首页 > 最新文献

Journal of Mechanical Design最新文献

英文 中文
Examining the Design Actions and Reasoning Factors that Impact Design Performance 研究影响设计性能的设计行动和推理因素
Pub Date : 2024-01-04 DOI: 10.1115/1.4064414
Yakira Mirabito, K. Goucher-Lambert
Engineers often do not select the best designs available to them. This research investigates whether specific design actions improve performance in a design exploration task and whether the reasoning factors underpinning these actions can be inferred directly. This study quantitatively evaluates multiple dimensions of design behavior and cognition within concept selection using objective performance metrics. Fifty-six participants were tasked with identifying an optimal design for the gripping contact of a dishwashing robot. Results identified specific design actions that correlated with improved design performance, including exploring fewer design alternatives and isolating parameters. We found that reasoning factors stated by participants did not accurately map onto their observed actions and did not correlate with task performance. Implications related to future computational design support tools are discussed.
工程师通常不会选择最佳设计。本研究探讨了特定的设计行为是否能提高设计探索任务的绩效,以及是否能直接推断出这些行为的推理因素。本研究使用客观的性能指标对概念选择中的设计行为和认知的多个维度进行了定量评估。56 名参与者的任务是为洗碗机器人的抓取触点确定最佳设计。结果发现了与提高设计性能相关的特定设计行为,包括探索更少的设计替代方案和隔离参数。我们发现,参与者所说的推理因素并不能准确映射到他们所观察到的行动上,而且与任务绩效也不相关。本文讨论了与未来计算设计支持工具相关的意义。
{"title":"Examining the Design Actions and Reasoning Factors that Impact Design Performance","authors":"Yakira Mirabito, K. Goucher-Lambert","doi":"10.1115/1.4064414","DOIUrl":"https://doi.org/10.1115/1.4064414","url":null,"abstract":"\u0000 Engineers often do not select the best designs available to them. This research investigates whether specific design actions improve performance in a design exploration task and whether the reasoning factors underpinning these actions can be inferred directly. This study quantitatively evaluates multiple dimensions of design behavior and cognition within concept selection using objective performance metrics. Fifty-six participants were tasked with identifying an optimal design for the gripping contact of a dishwashing robot. Results identified specific design actions that correlated with improved design performance, including exploring fewer design alternatives and isolating parameters. We found that reasoning factors stated by participants did not accurately map onto their observed actions and did not correlate with task performance. Implications related to future computational design support tools are discussed.","PeriodicalId":506672,"journal":{"name":"Journal of Mechanical Design","volume":"5 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139386565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Analysis of Leaf Beam Single-Translation Constraint Compliant Modules and the Resulting Spherical Joints 叶梁单横向约束顺应模块及其球形连接的设计与分析
Pub Date : 2024-01-04 DOI: 10.1115/1.4064415
Guangbo Hao, Xiuyun He, Jiaxiang Zhu, Haiyang Li
A wire beam is a single-translation constraint along its axial direction. It offers many applications in compliant mechanisms such as being a transmitting/decoupling element connected to a linear actuator, and being a fundamental constitutive element to design complex compliant joints and mechanisms. It is desired to find alternative leaf beam single-translation constraint to equal a wire beam, in order to improve the manufacturability and robustness to external loading. In this paper, we propose and model a new single-translation constraint compliant module, I-shape leaf beam design, to compare with a corresponding L-shape leaf beam design reported in the literature. Two spherical (S) joints using three I-shape leaf beams and three L-shape leaf beams, respectively, are then analytically modelled and analysed. Three key geometric parameters are adopted to thoroughly assess four performance indices of each S joint including stiffness ratio, rotation radius error, coupling motion and parasitic motion. It shows that the I-shape leaf beam based S joint performance indices are generally 10 times better than those of the L-shape leaf beam based S joint. For each S joint, the optimal parameters are found under the given conditions. Finally, experimental tests are carried out for a fabricated S joint prototype using the I-shape leaf beams, the results from which verify the accuracy of the proposed analytical model and the fabrication feasibility.
