Syeda Rida Zainab, Jehan Zeb Khan, Mujeeb Ur Rehman, Fawad Ali Shah, Muhammad Khalid Tipu
Ulcerative colitis (UC) is a condition characterized by inflammation and ulcer formation in the colon and rectum due to genetic and environmental factors. It is a common condition, with a global prevalence rate exceeding 0.3%. Current treatments have limited efficacy and can cause unwanted side effects, leading to a high recurrence rate and reduced quality of life for patients. This study suggests that Bacillus clausii has a beneficial role in reducing intestinal inflammation and relieving colitis symptoms in mice. The study aimed to examine B. clausii's potential to reduce the progression and pathogenesis of dextran sulphate sodium (DSS)–induced UC. Bacillus clausii was administered to mice as a pre-treatment, post-treatment and adjunct treatment with sulfasalazine for 14 days. The study found that B. clausii effectively reduced the severity of colitis in mice when used preventatively. Administering B. clausii after the onset of colitis also effectively alleviated symptoms. Combining B. clausii with standard sulfasalazine as adjunct therapy was more effective in reducing intestinal inflammation than using a single therapy alone. B. clausii has shown the potential to prevent colon damage and decrease the likelihood and severity of the disease. Immunohistochemistry results revealed a decrease in the expression of pro-inflammatory cytokines such as IL-1β, TNF-α and NFkB in colon tissue. Additionally, mice that received B. clausii showed a significant increase in anti-oxidant levels and improved haematological markers. In conclusion, it must be emphasized that B. clausii possesses the potential to alleviate the symptoms of UC.
溃疡性结肠炎(UC)是一种因遗传和环境因素导致结肠和直肠发炎并形成溃疡的疾病。它是一种常见病,全球发病率超过 0.3%。目前的治疗方法疗效有限,而且会产生不必要的副作用,导致高复发率,降低患者的生活质量。这项研究表明,枯草芽孢杆菌在减轻肠道炎症和缓解小鼠结肠炎症状方面具有有益作用。该研究旨在探讨克劳氏芽孢杆菌在减少右旋糖酐硫酸钠(DSS)诱导的多发性结肠炎的进展和发病机制方面的潜力。小鼠在治疗前、治疗后和磺胺沙拉嗪的辅助治疗中分别服用了克劳氏芽孢杆菌14天。研究发现,预防性使用克劳斯氏芽孢杆菌能有效减轻小鼠结肠炎的严重程度。在结肠炎发病后服用克劳氏菌也能有效缓解症状。在减少肠道炎症方面,将鲍鱼和标准的磺胺沙拉嗪结合起来作为辅助疗法比单独使用一种疗法更有效。克劳斯蝙蝠蛾具有预防结肠损伤、降低患病几率和严重程度的潜力。免疫组化结果显示,结肠组织中IL-1β、TNF-α和NFkB等促炎细胞因子的表达量有所下降。此外,接受 B. clausii 治疗的小鼠的抗氧化剂水平显著提高,血液指标也有所改善。总之,必须强调的是,克劳斯蚕豆具有缓解UC症状的潜力。
{"title":"Effect of Bacillus clausii in attenuating symptoms of DSS-induced ulcerative colitis by modulating NFkB pathway and oxidative stress in mice","authors":"Syeda Rida Zainab, Jehan Zeb Khan, Mujeeb Ur Rehman, Fawad Ali Shah, Muhammad Khalid Tipu","doi":"10.1111/1440-1681.70004","DOIUrl":"10.1111/1440-1681.70004","url":null,"abstract":"<p>Ulcerative colitis (UC) is a condition characterized by inflammation and ulcer formation in the colon and rectum due to genetic and environmental factors. It is a common condition, with a global prevalence rate exceeding 0.3%. Current treatments have limited efficacy and can cause unwanted side effects, leading to a high recurrence rate and reduced quality of life for patients. This study suggests that <i>Bacillus clausii</i> has a beneficial role in reducing intestinal inflammation and relieving colitis symptoms in mice. The study aimed to examine <i>B. clausii</i>'s potential to reduce the progression and pathogenesis of dextran sulphate sodium (DSS)–induced UC. <i>Bacillus clausii</i> was administered to mice as a pre-treatment, post-treatment and adjunct treatment with sulfasalazine for 14 days. The study found that <i>B. clausii</i> effectively reduced the severity of colitis in mice when used preventatively. Administering <i>B. clausii</i> after the onset of colitis also effectively alleviated symptoms. Combining <i>B. clausii</i> with standard sulfasalazine as adjunct therapy was more effective in reducing intestinal inflammation than using a single therapy alone. <i>B. clausii</i> has shown the potential to prevent colon damage and decrease the likelihood and severity of the disease. Immunohistochemistry results revealed a decrease in the expression of pro-inflammatory cytokines such as IL-1β, TNF-α and NFkB in colon tissue. Additionally, mice that received <i>B. clausii</i> showed a significant increase in anti-oxidant levels and improved haematological markers. In conclusion, it must be emphasized that <i>B. clausii</i> possesses the potential to alleviate the symptoms of UC.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"51 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chao Liu, Huaxing Shen, Huang Li, Nan Wang, Shipeng He, Guangming Ye, Wei Cong
