Pub Date : 2024-10-28DOI: 10.3758/s13415-024-01236-2
Floor Burghoorn, Anouk Scheres, John Monterosso, Mingqian Guo, Shan Luo, Karin Roelofs, Bernd Figner
People often exhibit intertemporal impatience by choosing immediate small over delayed larger rewards, which has been implicated across maladaptive behaviours and mental health symptoms. In this preregistered study, we tested the role of an intertemporal Pavlovian bias as possible psychological mechanism driving the temptation posed by immediate rewards. Concretely, we hypothesized that the anticipation of immediate rewards (compared with preference-matched delayed rewards) enhances goal-directed approach behaviour but interferes with goal-directed inhibition. Such a mechanism could contribute to the difficulty to inhibit ourselves in the face of immediate rewards (e.g., a drug), at the cost of long-term (e.g., health) goals. A sample of 184 participants completed a newly developed reinforcement learning go/no-go task with four trial types: Go to win immediate reward; Go to win delayed reward; No-go to win immediate reward; and No-go to win delayed reward trials. Go responding was increased in trials in which an immediate reward was available compared with trials in which a preference-matched delayed reward was available. Computational models showed that on average, this behavioural pattern was best captured by a cue-response bias reflecting a stronger elicitation of go responses upon presentation of an immediate (versus delayed) reward cue. The results of this study support the role of an intertemporal Pavlovian bias as a psychological mechanism contributing to impatient intertemporal choice.
{"title":"Pavlovian impatience: The anticipation of immediate rewards increases approach behaviour.","authors":"Floor Burghoorn, Anouk Scheres, John Monterosso, Mingqian Guo, Shan Luo, Karin Roelofs, Bernd Figner","doi":"10.3758/s13415-024-01236-2","DOIUrl":"https://doi.org/10.3758/s13415-024-01236-2","url":null,"abstract":"<p><p>People often exhibit intertemporal impatience by choosing immediate small over delayed larger rewards, which has been implicated across maladaptive behaviours and mental health symptoms. In this preregistered study, we tested the role of an intertemporal Pavlovian bias as possible psychological mechanism driving the temptation posed by immediate rewards. Concretely, we hypothesized that the anticipation of immediate rewards (compared with preference-matched delayed rewards) enhances goal-directed approach behaviour but interferes with goal-directed inhibition. Such a mechanism could contribute to the difficulty to inhibit ourselves in the face of immediate rewards (e.g., a drug), at the cost of long-term (e.g., health) goals. A sample of 184 participants completed a newly developed reinforcement learning go/no-go task with four trial types: Go to win immediate reward; Go to win delayed reward; No-go to win immediate reward; and No-go to win delayed reward trials. Go responding was increased in trials in which an immediate reward was available compared with trials in which a preference-matched delayed reward was available. Computational models showed that on average, this behavioural pattern was best captured by a cue-response bias reflecting a stronger elicitation of go responses upon presentation of an immediate (versus delayed) reward cue. The results of this study support the role of an intertemporal Pavlovian bias as a psychological mechanism contributing to impatient intertemporal choice.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.3758/s13415-024-01234-4
Fernanda Morales-Calva, Stephanie L Leal
Endel Tulving defined episodic memory as consisting of a spatiotemporal context. It enables us to recollect personal experiences of people, things, places, and situations. In other words, it is made up of what, where, and when components. However, this definition does not include arguably the most important aspect of episodic memory: the why. Understanding why we remember has important implications to better understand how our memory system works and as a potential target of intervention for memory impairment. The intrinsic and extrinsic factors related to why some experiences are better remembered than others have been widely investigated but largely independently studied. How these factors interact with one another to drive an event to become a lasting memory is still unknown. This review summarizes research examining the why of episodic memory, where we aim to uncover the factors that drive core features of our memory. We discuss the concept of episodic memory examining the what, where, and when, and how the why is essential to each of these key components of episodic memory. Furthermore, we discuss the neural mechanisms known to support our rich episodic memories and how a why signal may provide critical modulatory impact on neural activity and communication. Finally, we discuss the individual differences that may further drive why we remember certain experiences over others. A better understanding of these elements, and how we experience memory in daily life, can elucidate why we remember what we remember, providing important insight into the overarching goal of our memory system.
