFT not only permits to measure the two-dimensional (2-D) distribution of the IR laser power, but also allows for the alignment of the laser before each heating event at different pressures.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 286-294"},"PeriodicalIF":1.4,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.06.011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43667250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A technique for density measurement under high pressure and high temperature was developed using the X-ray absorption imaging method combined with an externally heated diamond anvil cell. The densities of solid and liquid In were measured in the pressure and temperature ranges of 3.2–18.6 GPa and 294–719 K. The densities obtained through the X-ray absorption imaging method were in good agreement (less than 2.0% difference) with those obtained through X-ray diffraction. Based on the measured density, the isothermal bulk modulus of solid In is determined as 48.0 ± 1.1−40.9 ± 0.8 GPa at 500 K, assuming K′ = 4 to 6. The compression curve of liquid In approaches that of solid In at higher pressures and does not cross over the solid compression curve in the measurement range. The present technique enables us to determine the densities of both solids and liquids precisely in a wide pressure and temperature range.
{"title":"Development of density measurement for metals at high pressures and high temperatures using X-ray absorption imaging combined with externally heated diamond anvil cell","authors":"Yusaku Takubo , Hidenori Terasaki , Tadashi Kondo , Shingo Mitai , Seiji Kamada , Takumi Kikegawa , Akihiko Machida","doi":"10.1016/j.crte.2018.04.002","DOIUrl":"10.1016/j.crte.2018.04.002","url":null,"abstract":"<div><p>A technique for density measurement under high pressure and high temperature was developed using the X-ray absorption imaging method combined with an externally heated diamond anvil cell. The densities of solid and liquid In were measured in the pressure and temperature ranges of 3.2–18.6<!--> <!-->GPa and 294–719<!--> <!-->K. The densities obtained through the X-ray absorption imaging method were in good agreement (less than 2.0% difference) with those obtained through X-ray diffraction. Based on the measured density, the isothermal bulk modulus of solid In is determined as 48.0<!--> <!-->±<!--> <!-->1.1−40.9<!--> <!-->±<!--> <!-->0.8<!--> <!-->GPa at 500<!--> <!-->K, assuming <em>K</em>′<!--> <!-->=<!--> <!-->4 to 6. The compression curve of liquid In approaches that of solid In at higher pressures and does not cross over the solid compression curve in the measurement range. The present technique enables us to determine the densities of both solids and liquids precisely in a wide pressure and temperature range.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 182-189"},"PeriodicalIF":1.4,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.04.002","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43953747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-01DOI: 10.1016/j.crte.2019.02.001
Takashi Nakagawa , Hikaru Iwamori
We investigate the influence of the deep mantle water cycle incorporating dehydration reactions with subduction fluxes and degassing events on the thermal evolution of the Earth as a consequence of core–mantle thermal coupling. Since, in our numerical modeling, the mantle can have ocean masses ∼12 times larger than the present-day surface ocean, it seems that more than 13 ocean masses of water are at the maximum required within the planetary system overall to partition one ocean mass at the surface of the present-day Earth. This is caused by effects of water-dependent viscosity, which works at cooling down the mantle temperature significantly so that the water can be absorbed into the mantle transition zone and the uppermost lower mantle. This is a result similar to that without the effects of the thermal evolution of the Earth's core (Nakagawa et al., 2018). For the core's evolution, it seems to be expected for a partially molten state in the deep mantle over 2 billion years. Hence, the metal–silicate partitioning of hydrogen might have occurred at least 2 billion years ago. This suggests that the hydrogen generated from the phase transformation of hydrous-silicate-hosted water may have contributed to the partitioning of hydrogen into the metallic core, but it is still quite uncertain because the partitioning mechanism of hydrogen in metal–silicate partitioning is still controversial. In spite of many uncertainties for water circulation in the deep mantle, through this modeling investigation, it is possible to integrate the co-evolution of the deep planetary interior within that of the surface environment.
