Pub Date : 2024-10-01Epub Date: 2024-06-13DOI: 10.1007/s12311-024-01709-7
Igor Barcellos, Clint Hansen, Giovanna Klüppel Strobel, Johanna Geritz, Renato P Munhoz, Mariana Moscovich, Walter Maetzler, Hélio Afonso Ghizoni Teive
Given the high morbidity related to the progression of gait deficits in spinocerebellar ataxias (SCA), there is a growing interest in identifying biomarkers that can guide early diagnosis and rehabilitation. Spatiotemporal parameter (STP) gait analysis using inertial measurement units (IMUs) has been increasingly studied in this context. This study evaluated STP profiles in SCA types 3 and 10, compared them to controls, and correlated them with clinical scales. IMU portable sensors were used to measure STPs under four gait conditions: self-selected pace (SSP), fast pace (FP), fast pace checking-boxes (FPCB), and fast pace with serial seven subtractions (FPS7). Compared to healthy subjects, both SCA groups had higher values for step time, variability, and swing time, with lower values for gait speed, cadence, and step length. We also found a reduction in speed gain capacity in both SCA groups compared to controls and an increase in speed dual-task cost in the SCA10 group. However, there were no significant differences between the SCA groups. Swing time, mean speed, and step length were correlated with disease severity, risk of falling and functionality in both clinical groups. In the SCA3 group, fear of falling was correlated with cadence. In the SCA10 group, results of the Montreal cognitive assessment test were correlated with step time, mean speed, and step length. These results show that individuals with SCA3 and SCA10 present a highly variable, short-stepped, slow gait pattern compared to healthy subjects, and their gait quality worsened with a fast pace and dual-task involvement.
{"title":"Spatiotemporal Gait Analysis of Patients with Spinocerebellar Ataxia Types 3 and 10 Using Inertial Measurement Units: A Comparative Study.","authors":"Igor Barcellos, Clint Hansen, Giovanna Klüppel Strobel, Johanna Geritz, Renato P Munhoz, Mariana Moscovich, Walter Maetzler, Hélio Afonso Ghizoni Teive","doi":"10.1007/s12311-024-01709-7","DOIUrl":"10.1007/s12311-024-01709-7","url":null,"abstract":"<p><p>Given the high morbidity related to the progression of gait deficits in spinocerebellar ataxias (SCA), there is a growing interest in identifying biomarkers that can guide early diagnosis and rehabilitation. Spatiotemporal parameter (STP) gait analysis using inertial measurement units (IMUs) has been increasingly studied in this context. This study evaluated STP profiles in SCA types 3 and 10, compared them to controls, and correlated them with clinical scales. IMU portable sensors were used to measure STPs under four gait conditions: self-selected pace (SSP), fast pace (FP), fast pace checking-boxes (FPCB), and fast pace with serial seven subtractions (FPS7). Compared to healthy subjects, both SCA groups had higher values for step time, variability, and swing time, with lower values for gait speed, cadence, and step length. We also found a reduction in speed gain capacity in both SCA groups compared to controls and an increase in speed dual-task cost in the SCA10 group. However, there were no significant differences between the SCA groups. Swing time, mean speed, and step length were correlated with disease severity, risk of falling and functionality in both clinical groups. In the SCA3 group, fear of falling was correlated with cadence. In the SCA10 group, results of the Montreal cognitive assessment test were correlated with step time, mean speed, and step length. These results show that individuals with SCA3 and SCA10 present a highly variable, short-stepped, slow gait pattern compared to healthy subjects, and their gait quality worsened with a fast pace and dual-task involvement.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"2109-2121"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141312158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-04DOI: 10.1007/s12311-024-01670-5
Jessica A Bernard
The cerebellum is recognized as being important for optimal behavioral performance across task domains, including motor function, cognition, and affect. Decades of work have highlighted cerebello-thalamo-cortical circuits, from both structural and functional perspectives. However, these circuits of interest have been primarily (though not exclusively) focused on targets in the cerebral cortex. In addition to these cortical connections, the circuit linking the cerebellum and hippocampus is of particular interest. Recently, there has been an increased interest in this circuit, thanks in large part to novel findings in the animal literature demonstrating that neuronal firing in the cerebellum impacts that in the hippocampus. Work in the human brain has provided evidence for interactions between the cerebellum and hippocampus, though primarily this has been in the context of spatial navigation. Given the role of both regions in cognition and aging, and emerging evidence indicating that the cerebellum is impacted in age-related neurodegenerative disease such as Alzheimer's, I propose that further attention to this circuit is warranted. Here, I provide an overview of cerebello-hippocampal interactions in animal models and from human imaging and outline the possible utility of further investigations to improve our understanding of aging and age-related cognitive decline.