{"title":"Tell me why: the missing w in episodic memory's what, where, and when.","authors":"Fernanda Morales-Calva, Stephanie L Leal","doi":"10.3758/s13415-024-01234-4","DOIUrl":"https://doi.org/10.3758/s13415-024-01234-4","url":null,"abstract":"<p><p>Endel Tulving defined episodic memory as consisting of a spatiotemporal context. It enables us to recollect personal experiences of people, things, places, and situations. In other words, it is made up of what, where, and when components. However, this definition does not include arguably the most important aspect of episodic memory: the why. Understanding why we remember has important implications to better understand how our memory system works and as a potential target of intervention for memory impairment. The intrinsic and extrinsic factors related to why some experiences are better remembered than others have been widely investigated but largely independently studied. How these factors interact with one another to drive an event to become a lasting memory is still unknown. This review summarizes research examining the why of episodic memory, where we aim to uncover the factors that drive core features of our memory. We discuss the concept of episodic memory examining the what, where, and when, and how the why is essential to each of these key components of episodic memory. Furthermore, we discuss the neural mechanisms known to support our rich episodic memories and how a why signal may provide critical modulatory impact on neural activity and communication. Finally, we discuss the individual differences that may further drive why we remember certain experiences over others. A better understanding of these elements, and how we experience memory in daily life, can elucidate why we remember what we remember, providing important insight into the overarching goal of our memory system.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-23DOI: 10.3758/s13415-024-01222-8
Brent Ian Rappaport, Stewart A Shankman, James E Glazer, Savannah N Buchanan, Anna Weinberg, Allison M Letkiewicz
The flanker task is a widely used measure of cognitive control abilities. Drift-diffusion modeling of flanker task behavior can yield separable parameters of cognitive control-related subprocesses, but the parameters' psychometrics are not well-established. We examined the reliability and validity of four behavioral measures: (1) raw accuracy, (2) reaction time (RT) interference, (3) NIH Toolbox flanker score, and (4) two drift-diffusion model (DDM) parameters-drift rate and boundary separation-capturing evidence accumulation efficiency and speed-accuracy trade-off, respectively. Participants from two independent studies - one cross-sectional (N = 381) and one with three timepoints (N = 83) - completed the flanker task while electroencephalography data were collected. Across both studies, drift rate and boundary separation demonstrated comparable split-half and test-retest reliability to accuracy, RT interference, and NIH Toolbox flanker score, but better incremental convergent validity with psychophysiological measures (i.e., the error-related negativity; ERN) and neuropsychological measures of cognitive control than the other behavioral indices. Greater drift rate (i.e., faster and more accurate responses) to congruent and incongruent stimuli, and smaller boundary separation to incongruent stimuli were related to 1) larger ERN amplitudes (in both studies) and 2) faster and more accurate inhibition and set-shifting over and above raw accuracy, reaction time, and NIH Toolbox flanker scores (in Study 1). Computational models, such as DDM, can parse behavioral performance into subprocesses that exhibit comparable reliability to other scoring approaches, but more meaningful relationships with other measures of cognitive control. The application of these computational models may be applied to existing data and enhance the identification of cognitive control deficits in psychiatric disorders.