线梁是一种沿轴向的单一平移约束。它在顺应式机构中有许多应用,例如作为与线性致动器相连的传输/解耦元件,以及作为设计复杂顺应式接头和机构的基本构成元件。人们希望找到与线梁等效的替代叶梁单平移约束,以提高其可制造性和对外部载荷的鲁棒性。在本文中,我们提出了一种新的单平移约束顺应模块--I 形叶梁设计,并对其进行了建模,与文献中报道的相应 L 形叶梁设计进行了比较。然后,对分别使用三个 I 型叶梁和三个 L 型叶梁的两个球形 (S) 接头进行了分析建模和分析。采用三个关键几何参数来全面评估每个 S 型关节的四个性能指标,包括刚度比、旋转半径误差、耦合运动和寄生运动。结果表明,基于 I 型叶梁的 S 型关节性能指标一般比基于 L 型叶梁的 S 型关节好 10 倍。在给定的条件下,找到了每种 S 接头的最佳参数。最后,对使用工字形叶梁制造的 S 型接头原型进行了实验测试,结果验证了所提分析模型的准确性和制造的可行性。
{"title":"Design and Analysis of Leaf Beam Single-Translation Constraint Compliant Modules and the Resulting Spherical Joints","authors":"Guangbo Hao, Xiuyun He, Jiaxiang Zhu, Haiyang Li","doi":"10.1115/1.4064415","DOIUrl":"https://doi.org/10.1115/1.4064415","url":null,"abstract":"\u0000 A wire beam is a single-translation constraint along its axial direction. It offers many applications in compliant mechanisms such as being a transmitting/decoupling element connected to a linear actuator, and being a fundamental constitutive element to design complex compliant joints and mechanisms. It is desired to find alternative leaf beam single-translation constraint to equal a wire beam, in order to improve the manufacturability and robustness to external loading. In this paper, we propose and model a new single-translation constraint compliant module, I-shape leaf beam design, to compare with a corresponding L-shape leaf beam design reported in the literature. Two spherical (S) joints using three I-shape leaf beams and three L-shape leaf beams, respectively, are then analytically modelled and analysed. Three key geometric parameters are adopted to thoroughly assess four performance indices of each S joint including stiffness ratio, rotation radius error, coupling motion and parasitic motion. It shows that the I-shape leaf beam based S joint performance indices are generally 10 times better than those of the L-shape leaf beam based S joint. For each S joint, the optimal parameters are found under the given conditions. Finally, experimental tests are carried out for a fabricated S joint prototype using the I-shape leaf beams, the results from which verify the accuracy of the proposed analytical model and the fabrication feasibility.","PeriodicalId":506672,"journal":{"name":"Journal of Mechanical Design","volume":"3 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139384693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Fixed Ring Gear Structural Compliance on the Quasi-Static and Dynamic Response of Epicyclic Gear Sets 固定环形齿轮结构顺应性对双环齿轮组准静态和动态响应的影响
Pub Date : 2024-01-04 DOI: 10.1115/1.4064412
L. Ryali, David Talbot
The structural compliance of annular ring gear can significantly influence the quasi-static and dynamic performance of an epicyclic gear set. As powertrain components are continually being optimized to their design limits, this influence becomes prominent and can no longer be ignored. The current paper will study the impact of ring gear compliance on the dynamic response of epicyclic gear sets, in fixed ring kinematic configuration. To achieve this objective the current study will incorporate a finite element based ring gear formulation into the three-dimensional planetary load distribution model of Ryali and Talbot [1]. The proposed model employs a modified simplex algorithm to iteratively solve for the elastic gear mesh contacts in conjunction with a numerical integration scheme, which enables it to inherently capture the influence of several component and system level design variations. The developed formulation is used to conduct parametric studies involving different planetary gear designs, ring gear fixtures (bolted vs. splined), and operating conditions (quasi-static, dynamic). In the case of a splined ring gear fixture, an external splined tooth contact model is developed, which will be used to validate the model against the quasi-static experiments of Ligata et al. [2]. The discussed results demonstrate the fidelity of the developed model, thus making it an excellent tool for the design and analysis of planetary gears with thin annular ring gears.
环形齿轮的结构顺应性会显著影响双环齿轮组的准静态和动态性能。随着动力总成部件不断优化到设计极限,这种影响变得越来越突出,再也不容忽视。本文将研究固定齿圈运动配置下齿圈顺从性对双曲面齿轮组动态响应的影响。为实现这一目标,本研究将在 Ryali 和 Talbot [1] 的三维行星载荷分布模型中加入基于有限元的环形齿轮配方。所提出的模型采用改进的单纯形算法,结合数值积分方案对弹性齿轮啮合接触进行迭代求解,从而使其能够捕捉到多个组件和系统级设计变化的内在影响。所开发的公式用于进行参数研究,涉及不同的行星齿轮设计、环形齿轮固定装置(螺栓固定与花键固定)和工作条件(准静态、动态)。在花键环形齿轮夹具的情况下,开发了外部花键齿接触模型,该模型将用于根据 Ligata 等人[2]的准静态实验进行验证。所讨论的结果证明了所开发模型的保真度,从而使其成为设计和分析带有薄环形齿轮的行星齿轮的绝佳工具。
{"title":"Influence of Fixed Ring Gear Structural Compliance on the Quasi-Static and Dynamic Response of Epicyclic Gear Sets","authors":"L. Ryali, David Talbot","doi":"10.1115/1.4064412","DOIUrl":"https://doi.org/10.1115/1.4064412","url":null,"abstract":"\u0000 The structural compliance of annular ring gear can significantly influence the quasi-static and dynamic performance of an epicyclic gear set. As powertrain components are continually being optimized to their design limits, this influence becomes prominent and can no longer be ignored. The current paper will study the impact of ring gear compliance on the dynamic response of epicyclic gear sets, in fixed ring kinematic configuration. To achieve this objective the current study will incorporate a finite element based ring gear formulation into the three-dimensional planetary load distribution model of Ryali and Talbot [1]. The proposed model employs a modified simplex algorithm to iteratively solve for the elastic gear mesh contacts in conjunction with a numerical integration scheme, which enables it to inherently capture the influence of several component and system level design variations. The developed formulation is used to conduct parametric studies involving different planetary gear designs, ring gear fixtures (bolted vs. splined), and operating conditions (quasi-static, dynamic). In the case of a splined ring gear fixture, an external splined tooth contact model is developed, which will be used to validate the model against the quasi-static experiments of Ligata et al. [2]. The discussed results demonstrate the fidelity of the developed model, thus making it an excellent tool for the design and analysis of planetary gears with thin annular ring gears.","PeriodicalId":506672,"journal":{"name":"Journal of Mechanical Design","volume":"44 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139387025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Mechanical Design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1