{"title":"Cerebello-Hippocampal Interactions in the Human Brain: A New Pathway for Insights Into Aging.","authors":"Jessica A Bernard","doi":"10.1007/s12311-024-01670-5","DOIUrl":"10.1007/s12311-024-01670-5","url":null,"abstract":"<p><p>The cerebellum is recognized as being important for optimal behavioral performance across task domains, including motor function, cognition, and affect. Decades of work have highlighted cerebello-thalamo-cortical circuits, from both structural and functional perspectives. However, these circuits of interest have been primarily (though not exclusively) focused on targets in the cerebral cortex. In addition to these cortical connections, the circuit linking the cerebellum and hippocampus is of particular interest. Recently, there has been an increased interest in this circuit, thanks in large part to novel findings in the animal literature demonstrating that neuronal firing in the cerebellum impacts that in the hippocampus. Work in the human brain has provided evidence for interactions between the cerebellum and hippocampus, though primarily this has been in the context of spatial navigation. Given the role of both regions in cognition and aging, and emerging evidence indicating that the cerebellum is impacted in age-related neurodegenerative disease such as Alzheimer's, I propose that further attention to this circuit is warranted. Here, I provide an overview of cerebello-hippocampal interactions in animal models and from human imaging and outline the possible utility of further investigations to improve our understanding of aging and age-related cognitive decline.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"2130-2141"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371944/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140029503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Substantial evidence highlights the role of the cerebellum in the pathophysiology of tremor in essential tremor (ET), although its potential involvement in altered movement execution in this condition remains unclear. This study aims to explore potential correlations between the cerebellum and basal ganglia functional connectivity and voluntary movement execution abnormalities in ET, objectively assessed with kinematic techniques. A total of 20 patients diagnosed with ET and 18 healthy subjects were enrolled in this study. Tremor and repetitive finger tapping were recorded using an optoelectronic kinematic system. All participants underwent comprehensive 3T-MRI examinations, including 3D-T1 and blood-oxygen-level dependent (BOLD) sequences during resting state. Morphometric analysis was conducted on the 3D-T1 images, while a seed-based analysis was performed to investigate the resting-state functional connectivity (rsFC) of dorsal and ventral portions of the dentate nucleus and the external and internal segments of the globus pallidus. Finally, potential correlations between rsFC alterations in patients and clinical as well as kinematic scores were assessed. Finger tapping movements were slower in ET than in healthy subjects. Compared to healthy subjects, patients with ET exhibited altered FC of both dentate and globus pallidus with cerebellar, basal ganglia, and cortical areas. Interestingly, both dentate and pallidal FC exhibited positive correlations with movement velocity in patients, differently from that we observed in healthy subjects, indicating the higher the FC, the faster the finger tapping. The findings of this study indicate the possible role of both cerebellum and basal ganglia in the pathophysiology of altered voluntary movement execution in patients with ET.