{"title":"Psychometrics of drift-diffusion model parameters derived from the Eriksen flanker task: Reliability and validity in two independent samples.","authors":"Brent Ian Rappaport, Stewart A Shankman, James E Glazer, Savannah N Buchanan, Anna Weinberg, Allison M Letkiewicz","doi":"10.3758/s13415-024-01222-8","DOIUrl":"10.3758/s13415-024-01222-8","url":null,"abstract":"<p><p>The flanker task is a widely used measure of cognitive control abilities. Drift-diffusion modeling of flanker task behavior can yield separable parameters of cognitive control-related subprocesses, but the parameters' psychometrics are not well-established. We examined the reliability and validity of four behavioral measures: (1) raw accuracy, (2) reaction time (RT) interference, (3) NIH Toolbox flanker score, and (4) two drift-diffusion model (DDM) parameters-drift rate and boundary separation-capturing evidence accumulation efficiency and speed-accuracy trade-off, respectively. Participants from two independent studies - one cross-sectional (N = 381) and one with three timepoints (N = 83) - completed the flanker task while electroencephalography data were collected. Across both studies, drift rate and boundary separation demonstrated comparable split-half and test-retest reliability to accuracy, RT interference, and NIH Toolbox flanker score, but better incremental convergent validity with psychophysiological measures (i.e., the error-related negativity; ERN) and neuropsychological measures of cognitive control than the other behavioral indices. Greater drift rate (i.e., faster and more accurate responses) to congruent and incongruent stimuli, and smaller boundary separation to incongruent stimuli were related to 1) larger ERN amplitudes (in both studies) and 2) faster and more accurate inhibition and set-shifting over and above raw accuracy, reaction time, and NIH Toolbox flanker scores (in Study 1). Computational models, such as DDM, can parse behavioral performance into subprocesses that exhibit comparable reliability to other scoring approaches, but more meaningful relationships with other measures of cognitive control. The application of these computational models may be applied to existing data and enhance the identification of cognitive control deficits in psychiatric disorders.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142512341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-18DOI: 10.3758/s13415-024-01228-2
Zhaoqi Zhang, Lieke L F van Lieshout, Olympia Colizoli, Haoqian Li, Tongxi Yang, Chao Liu, Shaozheng Qin, Harold Bekkering
Intrinsic motivational drives, like the autonomous feeling of control, and extrinsic motivational drives, like monetary reward, can benefit learning. Extensive research has focused on neurobiological and psychological factors that affect these drives, but our understanding of the sociocultural factors is limited. Here, we compared the effects of autonomy and rewards on episodic recognition memory between students from Dutch and Chinese universities. In an exploratory learning task, participants viewed partially obscured objects that they needed to subsequently remember. We independently manipulated autonomy, as volitional control over an exploration trajectory, as well as the chance to receive monetary rewards. The learning task was followed by memory tests for objects and locations. For both cultural groups, we found that participants learned better in autonomous than non-autonomous conditions. However, the beneficial effect of reward on memory performance was stronger for Chinese than for Dutch participants. By incorporating the sociocultural brain perspective, we discuss how differences in norms and values between Eastern and Western cultures can be integrated with the neurocognitive framework about dorsal lateral and ventral medial prefrontal cortex and dopaminergic reward modulations on learning and memory. These findings have important implications for understanding the neurocognitive mechanisms in which both autonomy and extrinsic rewards are commonly used to motivate students in the realm of education and urge more attention to investigate cultural differences in learning.