我们研究了由脱水反应、俯冲通量和脱气事件组成的深部地幔水循环对地核-地幔热耦合引起的地球热演化的影响。因为,在我们的数值模拟中,地幔的海洋质量可以比现在的表面海洋大12倍,所以在整个行星系统中,要在今天的地球表面分割一个海洋质量,似乎需要超过13个海洋质量的水。这是由水依赖粘度的影响造成的,它可以显著降低地幔温度,使水可以被吸收到地幔过渡区和最上层的下地幔中。这一结果与不受地核热演化影响的结果相似(Nakagawa et al., 2018)。对于地核的演化,在20亿年的时间里,地幔深处似乎处于部分熔融状态。因此,氢的金属-硅酸盐分离可能至少发生在20亿年前。这表明含水硅酸盐的水相变产生的氢可能对氢向金属核的分配有一定的促进作用,但由于氢在金属硅酸盐分配中的分配机制仍存在争议,因此尚不确定。尽管深部地幔水循环存在许多不确定性,但通过模拟研究,可以将行星深部内部的共同演化与地表环境的共同演化结合起来。
{"title":"On the implications of the coupled evolution of the deep planetary interior and the presence of surface ocean water in hydrous mantle convection","authors":"Takashi Nakagawa , Hikaru Iwamori","doi":"10.1016/j.crte.2019.02.001","DOIUrl":"10.1016/j.crte.2019.02.001","url":null,"abstract":"<div><p>We investigate the influence of the deep mantle water cycle incorporating dehydration reactions with subduction fluxes and degassing events on the thermal evolution of the Earth as a consequence of core–mantle thermal coupling. Since, in our numerical modeling, the mantle can have ocean masses ∼12 times larger than the present-day surface ocean, it seems that more than 13 ocean masses of water are at the maximum required within the planetary system overall to partition one ocean mass at the surface of the present-day Earth. This is caused by effects of water-dependent viscosity, which works at cooling down the mantle temperature significantly so that the water can be absorbed into the mantle transition zone and the uppermost lower mantle. This is a result similar to that without the effects of the thermal evolution of the Earth's core (Nakagawa et al., 2018). For the core's evolution, it seems to be expected for a partially molten state in the deep mantle over 2 billion years. Hence, the metal–silicate partitioning of hydrogen might have occurred at least 2 billion years ago. This suggests that the hydrogen generated from the phase transformation of hydrous-silicate-hosted water may have contributed to the partitioning of hydrogen into the metallic core, but it is still quite uncertain because the partitioning mechanism of hydrogen in metal–silicate partitioning is still controversial. In spite of many uncertainties for water circulation in the deep mantle, through this modeling investigation, it is possible to integrate the co-evolution of the deep planetary interior within that of the surface environment.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 197-208"},"PeriodicalIF":1.4,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2019.02.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46144218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-01DOI: 10.1016/j.crte.2018.09.009
Ting Chen , Gabriel D. Gwanmesia , Lars Ehm , Charles Le Losq , Daniel R. Neuville , Brian L. Phillips , Baosheng Li , Robert C. Liebermann
A polycrystalline specimen of liebermannite [KAlSi3O8 hollandite] was synthesized at 14.5 GPa and 1473 K using glass starting material in a uniaxial split-sphere apparatus. The recovered specimen is pure tetragonal hollandite [SG: I4/m] with bulk density of within 98% of the measured X-ray value. The specimen was also characterized by Raman spectroscopy and nuclear magnetic resonance spectroscopy. Sound velocities in this specimen were measured by ultrasonic interferometry to 13 GPa at room T in a uniaxial split-cylinder apparatus using Al2O3 as a pressure marker. Finite strain analysis of the ultrasonic data yielded KS0 = 145(1) GPa, K0′ = 4.9(2), G0 = 92.3(3) GPa, G0′ = 1.6(1) for the bulk and shear moduli and their pressure derivatives, corresponding to VP0 = 8.4(1) km/s, VS0 = 4.9(1) km/s for the sound wave velocities at room temperature. These elasticity data are compared to literature values obtained from static compression experiments and theoretical density functional calculations.