大量证据表明,小脑在震颤性震颤(ET)的病理生理学中扮演着重要角色,但其在该病症的运动执行改变中的潜在参与作用仍不清楚。本研究旨在探讨小脑和基底节功能连接与 ET 患者自主运动执行异常之间的潜在相关性,并通过运动学技术进行客观评估。本研究共纳入了 20 名确诊为 ET 的患者和 18 名健康受试者。研究人员使用光电运动学系统记录震颤和重复性手指敲击。所有参与者都接受了全面的 3T-MRI 检查,包括静息状态下的 3D-T1 和血氧水平依赖性(BOLD)序列。对 3D-T1 图像进行了形态计量分析,同时进行了基于种子的分析,以研究齿状核背侧和腹侧部分以及球状苍白球外部和内部节段的静息状态功能连接(rsFC)。最后,还评估了患者的rsFC改变与临床和运动学评分之间的潜在相关性。与健康受试者相比,ET 患者的手指敲击运动较慢。与健康受试者相比,ET患者的齿状核和球状苍白球与小脑、基底节和皮质区域的FC均有改变。有趣的是,患者的齿状核和苍白球FC与运动速度呈正相关,这与我们在健康人身上观察到的不同,表明FC越高,手指敲击的速度越快。这项研究的结果表明,小脑和基底神经节在 ET 患者自主运动执行能力改变的病理生理学中可能都扮演着重要角色。
{"title":"The Role of Cerebellum and Basal Ganglia Functional Connectivity in Altered Voluntary Movement Execution in Essential Tremor.","authors":"Massimiliano Passaretti, Claudia Piervincenzi, Viola Baione, Gabriele Pasqua, Donato Colella, Sara Pietracupa, Nikolaos Petsas, Luca Angelini, Antonio Cannavacciuolo, Giulia Paparella, Alfredo Berardelli, Patrizia Pantano, Matteo Bologna","doi":"10.1007/s12311-024-01699-6","DOIUrl":"10.1007/s12311-024-01699-6","url":null,"abstract":"<p><p>Substantial evidence highlights the role of the cerebellum in the pathophysiology of tremor in essential tremor (ET), although its potential involvement in altered movement execution in this condition remains unclear. This study aims to explore potential correlations between the cerebellum and basal ganglia functional connectivity and voluntary movement execution abnormalities in ET, objectively assessed with kinematic techniques. A total of 20 patients diagnosed with ET and 18 healthy subjects were enrolled in this study. Tremor and repetitive finger tapping were recorded using an optoelectronic kinematic system. All participants underwent comprehensive 3T-MRI examinations, including 3D-T1 and blood-oxygen-level dependent (BOLD) sequences during resting state. Morphometric analysis was conducted on the 3D-T1 images, while a seed-based analysis was performed to investigate the resting-state functional connectivity (rsFC) of dorsal and ventral portions of the dentate nucleus and the external and internal segments of the globus pallidus. Finally, potential correlations between rsFC alterations in patients and clinical as well as kinematic scores were assessed. Finger tapping movements were slower in ET than in healthy subjects. Compared to healthy subjects, patients with ET exhibited altered FC of both dentate and globus pallidus with cerebellar, basal ganglia, and cortical areas. Interestingly, both dentate and pallidal FC exhibited positive correlations with movement velocity in patients, differently from that we observed in healthy subjects, indicating the higher the FC, the faster the finger tapping. The findings of this study indicate the possible role of both cerebellum and basal ganglia in the pathophysiology of altered voluntary movement execution in patients with ET.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"2060-2081"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489212/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-23DOI: 10.1007/s12311-024-01706-w
Meike E van der Heijden
Evidence from clinical and preclinical studies has shown that the cerebellum contributes to cognitive functions, including social behaviors. Now that the cerebellum's role in a wider range of behaviors has been confirmed, the question arises whether the cerebellum contributes to social behaviors via the same mechanisms with which it modulates movements. This review seeks to answer whether the cerebellum guides motor and social behaviors through identical pathways. It focuses on studies in which cerebellar cells, synapses, or genes are manipulated in a cell-type specific manner followed by testing of the effects on social and motor behaviors. These studies show that both anatomically restricted and cerebellar cortex-wide manipulations can lead to social impairments without abnormal motor control, and vice versa. These studies suggest that the cerebellum employs different cellular, synaptic, and molecular pathways for social and motor behaviors. Future studies warrant a focus on the diverging mechanisms by which the cerebellum contributes to a wide range of neural functions.