{"title":"A cross-cultural comparison of intrinsic and extrinsic motivational drives for learning.","authors":"Zhaoqi Zhang, Lieke L F van Lieshout, Olympia Colizoli, Haoqian Li, Tongxi Yang, Chao Liu, Shaozheng Qin, Harold Bekkering","doi":"10.3758/s13415-024-01228-2","DOIUrl":"https://doi.org/10.3758/s13415-024-01228-2","url":null,"abstract":"<p><p>Intrinsic motivational drives, like the autonomous feeling of control, and extrinsic motivational drives, like monetary reward, can benefit learning. Extensive research has focused on neurobiological and psychological factors that affect these drives, but our understanding of the sociocultural factors is limited. Here, we compared the effects of autonomy and rewards on episodic recognition memory between students from Dutch and Chinese universities. In an exploratory learning task, participants viewed partially obscured objects that they needed to subsequently remember. We independently manipulated autonomy, as volitional control over an exploration trajectory, as well as the chance to receive monetary rewards. The learning task was followed by memory tests for objects and locations. For both cultural groups, we found that participants learned better in autonomous than non-autonomous conditions. However, the beneficial effect of reward on memory performance was stronger for Chinese than for Dutch participants. By incorporating the sociocultural brain perspective, we discuss how differences in norms and values between Eastern and Western cultures can be integrated with the neurocognitive framework about dorsal lateral and ventral medial prefrontal cortex and dopaminergic reward modulations on learning and memory. These findings have important implications for understanding the neurocognitive mechanisms in which both autonomy and extrinsic rewards are commonly used to motivate students in the realm of education and urge more attention to investigate cultural differences in learning.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.3758/s13415-024-01235-3
Davide Crivelli, Michela Balconi
The ability to attend to and consciously process interoceptive signals is deemed critical for the development of minimal self, adaptive self-regulation and affective experience, and optimal expression of both instrumental and executive cognitive functions. Yet, notwithstanding the richness of theoretical proposals concerning inferential accounts of interoception, empirical evidence is still scarce. Building on such premises, this study was designed to investigate the electrophysiological signature of cognitive processes leading to aware coding of interoceptive signals via EEG source localization. Thirty-six healthy participants completed an interoceptive accuracy task, i.e., the Heartbeat Counting Task (HCT), while we collected task-related and resting state electrophysiological activity. eLORETA modelling and statistical nonparametric mapping were used to estimate intracortical current density and link such estimates to participants' performance at the task. Source analysis highlighted higher current density estimates for alpha frequencies during HCT with respect to rest, with the primary cortical generator in the right parahippocampal gyrus. Also, a set of medial cortical structures-primarily represented by the cingulate gyrus-showed significant relation between task-related changes in current density estimates for beta oscillations and HCT scores. Findings suggest the informativity of EEG task-related measures of neural activation when used to assess interoceptive skills, as well as of the potential of metrics and analysis based on source localization in the quest to improve our understanding of interoceptive accuracy and neurofunctional correlates of related active inferences.
{"title":"Electrophysiological signature of interoceptive attention: a spectral and source localization analysis.","authors":"Davide Crivelli, Michela Balconi","doi":"10.3758/s13415-024-01235-3","DOIUrl":"https://doi.org/10.3758/s13415-024-01235-3","url":null,"abstract":"<p><p>The ability to attend to and consciously process interoceptive signals is deemed critical for the development of minimal self, adaptive self-regulation and affective experience, and optimal expression of both instrumental and executive cognitive functions. Yet, notwithstanding the richness of theoretical proposals concerning inferential accounts of interoception, empirical evidence is still scarce. Building on such premises, this study was designed to investigate the electrophysiological signature of cognitive processes leading to aware coding of interoceptive signals via EEG source localization. Thirty-six healthy participants completed an interoceptive accuracy task, i.e., the Heartbeat Counting Task (HCT), while we collected task-related and resting state electrophysiological activity. eLORETA modelling and statistical nonparametric mapping were used to estimate intracortical current density and link such estimates to participants' performance at the task. Source analysis highlighted higher current density estimates for alpha frequencies during HCT with respect to rest, with the primary cortical generator in the right parahippocampal gyrus. Also, a set of medial cortical structures-primarily represented by the cingulate gyrus-showed significant relation between task-related changes in current density estimates for beta oscillations and HCT scores. Findings suggest the informativity of EEG task-related measures of neural activation when used to assess interoceptive skills, as well as of the potential of metrics and analysis based on source localization in the quest to improve our understanding of interoceptive accuracy and neurofunctional correlates of related active inferences.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142479851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10DOI: 10.3758/s13415-024-01226-4
M Vanessa Rivera Núñez, Dana L McMakin, Aaron T Mattfeld
Background: Anxiety affects 4.4-million children in the USA with an onset between childhood and adolescence, a period marked by neural changes that impact emotions and memory. Negative overgeneralization - or responding similarly to innocuous events that share features with past aversive experiences - is common in anxiety but remains mechanistically underspecified. The nucleus reuniens (RE) has been considered a crucial candidate in the modulation of memory specificity. Our study investigated its activation and functional connectivity with the medial prefrontal cortex (mPFC) and hippocampus (HPC) as neurobiological mechanisms of negative overgeneralization in anxious youth.