{"title":"Synthesis and characterization of polycrystalline KAlSi3O8 hollandite [liebermannite]: Sound velocities vs. pressure to 13 GPa at room temperature","authors":"Ting Chen , Gabriel D. Gwanmesia , Lars Ehm , Charles Le Losq , Daniel R. Neuville , Brian L. Phillips , Baosheng Li , Robert C. Liebermann","doi":"10.1016/j.crte.2018.09.009","DOIUrl":"10.1016/j.crte.2018.09.009","url":null,"abstract":"<div><p>A polycrystalline specimen of liebermannite [KAlSi<sub>3</sub>O<sub>8</sub> hollandite] was synthesized at 14.5<!--> <!-->GPa and 1473 K using glass starting material in a uniaxial split-sphere apparatus. The recovered specimen is pure tetragonal hollandite [SG: <em>I4/m</em>] with bulk density of within 98% of the measured X-ray value. The specimen was also characterized by Raman spectroscopy and nuclear magnetic resonance spectroscopy. Sound velocities in this specimen were measured by ultrasonic interferometry to 13<!--> <!-->GPa at room T in a uniaxial split-cylinder apparatus using Al<sub>2</sub>O<sub>3</sub> as a pressure marker. Finite strain analysis of the ultrasonic data yielded <em>K</em><sub>S<em>0</em></sub> <!-->=<!--> <!-->145(1)<!--> <!-->GPa, <em>K</em><sub>0</sub>′<!--> <!-->=<!--> <!-->4.9(2), <em>G</em><sub>0</sub> <!-->=<!--> <!-->92.3(3)<!--> <!-->GPa, <em>G</em><sub><em>0</em></sub>′<!--> <!-->=<!--> <!-->1.6(1) for the bulk and shear moduli and their pressure derivatives, corresponding to <em>V</em><sub>P0</sub> <!-->=<!--> <!-->8.4(1)<!--> <!-->km/s,<!--> <!-->V<sub>S<em>0</em></sub> <!-->=<!--> <!-->4.9(1)<!--> <!-->km/s for the sound wave velocities at room temperature. These elasticity data are compared to literature values obtained from static compression experiments and theoretical density functional calculations.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 113-120"},"PeriodicalIF":1.4,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.09.009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44098189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We measured the lattice thermal conductivities of Fe0.98O wüstite and iron-rich (Mg,Fe)O magnesiowüstite using the pulsed light heating thermoreflectance technique with a diamond anvil cell up to 61 GPa at 300 K. We found that the thermal conductivity of wüstite does not show a monotonic increase as a function of pressure, contrary to that of MgO periclase. Rocksalt (B1) to rhombohedral B1 transition is likely to induce an abnormal pressure response in the conductivity of wüstite. Our results also show that magnesiowüstite has a lower conductivity than that of MgO and FeO endmembers due to a strong iron impurity effect, which is well reproduced by a model considering phonon-impurity scattering in a binary solid solution.
{"title":"Composition and pressure dependence of lattice thermal conductivity of (Mg,Fe)O solid solutions","authors":"Akira Hasegawa , Kenji Ohta , Takashi Yagi , Kei Hirose , Yoshiyuki Okuda , Tadashi Kondo","doi":"10.1016/j.crte.2018.10.005","DOIUrl":"10.1016/j.crte.2018.10.005","url":null,"abstract":"<div><p>We measured the lattice thermal conductivities of Fe<sub>0.98</sub>O wüstite and iron-rich (Mg,Fe)O magnesiowüstite using the pulsed light heating thermoreflectance technique with a diamond anvil cell up to 61<!--> <!-->GPa at 300<!--> <!-->K. We found that the thermal conductivity of wüstite does not show a monotonic increase as a function of pressure, contrary to that of MgO periclase. Rocksalt (B1) to rhombohedral B1 transition is likely to induce an abnormal pressure response in the conductivity of wüstite. Our results also show that magnesiowüstite has a lower conductivity than that of MgO and FeO endmembers due to a strong iron impurity effect, which is well reproduced by a model considering phonon-impurity scattering in a binary solid solution.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 229-235"},"PeriodicalIF":1.4,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.10.005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47934073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2019-02-01DOI: 10.1016/j.crte.2018.10.001
Paul Raterron , Caroline Bollinger , Sébastien Merkel
The ductile behavior of olivine-rich rocks is critical to constrain thermal convection in the Earth's upper mantle. Classical olivine flow laws for dislocation or diffusion creep fail to explain the fast post-seismic surface displacements observed by GPS, which requires a much weaker lithosphere than predicted by classical laws. Here we compare the plasticity of olivine aggregates deformed experimentally at mantle pressures and temperatures to that of single crystals and demonstrate that, depending on conditions of stress and temperature, strain accommodated through grain-to-grain interactions – here called intergranular strain – can be orders of magnitude larger than intracrystalline strain, which significantly weakens olivine strength. This result, extrapolated along mantle geotherms, suggests that intergranular plasticity could be dominant in most of the upper mantle. Consequently, the strength of olivine-rich aggregates in the upper mantle may be significantly lower than predicted by flow laws based on intracrystalline plasticity models.