{"title":"Converging and Diverging Cerebellar Pathways for Motor and Social Behaviors in Mice.","authors":"Meike E van der Heijden","doi":"10.1007/s12311-024-01706-w","DOIUrl":"10.1007/s12311-024-01706-w","url":null,"abstract":"<p><p>Evidence from clinical and preclinical studies has shown that the cerebellum contributes to cognitive functions, including social behaviors. Now that the cerebellum's role in a wider range of behaviors has been confirmed, the question arises whether the cerebellum contributes to social behaviors via the same mechanisms with which it modulates movements. This review seeks to answer whether the cerebellum guides motor and social behaviors through identical pathways. It focuses on studies in which cerebellar cells, synapses, or genes are manipulated in a cell-type specific manner followed by testing of the effects on social and motor behaviors. These studies show that both anatomically restricted and cerebellar cortex-wide manipulations can lead to social impairments without abnormal motor control, and vice versa. These studies suggest that the cerebellum employs different cellular, synaptic, and molecular pathways for social and motor behaviors. Future studies warrant a focus on the diverging mechanisms by which the cerebellum contributes to a wide range of neural functions.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"1754-1767"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489171/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141080899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-03DOI: 10.1007/s12311-024-01698-7
Ju-Young Lee, So-Yeon Yun, Yu-Jin Koo, Jung-Mi Song, Hyo-Jung Kim, Jeong-Yoon Choi, Ji-Soo Kim
Two vestibular signals, rotational and inertial cues, converge for the perception of complex motion. However, how vestibular perception is built on neuronal behaviors and decision-making processes, especially during the simultaneous presentation of rotational and inertial cues, has yet to be elucidated in humans. In this study, we analyzed the perceptual responses of 20 participants after pairwise rotational experiments, comprised of four control and four test sessions. In both control and test sessions, participants underwent clockwise and counterclockwise rotations in head-down and head-up positions. The difference between the control and test sessions was the head re-orientation relative to gravity after rotations, thereby providing only rotational cues in the control sessions and both rotational and inertial cues in the test sessions. The accuracy of perceptual responses was calculated by comparing the direction of rotational and inertial cues acquired from participants with that predicted by the velocity-storage model. The results showed that the accuracy of rotational perception ranged from 80 to 95% in the four control sessions but significantly decreased to 35 to 75% in the four test sessions. The accuracy of inertial perception in the test sessions ranged from 50 to 70%. The accuracy of rotational perception improved with repetitive exposure to the simultaneous presentation of both rotational and inertial cues, while the accuracy of inertial perception remained steady. The results suggested a significant interaction between rotational and inertial perception and implied that vestibular perception acquired in patients with vestibular disorders are potentially inaccurate.
{"title":"Disrupted Rotational Perception During Simultaneous Stimulation of Rotation and Inertia.","authors":"Ju-Young Lee, So-Yeon Yun, Yu-Jin Koo, Jung-Mi Song, Hyo-Jung Kim, Jeong-Yoon Choi, Ji-Soo Kim","doi":"10.1007/s12311-024-01698-7","DOIUrl":"10.1007/s12311-024-01698-7","url":null,"abstract":"<p><p>Two vestibular signals, rotational and inertial cues, converge for the perception of complex motion. However, how vestibular perception is built on neuronal behaviors and decision-making processes, especially during the simultaneous presentation of rotational and inertial cues, has yet to be elucidated in humans. In this study, we analyzed the perceptual responses of 20 participants after pairwise rotational experiments, comprised of four control and four test sessions. In both control and test sessions, participants underwent clockwise and counterclockwise rotations in head-down and head-up positions. The difference between the control and test sessions was the head re-orientation relative to gravity after rotations, thereby providing only rotational cues in the control sessions and both rotational and inertial cues in the test sessions. The accuracy of perceptual responses was calculated by comparing the direction of rotational and inertial cues acquired from participants with that predicted by the velocity-storage model. The results showed that the accuracy of rotational perception ranged from 80 to 95% in the four control sessions but significantly decreased to 35 to 75% in the four test sessions. The accuracy of inertial perception in the test sessions ranged from 50 to 70%. The accuracy of rotational perception improved with repetitive exposure to the simultaneous presentation of both rotational and inertial cues, while the accuracy of inertial perception remained steady. The results suggested a significant interaction between rotational and inertial perception and implied that vestibular perception acquired in patients with vestibular disorders are potentially inaccurate.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"2003-2011"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140870954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-02DOI: 10.1007/s12311-024-01671-4
Jiayin Wang, Yan Lin, Zhihong Xu, Chuanzhu Yan, Yuying Zhao, Kunqian Ji
COQ8A plays an important role in the biosynthesis of coenzyme Q10 (CoQ10), and variations in COQ8A gene are associated with primary CoQ10 deficiency-4 (COQ10D4), also known as COQ8A-ataxia. The current understanding of the association between the specific variant type, the severity of CoQ10 deficiency, and the degree of oxidative stress in individuals with primary CoQ10 deficiencies remains uncertain. Here we provide a comprehensive analysis of the clinical and genetic characteristics of an 18-year-old patient with COQ8A-ataxia, who exhibited novel compound heterozygous variants (c.1904_1906del and c.637C > T) in the COQ8A gene. These variants reduced the expression levels of COQ8A and mitochondrial proteins in the patient's muscle and skin fibroblast samples, contributed to mitochondrial respiration deficiency, increased ROS production and altered mitochondrial membrane potential. It is worth noting that the optimal treatment for COQ8A-ataxia remains uncertain. Presently, therapy consists of CoQ10 supplementation, however, it did not yield significant improvement in our patient's symptoms. Additionally, we reviewed the response of CoQ10 supplementation and evolution of patients in previous literatures in detail. We found that only half of patients could got notable improvement in ataxia. This research aims to expand the genotype-phenotype spectrum of COQ10D4, address discrepancies in previous reviews regarding the effectiveness of CoQ10 in these disorders, and help to establish a standardized treatment protocol for COQ8A-ataxia.