Methods: As part of a secondary data analysis, we examined data from 34 participants between 9 and 14 years of age (mean age ± SD, 11.4 ± 2.0 years; 16 females) with varying degrees of anxiety severity. During the Study session participants rated images as negative, neutral, and positive. After 12 h, participants returned for a Test session, where they performed a memory recognition test with repeated (targets) and similar (lures) images. Labeling negative relative to neutral lures as "old" (false alarms) was our operational definition of negative overgeneralization.
Results: Negative relative to neutral false alarmed stimuli displayed elevated RE activation (at Study and Test) and increased functional connectivity with the Cornu Ammonis (CA) 1 (at Test). Elevated anxiety severity was associated with reductions in the RE-mPFC functional coupling for neutral relative to negative stimuli. Exploratory analyses revealed similar patterns in activation and functional connectivity with positive stimuli.
Conclusions: Our findings demonstrate the importance of the RE in negative overgeneralization and anxiety.
{"title":"Nucleus reuniens: Modulating emotional overgeneralization in peri-adolescents with anxiety.","authors":"M Vanessa Rivera Núñez, Dana L McMakin, Aaron T Mattfeld","doi":"10.3758/s13415-024-01226-4","DOIUrl":"https://doi.org/10.3758/s13415-024-01226-4","url":null,"abstract":"<p><strong>Background: </strong>Anxiety affects 4.4-million children in the USA with an onset between childhood and adolescence, a period marked by neural changes that impact emotions and memory. Negative overgeneralization - or responding similarly to innocuous events that share features with past aversive experiences - is common in anxiety but remains mechanistically underspecified. The nucleus reuniens (RE) has been considered a crucial candidate in the modulation of memory specificity. Our study investigated its activation and functional connectivity with the medial prefrontal cortex (mPFC) and hippocampus (HPC) as neurobiological mechanisms of negative overgeneralization in anxious youth.</p><p><strong>Methods: </strong>As part of a secondary data analysis, we examined data from 34 participants between 9 and 14 years of age (mean age ± SD, 11.4 ± 2.0 years; 16 females) with varying degrees of anxiety severity. During the Study session participants rated images as negative, neutral, and positive. After 12 h, participants returned for a Test session, where they performed a memory recognition test with repeated (targets) and similar (lures) images. Labeling negative relative to neutral lures as \"old\" (false alarms) was our operational definition of negative overgeneralization.</p><p><strong>Results: </strong>Negative relative to neutral false alarmed stimuli displayed elevated RE activation (at Study and Test) and increased functional connectivity with the Cornu Ammonis (CA) 1 (at Test). Elevated anxiety severity was associated with reductions in the RE-mPFC functional coupling for neutral relative to negative stimuli. Exploratory analyses revealed similar patterns in activation and functional connectivity with positive stimuli.</p><p><strong>Conclusions: </strong>Our findings demonstrate the importance of the RE in negative overgeneralization and anxiety.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.3758/s13415-024-01231-7
Jakub Skałbania, Łukasz Tanajewski, Marcin Furtak, Todd A Hare, Marek Wypych
Recent studies have shown that spontaneous pre-stimulus fluctuations in brain activity affect higher-order cognitive processes, including risky decision-making, cognitive flexibility, and aesthetic judgments. However, there is currently no direct evidence to suggest that pre-choice activity influences value-based decisions that require self-control. We examined the impact of fluctuations in pre-choice activity in key regions of the reward system on self-control in food choice. In the functional magnetic resonance imaging (fMRI) scanner, 49 participants made 120 food choices that required self-control in high and low working memory load conditions. The task was designed to ensure that participants were cognitively engaged and not thinking about upcoming choices. We defined self-control success as choosing a food item that was healthier over one that was tastier. The brain regions of interest (ROIs) were the ventral tegmental area (VTA), putamen, nucleus accumbens (NAc), and caudate nucleus. For each participant and condition, we calculated the mean activity in the 3-s interval preceding the presentation of food stimuli in successful and failed self-control trials. These activities were then used as predictors of self-control success in a fixed-effects logistic regression model. The results indicate that increased pre-choice VTA activity was linked to a higher probability of self-control success in a subsequent food-choice task within the low-load condition, but not in the high-load condition. We posit that pre-choice fluctuations in VTA activity change the reference point for immediate (taste) reward evaluation, which may explain our finding. This suggests that the neural context of decisions may be a key factor influencing human behavior.