{"title":"Olivine intergranular plasticity at mantle pressures and temperatures","authors":"Paul Raterron , Caroline Bollinger , Sébastien Merkel","doi":"10.1016/j.crte.2018.10.001","DOIUrl":"10.1016/j.crte.2018.10.001","url":null,"abstract":"<div><p>The ductile behavior of olivine-rich rocks is critical to constrain thermal convection in the Earth's upper mantle. Classical olivine flow laws for dislocation or diffusion creep fail to explain the fast post-seismic surface displacements observed by GPS, which requires a much weaker lithosphere than predicted by classical laws. Here we compare the plasticity of olivine aggregates deformed experimentally at mantle pressures and temperatures to that of single crystals and demonstrate that, depending on conditions of stress and temperature, strain accommodated through grain-to-grain interactions – here called intergranular strain – can be orders of magnitude larger than intracrystalline strain, which significantly weakens olivine strength. This result, extrapolated along mantle geotherms, suggests that intergranular plasticity could be dominant in most of the upper mantle. Consequently, the strength of olivine-rich aggregates in the upper mantle may be significantly lower than predicted by flow laws based on intracrystalline plasticity models.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 80-85"},"PeriodicalIF":1.4,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.10.001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43045790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A new experimental setup for simultaneous P-wave velocity (VP) and density (ρ) measurements for liquid alloys is developed using ultrasonic and X-ray absorption methods combined with X-ray tomography at high pressures and high temperatures. The new setup allows us to directly determine adiabatic bulk moduli (KS) and to discuss the correlation between the VP and ρ of the liquid sample. We measured VP and ρ of liquid Ni68S32 up to 5.6 GPa and 1045 K using this technique. The effect of pressure on the VP and ρ values of liquid Ni68S32 is similar to that of liquid Fe57S43. (Both compositions correspond to near-eutectic ones.) The obtained KS values are well fitted to the finite strain equation with a value (KS at ambient pressure) of 31.1 GPa and a dKS/dP value of 8.44. The measured VP was found to increase linearly with increasing ρ, as approximated by the relationship: VP [m/s] = 1.29 ρ [kg/m3] – 5726, suggesting that liquid Ni–S follows an empirical linear relationship, Birch's law. The dVP/dρ slope is similar between Ni68S32 and Fe57S43 liquids, while the VP–ρ plot of liquid Ni–S is markedly different from that of liquid Fe–S, which indicates that the effect of Ni on Birch's law is important for understanding the VP–ρ relation of planetary and Moon's molten cores.
{"title":"Sound velocity and density of liquid Ni68S32 under pressure using ultrasonic and X-ray absorption with tomography methods","authors":"Hidenori Terasaki , Keisuke Nishida , Satoru Urakawa , Yusaku Takubo , Soma Kuwabara , Yuta Shimoyama , Kentaro Uesugi , Yoshio Kono , Akihisa Takeuchi , Yoshio Suzuki , Yuji Higo , Tadashi Kondo","doi":"10.1016/j.crte.2018.04.005","DOIUrl":"10.1016/j.crte.2018.04.005","url":null,"abstract":"<div><p>A new experimental setup for simultaneous P-wave velocity (<em>V</em><sub>P</sub>) and density (<em>ρ</em>) measurements for liquid alloys is developed using ultrasonic and X-ray absorption methods combined with X-ray tomography at high pressures and high temperatures. The new setup allows us to directly determine adiabatic bulk moduli (<em>K</em><sub>S</sub>) and to discuss the correlation between the <em>V</em><sub>P</sub> and <em>ρ</em> of the liquid sample. We measured <em>V</em><sub>P</sub> and <em>ρ</em> of liquid Ni<sub>68</sub>S<sub>32</sub> up to 5.6<!--> <!-->GPa and 1045<!--> <!-->K using this technique. The effect of pressure on the <em>V</em><sub>P</sub> and <em>ρ</em> values of liquid Ni<sub>68</sub>S<sub>32</sub> is similar to that of liquid Fe<sub>57</sub>S<sub>43</sub>. (Both compositions correspond to near-eutectic ones.) The obtained <em>K</em><sub>S</sub> values are well fitted to the finite strain equation with a <span><math><mrow><msub><mi>K</mi><mrow><msub><mtext>S</mtext><mn>0</mn></msub></mrow></msub></mrow></math></span> value (<em>K</em><sub>S</sub> at ambient pressure) of 31.1<!--> <!-->GPa and a d<em>K</em><sub>S</sub>/d<em>P</em> value of 8.44. The measured <em>V</em><sub>P</sub> was found to increase linearly with increasing <em>ρ</em>, as approximated by the relationship: <em>V</em><sub>P</sub> [m/s]<!--> <em>=</em> <!-->1.29<!--> <em>ρ</em> [kg/m<sup>3</sup>] – <em>5726</em>, suggesting that liquid Ni–S follows an empirical linear relationship, Birch's law. The d<em>V</em><sub>P</sub>/d<em>ρ</em> slope is similar between Ni<sub>68</sub>S<sub>32</sub> and Fe<sub>57</sub>S<sub>43</sub> liquids, while the <em>V</em><sub>P</sub>–<em>ρ</em> plot of liquid Ni–S is markedly different from that of liquid Fe–S, which indicates that the effect of Ni on Birch's law is important for understanding the <em>V</em><sub>P</sub>–<em>ρ</em> relation of planetary and Moon's molten cores.</p></div>","PeriodicalId":50651,"journal":{"name":"Comptes Rendus Geoscience","volume":"351 2","pages":"Pages 163-170"},"PeriodicalIF":1.4,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crte.2018.04.005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"54118213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}