{"title":"Mitochondrial Dysfunction due to Novel COQ8A Variation with Poor Response to CoQ10 Treatment: A Comprehensive Study and Review of Literatures.","authors":"Jiayin Wang, Yan Lin, Zhihong Xu, Chuanzhu Yan, Yuying Zhao, Kunqian Ji","doi":"10.1007/s12311-024-01671-4","DOIUrl":"10.1007/s12311-024-01671-4","url":null,"abstract":"<p><p>COQ8A plays an important role in the biosynthesis of coenzyme Q10 (CoQ10), and variations in COQ8A gene are associated with primary CoQ10 deficiency-4 (COQ10D4), also known as COQ8A-ataxia. The current understanding of the association between the specific variant type, the severity of CoQ10 deficiency, and the degree of oxidative stress in individuals with primary CoQ10 deficiencies remains uncertain. Here we provide a comprehensive analysis of the clinical and genetic characteristics of an 18-year-old patient with COQ8A-ataxia, who exhibited novel compound heterozygous variants (c.1904_1906del and c.637C > T) in the COQ8A gene. These variants reduced the expression levels of COQ8A and mitochondrial proteins in the patient's muscle and skin fibroblast samples, contributed to mitochondrial respiration deficiency, increased ROS production and altered mitochondrial membrane potential. It is worth noting that the optimal treatment for COQ8A-ataxia remains uncertain. Presently, therapy consists of CoQ10 supplementation, however, it did not yield significant improvement in our patient's symptoms. Additionally, we reviewed the response of CoQ10 supplementation and evolution of patients in previous literatures in detail. We found that only half of patients could got notable improvement in ataxia. This research aims to expand the genotype-phenotype spectrum of COQ10D4, address discrepancies in previous reviews regarding the effectiveness of CoQ10 in these disorders, and help to establish a standardized treatment protocol for COQ8A-ataxia.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"1824-1838"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140013633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-07DOI: 10.1007/s12311-024-01675-0
Adam P Vogel, Caroline Spencer, Katie Burke, Daniella de Bruyn, Peter Gibilisco, Scott Blackman, Jennifer M Vojtech, Thayabaran Kathiresan
The progression of multisystem neurodegenerative diseases such as ataxia significantly impacts speech and communication, necessitating adaptive clinical care strategies. With the deterioration of speech, Alternative and Augmentative Communication (AAC) can play an ever increasing role in daily life for individuals with ataxia. This review describes the spectrum of AAC resources available, ranging from unaided gestures and sign language to high-tech solutions like speech-generating devices (SGDs) and eye-tracking technology. Despite the availability of various AAC tools, their efficacy is often compromised by the physical limitations inherent in ataxia, including upper limb ataxia and visual disturbances. Traditional speech-to-text algorithms and eye gaze technology face challenges in accuracy and efficiency due to the atypical speech and movement patterns associated with the disease.In addressing these challenges, maintaining existing speech abilities through rehabilitation is prioritized, complemented by advances in digital therapeutics to provide home-based treatments. Simultaneously, projects incorporating AI driven solutions aim to enhance the intelligibility of dysarthric speech through improved speech-to-text accuracy.This review discusses the complex needs assessment for AAC in ataxia, emphasizing the dynamic nature of the disease and the importance of regular reassessment to tailor communication strategies to the changing abilities of the individual. It also highlights the necessity of multidisciplinary involvement for effective AAC assessment and intervention. The future of AAC looks promising with developments in brain-computer interfaces and the potential of voice banking, although their application in ataxia requires further exploration.