{"title":"Pre-choice midbrain fluctuations affect self-control in food choice: A functional magnetic resonance imaging (fMRI) study.","authors":"Jakub Skałbania, Łukasz Tanajewski, Marcin Furtak, Todd A Hare, Marek Wypych","doi":"10.3758/s13415-024-01231-7","DOIUrl":"https://doi.org/10.3758/s13415-024-01231-7","url":null,"abstract":"<p><p>Recent studies have shown that spontaneous pre-stimulus fluctuations in brain activity affect higher-order cognitive processes, including risky decision-making, cognitive flexibility, and aesthetic judgments. However, there is currently no direct evidence to suggest that pre-choice activity influences value-based decisions that require self-control. We examined the impact of fluctuations in pre-choice activity in key regions of the reward system on self-control in food choice. In the functional magnetic resonance imaging (fMRI) scanner, 49 participants made 120 food choices that required self-control in high and low working memory load conditions. The task was designed to ensure that participants were cognitively engaged and not thinking about upcoming choices. We defined self-control success as choosing a food item that was healthier over one that was tastier. The brain regions of interest (ROIs) were the ventral tegmental area (VTA), putamen, nucleus accumbens (NAc), and caudate nucleus. For each participant and condition, we calculated the mean activity in the 3-s interval preceding the presentation of food stimuli in successful and failed self-control trials. These activities were then used as predictors of self-control success in a fixed-effects logistic regression model. The results indicate that increased pre-choice VTA activity was linked to a higher probability of self-control success in a subsequent food-choice task within the low-load condition, but not in the high-load condition. We posit that pre-choice fluctuations in VTA activity change the reference point for immediate (taste) reward evaluation, which may explain our finding. This suggests that the neural context of decisions may be a key factor influencing human behavior.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.3758/s13415-024-01232-6
Scarlett B Horner, Roshni Lulla, Helen Wu, Shruti Shaktivel, Anthony Vaccaro, Ellen Herschel, Leonardo Christov-Moore, Colin McDaniel, Jonas T Kaplan, Steven G Greening
Previous behavioral research has found that working memory is associated with emotion regulation efficacy. However, there has been mixed evidence as to whether the neural mechanisms between emotion regulation and working memory overlap. The present study tested the prediction that individual differences on the working memory subtest of the Weschler Adult Intelligence Scale (WAIS-IV) could be predicted from the pattern of brain activity produced during emotion regulation in regions typically associated with working memory, such as the dorsal lateral prefrontal cortex (dlPFC). A total of 101 participants completed an emotion regulation fMRI task in which they either viewed or reappraised negative images. Participants also completed working memory test outside the scanner. A whole brain covariate analysis contrasting the reappraise negative and view negative BOLD response found that activity in the right dlPFC positively related to working memory ability. Moreover, a multivoxel pattern analysis approach using tenfold cross-validated support vector regression in regions-of-interest associated with working memory, including bilateral dlPFC, demonstrated that we could predict individual differences in working memory ability from the pattern of activity associated with emotion regulation. These findings support the idea that emotion regulation shares underlying cognitive processes and neural mechanisms with working memory, particularly in the dlPFC.