Evodiamine is a biologically active alkaloid extracted from the fruit of the traditional Chinese medicine Evodia rutaecarpa (Juss.) Benth. (Fructus Evodiae, Wuzhuyu). However, due to its lipophilic chemical structure, low water solubility results in poor bio-availability, which limits its broader application. 3-Amino-10-hydroxyl-evodiamine (E2) was a water-soluble derivative of evodiamine with good anti-tumour bioactivity previously developed by our team; however, its anti-osteoporosis activity remains unclear. This study demonstrates that E2 inhibits the maturation of osteoclasts and bone resorption promoted by receptor activator of nuclear factor-κB ligand (RANKL). Mechanistically, E2 reduced RANKL-induced activation of nuclear factor kappa B (NF-κB) as well as mitogen-activated protein kinase (MAPK) pathways, causing the suppression of the expression of genes associated with osteoclasts in vitro. These genes included nuclear factor of activated T cells c1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), cathepsin k (CTSK) and dendritic cell–specific transmembrane protein (DC-STAMP). Treatment with E2 in vitro resulted in the attenuation of p-ERK, p-JNK, p-p38 and NFATc1 levels. Furthermore, ovariectomized (OVX) mice treated with E2 showed a decrease in osteoclast formation as well as preservation of bone mass. This study concludes with evidence that E2 decreases osteoclast maturation and bone resorption through the regulation of multiple signalling pathways, thereby exhibiting an osteoprotective role in OVX mice. Consequently, E2 exhibits significant potential as a prospective drug candidate for treating osteoporosis.
{"title":"An evodiamine derivative inhibits osteoclast differentiation and protects against OVX-induced bone loss in mice","authors":"Chao Liu, Huaxing Shen, Huang Li, Nan Wang, Shipeng He, Guangming Ye, Wei Cong","doi":"10.1111/1440-1681.13926","DOIUrl":"10.1111/1440-1681.13926","url":null,"abstract":"<p>Evodiamine is a biologically active alkaloid extracted from the fruit of the traditional Chinese medicine <i>Evodia rutaecarpa</i> (Juss.) Benth. (Fructus Evodiae, Wuzhuyu). However, due to its lipophilic chemical structure, low water solubility results in poor bio-availability, which limits its broader application. 3-Amino-10-hydroxyl-evodiamine (E2) was a water-soluble derivative of evodiamine with good anti-tumour bioactivity previously developed by our team; however, its anti-osteoporosis activity remains unclear. This study demonstrates that E2 inhibits the maturation of osteoclasts and bone resorption promoted by receptor activator of nuclear factor-κB ligand (RANKL). Mechanistically, E2 reduced RANKL-induced activation of nuclear factor kappa B (NF-κB) as well as mitogen-activated protein kinase (MAPK) pathways, causing the suppression of the expression of genes associated with osteoclasts in vitro. These genes included nuclear factor of activated T cells c1 (NFATc1), tartrate-resistant acid phosphatase (TRAP), cathepsin k (CTSK) and dendritic cell–specific transmembrane protein (DC-STAMP). Treatment with E2 in vitro resulted in the attenuation of p-ERK, p-JNK, p-p38 and NFATc1 levels. Furthermore, ovariectomized (OVX) mice treated with E2 showed a decrease in osteoclast formation as well as preservation of bone mass. This study concludes with evidence that E2 decreases osteoclast maturation and bone resorption through the regulation of multiple signalling pathways, thereby exhibiting an osteoprotective role in OVX mice. Consequently, E2 exhibits significant potential as a prospective drug candidate for treating osteoporosis.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"51 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ana P. Pinto, Vitor R. Muñoz, Maria Eduarda A. Tavares, Ivo V. de Sousa Neto, Jonathas R. dos Santos, Guilherme S. Rodrigues, Ruither O. Gomes Carolino, Luciane C. Alberici, Fernando M. Simabuco, Giovana R. Teixeira, José R. Pauli, Leandro P. de Moura, Dennys E. Cintra, Eduardo R. Ropelle, Ellen C. Freitas, Donato A. Rivas, Adelino S. R. da Silva