{"title":"Optimizing Communication in Ataxia: A Multifaceted Approach to Alternative and Augmentative Communication (AAC).","authors":"Adam P Vogel, Caroline Spencer, Katie Burke, Daniella de Bruyn, Peter Gibilisco, Scott Blackman, Jennifer M Vojtech, Thayabaran Kathiresan","doi":"10.1007/s12311-024-01675-0","DOIUrl":"10.1007/s12311-024-01675-0","url":null,"abstract":"<p><p>The progression of multisystem neurodegenerative diseases such as ataxia significantly impacts speech and communication, necessitating adaptive clinical care strategies. With the deterioration of speech, Alternative and Augmentative Communication (AAC) can play an ever increasing role in daily life for individuals with ataxia. This review describes the spectrum of AAC resources available, ranging from unaided gestures and sign language to high-tech solutions like speech-generating devices (SGDs) and eye-tracking technology. Despite the availability of various AAC tools, their efficacy is often compromised by the physical limitations inherent in ataxia, including upper limb ataxia and visual disturbances. Traditional speech-to-text algorithms and eye gaze technology face challenges in accuracy and efficiency due to the atypical speech and movement patterns associated with the disease.In addressing these challenges, maintaining existing speech abilities through rehabilitation is prioritized, complemented by advances in digital therapeutics to provide home-based treatments. Simultaneously, projects incorporating AI driven solutions aim to enhance the intelligibility of dysarthric speech through improved speech-to-text accuracy.This review discusses the complex needs assessment for AAC in ataxia, emphasizing the dynamic nature of the disease and the importance of regular reassessment to tailor communication strategies to the changing abilities of the individual. It also highlights the necessity of multidisciplinary involvement for effective AAC assessment and intervention. The future of AAC looks promising with developments in brain-computer interfaces and the potential of voice banking, although their application in ataxia requires further exploration.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"2142-2151"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11489254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140050933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-04-01DOI: 10.1007/s12311-024-01689-8
Xia Liu, Lin Zhang, Hao-Lin Xu, Xia-Hua Liu, Arif Sikandar, Meng-Cheng Li, Xiao-Yue Xia, Zi-Qiang Huang, Na-Ping Chen, Yu-Qing Tu, Jian-Ping Hu, Shi-Rui Gan, Qun-Lin Chen, Xin-Yuan Chen, Shi-Zhong Wang
Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuroregulatory technique used to treat neurodegenerative diseases, holds promise for spinocerebellar ataxia type 3 (SCA3) treatment, although its efficacy and mechanisms remain unclear. This study aims to observe the short-term impact of cerebellar rTMS on motor function in SCA3 patients and utilize resting-state functional magnetic resonance imaging (RS-fMRI) to assess potential therapeutic mechanisms. Twenty-two SCA3 patients were randomly assigned to receive actual rTMS (AC group, n = 11, three men and eight women; age 32-55 years) or sham rTMS (SH group, n = 11, three men and eight women; age 26-58 years). Both groups underwent cerebellar rTMS or sham rTMS daily for 15 days. The primary outcome measured was the ICARS scores and parameters for regional brain activity. Compared to baseline, ICARS scores decreased more significantly in the AC group than in the SH group after the 15-day intervention. Imaging indicators revealed increased Amplitude of Low Frequency Fluctuation (ALFF) values in the posterior cerebellar lobe and cerebellar tonsil following AC stimulation. This study suggests that rTMS enhances motor functions in SCA3 patients by modulating the excitability of specific brain regions and associated pathways, reinforcing the potential clinical utility of rTMS in SCA3 treatment. The Chinese Clinical Trial Registry identifier is ChiCTR1800020133.