{"title":"Brain activity associated with emotion regulation predicts individual differences in working memory ability.","authors":"Scarlett B Horner, Roshni Lulla, Helen Wu, Shruti Shaktivel, Anthony Vaccaro, Ellen Herschel, Leonardo Christov-Moore, Colin McDaniel, Jonas T Kaplan, Steven G Greening","doi":"10.3758/s13415-024-01232-6","DOIUrl":"https://doi.org/10.3758/s13415-024-01232-6","url":null,"abstract":"<p><p>Previous behavioral research has found that working memory is associated with emotion regulation efficacy. However, there has been mixed evidence as to whether the neural mechanisms between emotion regulation and working memory overlap. The present study tested the prediction that individual differences on the working memory subtest of the Weschler Adult Intelligence Scale (WAIS-IV) could be predicted from the pattern of brain activity produced during emotion regulation in regions typically associated with working memory, such as the dorsal lateral prefrontal cortex (dlPFC). A total of 101 participants completed an emotion regulation fMRI task in which they either viewed or reappraised negative images. Participants also completed working memory test outside the scanner. A whole brain covariate analysis contrasting the reappraise negative and view negative BOLD response found that activity in the right dlPFC positively related to working memory ability. Moreover, a multivoxel pattern analysis approach using tenfold cross-validated support vector regression in regions-of-interest associated with working memory, including bilateral dlPFC, demonstrated that we could predict individual differences in working memory ability from the pattern of activity associated with emotion regulation. These findings support the idea that emotion regulation shares underlying cognitive processes and neural mechanisms with working memory, particularly in the dlPFC.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-08DOI: 10.3758/s13415-024-01229-1
Erin Morrow, David Clewett
Everyday experiences often overlap, challenging our ability to maintain distinct episodic memories. One way to resolve such interference is by exaggerating subtle differences between remembered events, a phenomenon known as memory repulsion. Here, we tested whether repulsion is influenced by emotional arousal, when resolving memory interference is perhaps most needed. We adapted an existing paradigm in which participants repeatedly studied object-face associations. Participants studied two different-colored versions of each object: a to-be-tested "target" and its not-to-be-tested "competitor" pair mate. The level of interference between target and competitor pair mates was manipulated by making the object colors either highly similar or less similar, depending on the participant group. To manipulate arousal, the competitor object-face associations were preceded by either a neutral tone or an aversive and arousing burst of white noise. Memory distortion for the color of the target objects was tested after each study round to examine whether memory distortions emerge after learning. We found that participants with greater sound-induced pupil dilations, an index of physiological arousal, showed greater memory attraction of target colors towards highly similar competitor colors. Greater memory attraction was also correlated with greater memory interference in the last round of learning. Additionally, individuals who self-reported higher trait anxiety showed greater memory attraction when one of the overlapping memories was associated with something aversive. Our findings suggest that memories of similar neutral and arousing events may blur together after repeated exposures, especially in individuals who show higher arousal responses and symptoms of anxiety.