Senescence impairs liver physiology, mitochondrial function and circadian regulation, resulting in systemic metabolic dysregulation. Given the limited research on the effects of combined exercise on an ageing liver, this study aimed to evaluate its impact on liver metabolism, circadian rhythms and mitochondrial function in senescence-accelerated mouse-prone 8 (SAMP8) and senescence-accelerated mouse-resistant 1 (SAMR1) mice. Histological, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunoblotting analyses were conducted, supplemented by transcriptomic data sets and AML12 hepatocyte studies. Sedentary SAMP8 mice exhibited decreased muscle strength, reduced mitochondrial complex I levels and increased lipid droplet accumulation. In contrast, combined exercise mitigated muscle strength loss, upregulated proteins involved in mitochondrial complexes (CIII, CIV, CV) and increased Bmal1 messenger RNA (mRNA) expression in the liver. These molecular adaptations are associated with healthier liver phenotypes and may influence metabolic function and cellular longevity. Notably, elevated lipid content in aged mice was reduced post-exercise, indicating liver benefits even after a relatively short intervention. The combined exercise regimen did not improve aerobic capacity, likely due to the low volume and brief duration of running. Moreover, no significant effects were observed in SAMR1 mice, possibly because the training intensity was insufficient for younger, healthier animals. These findings underscore the potential of combined strength and endurance exercise to attenuate age-related liver dysfunction, particularly in ageing populations.
{"title":"Short-term exercise counteracts accelerated ageing impacts on physical performance and liver health in mice","authors":"Ana P. Pinto, Vitor R. Muñoz, Maria Eduarda A. Tavares, Ivo V. de Sousa Neto, Jonathas R. dos Santos, Guilherme S. Rodrigues, Ruither O. Gomes Carolino, Luciane C. Alberici, Fernando M. Simabuco, Giovana R. Teixeira, José R. Pauli, Leandro P. de Moura, Dennys E. Cintra, Eduardo R. Ropelle, Ellen C. Freitas, Donato A. Rivas, Adelino S. R. da Silva","doi":"10.1111/1440-1681.70001","DOIUrl":"10.1111/1440-1681.70001","url":null,"abstract":"<p>Senescence impairs liver physiology, mitochondrial function and circadian regulation, resulting in systemic metabolic dysregulation. Given the limited research on the effects of combined exercise on an ageing liver, this study aimed to evaluate its impact on liver metabolism, circadian rhythms and mitochondrial function in senescence-accelerated mouse-prone 8 (SAMP8) and senescence-accelerated mouse-resistant 1 (SAMR1) mice. Histological, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunoblotting analyses were conducted, supplemented by transcriptomic data sets and AML12 hepatocyte studies. Sedentary SAMP8 mice exhibited decreased muscle strength, reduced mitochondrial complex I levels and increased lipid droplet accumulation. In contrast, combined exercise mitigated muscle strength loss, upregulated proteins involved in mitochondrial complexes (CIII, CIV, CV) and increased <i>Bmal1</i> messenger RNA (mRNA) expression in the liver. These molecular adaptations are associated with healthier liver phenotypes and may influence metabolic function and cellular longevity. Notably, elevated lipid content in aged mice was reduced post-exercise, indicating liver benefits even after a relatively short intervention. The combined exercise regimen did not improve aerobic capacity, likely due to the low volume and brief duration of running. Moreover, no significant effects were observed in SAMR1 mice, possibly because the training intensity was insufficient for younger, healthier animals. These findings underscore the potential of combined strength and endurance exercise to attenuate age-related liver dysfunction, particularly in ageing populations.