{"title":"Effect of Regional Brain Activity Following Repeat Transcranial Magnetic Stimulation in SCA3: A Secondary Analysis of a Randomized Clinical Trial.","authors":"Xia Liu, Lin Zhang, Hao-Lin Xu, Xia-Hua Liu, Arif Sikandar, Meng-Cheng Li, Xiao-Yue Xia, Zi-Qiang Huang, Na-Ping Chen, Yu-Qing Tu, Jian-Ping Hu, Shi-Rui Gan, Qun-Lin Chen, Xin-Yuan Chen, Shi-Zhong Wang","doi":"10.1007/s12311-024-01689-8","DOIUrl":"10.1007/s12311-024-01689-8","url":null,"abstract":"<p><p>Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuroregulatory technique used to treat neurodegenerative diseases, holds promise for spinocerebellar ataxia type 3 (SCA3) treatment, although its efficacy and mechanisms remain unclear. This study aims to observe the short-term impact of cerebellar rTMS on motor function in SCA3 patients and utilize resting-state functional magnetic resonance imaging (RS-fMRI) to assess potential therapeutic mechanisms. Twenty-two SCA3 patients were randomly assigned to receive actual rTMS (AC group, n = 11, three men and eight women; age 32-55 years) or sham rTMS (SH group, n = 11, three men and eight women; age 26-58 years). Both groups underwent cerebellar rTMS or sham rTMS daily for 15 days. The primary outcome measured was the ICARS scores and parameters for regional brain activity. Compared to baseline, ICARS scores decreased more significantly in the AC group than in the SH group after the 15-day intervention. Imaging indicators revealed increased Amplitude of Low Frequency Fluctuation (ALFF) values in the posterior cerebellar lobe and cerebellar tonsil following AC stimulation. This study suggests that rTMS enhances motor functions in SCA3 patients by modulating the excitability of specific brain regions and associated pathways, reinforcing the potential clinical utility of rTMS in SCA3 treatment. The Chinese Clinical Trial Registry identifier is ChiCTR1800020133.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"1923-1931"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140337594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proprioception from muscle spindles is necessary for motor function executed by the cerebellum. In particular, cerebellar nuclear neurons that receive proprioceptive signals and send projections to the lower brainstem or spinal cord play key roles in motor control. However, little is known about which cerebellar nuclear regions receive orofacial proprioception. Here, we investigated projections to the cerebellar nuclei from the supratrigeminal nucleus (Su5), which conveys the orofacial proprioception arising from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 resulted in a large number of labeled axon terminals bilaterally in the dorsolateral hump (IntDL) of the cerebellar interposed nucleus (Int) and the dorsolateral protuberance (MedDL) of the cerebellar medial nucleus. In addition, a moderate number of axon terminals were ipsilaterally labeled in the vestibular group Y nucleus (group Y). We electrophysiologically detected JCMS proprioceptive signals in the IntDL and MedDL. Retrograde tracing analysis confirmed bilateral projections from the Su5 to the IntDL and MedDL. Furthermore, anterograde tracer injections into the external cuneate nucleus (ECu), which receives other proprioceptive input from forelimb/neck muscles, resulted in only a limited number of ipsilaterally labeled terminals, mainly in the dorsomedial crest of the Int and the group Y. Taken together, the Su5 and ECu axons almost separately terminated in the cerebellar nuclei (except for partial overlap in the group Y). These data suggest that orofacial proprioception is differently processed in the cerebellar circuits in comparison to other body-part proprioception, thus contributing to the executive function of orofacial motor control.