{"title":"Distortion of overlapping memories relates to arousal and anxiety.","authors":"Erin Morrow, David Clewett","doi":"10.3758/s13415-024-01229-1","DOIUrl":"https://doi.org/10.3758/s13415-024-01229-1","url":null,"abstract":"<p><p>Everyday experiences often overlap, challenging our ability to maintain distinct episodic memories. One way to resolve such interference is by exaggerating subtle differences between remembered events, a phenomenon known as memory repulsion. Here, we tested whether repulsion is influenced by emotional arousal, when resolving memory interference is perhaps most needed. We adapted an existing paradigm in which participants repeatedly studied object-face associations. Participants studied two different-colored versions of each object: a to-be-tested \"target\" and its not-to-be-tested \"competitor\" pair mate. The level of interference between target and competitor pair mates was manipulated by making the object colors either highly similar or less similar, depending on the participant group. To manipulate arousal, the competitor object-face associations were preceded by either a neutral tone or an aversive and arousing burst of white noise. Memory distortion for the color of the target objects was tested after each study round to examine whether memory distortions emerge after learning. We found that participants with greater sound-induced pupil dilations, an index of physiological arousal, showed greater memory attraction of target colors towards highly similar competitor colors. Greater memory attraction was also correlated with greater memory interference in the last round of learning. Additionally, individuals who self-reported higher trait anxiety showed greater memory attraction when one of the overlapping memories was associated with something aversive. Our findings suggest that memories of similar neutral and arousing events may blur together after repeated exposures, especially in individuals who show higher arousal responses and symptoms of anxiety.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142394951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.3758/s13415-024-01225-5
Apoorva Veerareddy, Huihua Fang, Nooshin Safari, Pengfei Xu, Frank Krueger
Social networks are fundamental for social interactions, with the social brain hypothesis positing that the size of the neocortex evolved to meet social demands. However, the role of fractional anisotropy (FA) in white matter (WM) tracts relevant to mentalizing, empathy, and social networks remains unclear. In this study, we investigated the relationships between FA in brain regions associated with social cognition (superior longitudinal fasciculus (SLF), cingulum (CING), uncinate fasciculus, inferior fronto-occipital fasciculus), social network characteristics (diversity, size, complexity), and empathy (cognitive, affective). We employed diffusion tensor imaging, tract-based spatial statistics, and mediation analyses to examine these associations. Our findings revealed that increased social network size was positively correlated with FA in the left SLF. Further, our mediation analysis showed that lower FA in left CING was associated with increased social network size, mediated by cognitive empathy. In summary, our findings suggest that WM tracts involved in social cognition play distinct roles in social network size and empathy, potentially implicating affective brain regions. In conclusion, our findings offer new perspectives on the cognitive mechanisms involved in understanding others' mental states and experiencing empathy within supportive social networks, with potential implications for understanding individual differences in social behavior and mental health.
{"title":"Social network size, empathy, and white matter: A diffusion tensor imaging (DTI) study.","authors":"Apoorva Veerareddy, Huihua Fang, Nooshin Safari, Pengfei Xu, Frank Krueger","doi":"10.3758/s13415-024-01225-5","DOIUrl":"https://doi.org/10.3758/s13415-024-01225-5","url":null,"abstract":"<p><p>Social networks are fundamental for social interactions, with the social brain hypothesis positing that the size of the neocortex evolved to meet social demands. However, the role of fractional anisotropy (FA) in white matter (WM) tracts relevant to mentalizing, empathy, and social networks remains unclear. In this study, we investigated the relationships between FA in brain regions associated with social cognition (superior longitudinal fasciculus (SLF), cingulum (CING), uncinate fasciculus, inferior fronto-occipital fasciculus), social network characteristics (diversity, size, complexity), and empathy (cognitive, affective). We employed diffusion tensor imaging, tract-based spatial statistics, and mediation analyses to examine these associations. Our findings revealed that increased social network size was positively correlated with FA in the left SLF. Further, our mediation analysis showed that lower FA in left CING was associated with increased social network size, mediated by cognitive empathy. In summary, our findings suggest that WM tracts involved in social cognition play distinct roles in social network size and empathy, potentially implicating affective brain regions. In conclusion, our findings offer new perspectives on the cognitive mechanisms involved in understanding others' mental states and experiencing empathy within supportive social networks, with potential implications for understanding individual differences in social behavior and mental health.</p>","PeriodicalId":50672,"journal":{"name":"Cognitive Affective & Behavioral Neuroscience","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}