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"51 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diabetic nephropathy (DN) is a severe renal disorder that arises as a complication of diabetes. Liraglutide, an analogue of a glucagon-like peptide 1 (GLP-1) receptor agonist, has been shown to decrease diabetes-caused renal damage. Nevertheless, the complete understanding of the roles and mechanism remains unclear. In our study, diabetic rat models were created through a single intraperitoneal injection of streptozotocin (STZ). The level of fasting blood glucose, 24-h urine protein, serum creatinine (Scr) and blood urea nitrogen (BUN) were assessed. Periodic acid-Schiff (PAS) staining was applied to examine the pathological changes in renal tissues. Reactive oxygen species (ROS) formation was measured via dichloro-dihydro-fluorescein diacetate (DCFH-DA) probes. Western blot was conducted to examine the levels of oxidative stress-related and extracellular matrix (ECM)-associated proteins. The nuclear translocation of NRF2 was investigated through immunofluorescence and Western blot assays. We demonstrated that liraglutide attenuated DN-induced oxidative stress and ECM deposition in vitro and in vivo. Liraglutide exerted a reno-protective effect by promoting nuclear translocation of NRF2 in mesangial cells. ML385, an NRF2 inhibitor, counteracted the beneficial impact of liraglutide.
糖尿病肾病(DN)是一种严重的肾脏疾病,是糖尿病的并发症之一。利拉鲁肽是一种胰高血糖素样肽 1(GLP-1)受体激动剂的类似物,已被证明可减少糖尿病引起的肾损伤。然而,对其作用和机制的全面了解仍不清楚。在我们的研究中,通过腹腔注射链脲佐菌素(STZ)建立了糖尿病大鼠模型。评估了空腹血糖、24 小时尿蛋白、血清肌酐(Scr)和血尿素氮(BUN)的水平。采用过期酸-希夫(PAS)染色法检测肾组织的病理变化。通过二氯二氢荧光素二乙酸酯(DCFH-DA)探针测量活性氧(ROS)的形成。采用 Western 印迹法检测氧化应激相关蛋白和细胞外基质(ECM)相关蛋白的水平。通过免疫荧光和 Western 印迹分析研究了 NRF2 的核转位。我们证实,利拉鲁肽可减轻 DN 诱导的体外和体内氧化应激和 ECM 沉积。利拉鲁肽通过促进系膜细胞中 NRF2 的核转位来发挥肾脏保护作用。NRF2抑制剂ML385抵消了利拉鲁肽的有益影响。
{"title":"GLP-1 receptor agonist liraglutide alleviates kidney injury by regulating nuclear translocation of NRF2 in diabetic nephropathy","authors":"Tingting Lin, Yuze Zhang, Qifeng Wei, Zugui Huang","doi":"10.1111/1440-1681.70003","DOIUrl":"10.1111/1440-1681.70003","url":null,"abstract":"<p>Diabetic nephropathy (DN) is a severe renal disorder that arises as a complication of diabetes. Liraglutide, an analogue of a glucagon-like peptide 1 (GLP-1) receptor agonist, has been shown to decrease diabetes-caused renal damage. Nevertheless, the complete understanding of the roles and mechanism remains unclear. In our study, diabetic rat models were created through a single intraperitoneal injection of streptozotocin (STZ). The level of fasting blood glucose, 24-h urine protein, serum creatinine (Scr) and blood urea nitrogen (BUN) were assessed. Periodic acid-Schiff (PAS) staining was applied to examine the pathological changes in renal tissues. Reactive oxygen species (ROS) formation was measured via dichloro-dihydro-fluorescein diacetate (DCFH-DA) probes. Western blot was conducted to examine the levels of oxidative stress-related and extracellular matrix (ECM)-associated proteins. The nuclear translocation of NRF2 was investigated through immunofluorescence and Western blot assays. We demonstrated that liraglutide attenuated DN-induced oxidative stress and ECM deposition in vitro and in vivo. Liraglutide exerted a reno-protective effect by promoting nuclear translocation of NRF2 in mesangial cells. ML385, an NRF2 inhibitor, counteracted the beneficial impact of liraglutide.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"51 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Myocardial fibrosis is a critical concern in clinical medicine. This study explores the potential of odoratin as a treatment for myocardial fibrosis and investigates its underlying mechanisms. In vitro experiments involved stimulating primary mouse cardiomyocytes with TGF-β1, followed by odoratin treatment, to assess levels of reactive oxygen species (ROS) and nitric oxide (NO). In vivo, a mouse model of myocardial fibrosis was established using abdominal aortic constriction (AAC) and treated with odoratin. ROS and NO levels in myocardial tissue were then evaluated. Immunofluorescence and Western blotting analysis showed that odoratin reduced excess ROS, enhanced NO production and decreased fibrosis-related protein expression in vitro. In vivo, odoratin significantly improved cardiac function, reduced ROS, increased NO levels and mitigated fibrosis in AAC-induced mice. Both in vitro and in vivo, odoratin inhibited the expression of NADPH oxidase 4 and EZH2, while promoting the expression of phosphorylated endothelial nitric oxide synthase (p-eNOS) and PPARγ. The anti-fibrotic effects of odoratin were reversed by PPARγ antagonism, and EZH2 overexpression diminished PPARγ activation by odoratin. These findings suggest that odoratin may combat myocardial fibrosis by balancing ROS and NO through PPARγ activation, with EZH2 inhibition likely playing a key regulatory role.
心肌纤维化是临床医学的一个重要问题。本研究探讨了臭素作为心肌纤维化治疗药物的潜力,并研究了其潜在机制。体外实验包括用 TGF-β1 刺激原代小鼠心肌细胞,然后用臭素处理,以评估活性氧(ROS)和一氧化氮(NO)的水平。在体内,利用腹主动脉缩窄术(AAC)建立了心肌纤维化小鼠模型,并用臭蛋白处理。然后评估心肌组织中的 ROS 和 NO 水平。免疫荧光和 Western 印迹分析表明,在体外,臭蛋白可减少过量的 ROS、促进 NO 生成并降低纤维化相关蛋白的表达。在体内,臭素能明显改善 AAC 诱导的小鼠的心脏功能、减少 ROS、提高 NO 水平并减轻纤维化。在体外和体内,臭素都能抑制 NADPH 氧化酶 4 和 EZH2 的表达,同时促进磷酸化内皮一氧化氮合酶(p-eNOS)和 PPARγ 的表达。PPARγ拮抗剂逆转了臭素的抗纤维化作用,EZH2的过表达减少了臭素对PPARγ的激活。这些发现表明,臭素可能通过 PPARγ 激活平衡 ROS 和 NO 来对抗心肌纤维化,而 EZH2 的抑制可能起着关键的调节作用。
{"title":"Odoratin balances ROS/NO through EZH2/PPARγ signalling to improve myocardial fibrosis","authors":"Bin Rao, Min Zhang, Min Liu, Yan Tu","doi":"10.1111/1440-1681.70002","DOIUrl":"10.1111/1440-1681.70002","url":null,"abstract":"<p>Myocardial fibrosis is a critical concern in clinical medicine. This study explores the potential of odoratin as a treatment for myocardial fibrosis and investigates its underlying mechanisms. In vitro experiments involved stimulating primary mouse cardiomyocytes with TGF-β1, followed by odoratin treatment, to assess levels of reactive oxygen species (ROS) and nitric oxide (NO). In vivo, a mouse model of myocardial fibrosis was established using abdominal aortic constriction (AAC) and treated with odoratin. ROS and NO levels in myocardial tissue were then evaluated. Immunofluorescence and Western blotting analysis showed that odoratin reduced excess ROS, enhanced NO production and decreased fibrosis-related protein expression in vitro. In vivo, odoratin significantly improved cardiac function, reduced ROS, increased NO levels and mitigated fibrosis in AAC-induced mice. Both in vitro and in vivo, odoratin inhibited the expression of NADPH oxidase 4 and EZH2, while promoting the expression of phosphorylated endothelial nitric oxide synthase (p-eNOS) and PPARγ. The anti-fibrotic effects of odoratin were reversed by PPARγ antagonism, and EZH2 overexpression diminished PPARγ activation by odoratin. These findings suggest that odoratin may combat myocardial fibrosis by balancing ROS and NO through PPARγ activation, with EZH2 inhibition likely playing a key regulatory role.</p>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"51 12","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142496167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}