{"title":"Cerebellar Nuclei Receiving Orofacial Proprioceptive Signals through the Mossy Fiber Pathway from the Supratrigeminal Nucleus in Rats.","authors":"Yumi Tsutsumi, Yayoi Morita, Fumihiko Sato, Takahiro Furuta, Katsuro Uchino, Jaerin Sohn, Tahsinul Haque, Yong Chul Bae, Hitoshi Niwa, Yoshihisa Tachibana, Atsushi Yoshida","doi":"10.1007/s12311-023-01602-9","DOIUrl":"10.1007/s12311-023-01602-9","url":null,"abstract":"<p><p>Proprioception from muscle spindles is necessary for motor function executed by the cerebellum. In particular, cerebellar nuclear neurons that receive proprioceptive signals and send projections to the lower brainstem or spinal cord play key roles in motor control. However, little is known about which cerebellar nuclear regions receive orofacial proprioception. Here, we investigated projections to the cerebellar nuclei from the supratrigeminal nucleus (Su5), which conveys the orofacial proprioception arising from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 resulted in a large number of labeled axon terminals bilaterally in the dorsolateral hump (IntDL) of the cerebellar interposed nucleus (Int) and the dorsolateral protuberance (MedDL) of the cerebellar medial nucleus. In addition, a moderate number of axon terminals were ipsilaterally labeled in the vestibular group Y nucleus (group Y). We electrophysiologically detected JCMS proprioceptive signals in the IntDL and MedDL. Retrograde tracing analysis confirmed bilateral projections from the Su5 to the IntDL and MedDL. Furthermore, anterograde tracer injections into the external cuneate nucleus (ECu), which receives other proprioceptive input from forelimb/neck muscles, resulted in only a limited number of ipsilaterally labeled terminals, mainly in the dorsomedial crest of the Int and the group Y. Taken together, the Su5 and ECu axons almost separately terminated in the cerebellar nuclei (except for partial overlap in the group Y). These data suggest that orofacial proprioception is differently processed in the cerebellar circuits in comparison to other body-part proprioception, thus contributing to the executive function of orofacial motor control.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"1795-1810"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10184603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2023-10-13DOI: 10.1007/s12311-023-01617-2
Carlo Alberto Cesaroni, Giulia Pisanò, Gabriele Trimarchi, Stefano Giuseppe Caraffi, Giulia Scandolo, Martina Gnazzo, Daniele Frattini, Carlotta Spagnoli, Susanna Rizzi, Claudia Dittadi, Giulia Sigona, Livia Garavelli, Carlo Fusco
Autosomal recessive spinocerebellar ataxia 13 (SCAR13) is a neurological disease characterized by psychomotor delay, mild to profound intellectual disability with poor or absent language, nystagmus, stance ataxia, and, if walking is acquired, gait ataxia. Epilepsy and polyneuropathy have also been documented in some patients. Cerebellar atrophy and/or ventriculomegaly may be present on brain MRI. SCAR13 is caused by pathogenic variants in the GRM1 gene encoding the metabotropic receptor of glutamate type 1 (mGlur1), which is highly expressed in Purkinje cerebellar cells, where it plays a fundamental role in cerebellar development. Here we discuss the case of an 8-year-old patient who presented with a severe neurodevelopmental disorder with balance disturbance, absence of independent walking, absence of language, diffuse hypotonia, mild nystagmus, and mild dysphagia. Whole-exome sequencing revealed a compound heterozygosity for two likely pathogenic variants in the GRM1 gene, responsible for the patient's phenotype, and made it possible to diagnose autosomal recessive spinocerebellar ataxia SCAR13. The detected (novel) variants appear to be causative of a particularly severe picture with regard to neurodevelopment, in the context of the typical neurological signs of spinocerebellar ataxia.
{"title":"Severe Neurodevelopmental Disorder in Autosomal Recessive Spinocerebellar Ataxia 13 (SCAR13) Caused by Two Novel Frameshift Variants in GRM1.","authors":"Carlo Alberto Cesaroni, Giulia Pisanò, Gabriele Trimarchi, Stefano Giuseppe Caraffi, Giulia Scandolo, Martina Gnazzo, Daniele Frattini, Carlotta Spagnoli, Susanna Rizzi, Claudia Dittadi, Giulia Sigona, Livia Garavelli, Carlo Fusco","doi":"10.1007/s12311-023-01617-2","DOIUrl":"10.1007/s12311-023-01617-2","url":null,"abstract":"<p><p>Autosomal recessive spinocerebellar ataxia 13 (SCAR13) is a neurological disease characterized by psychomotor delay, mild to profound intellectual disability with poor or absent language, nystagmus, stance ataxia, and, if walking is acquired, gait ataxia. Epilepsy and polyneuropathy have also been documented in some patients. Cerebellar atrophy and/or ventriculomegaly may be present on brain MRI. SCAR13 is caused by pathogenic variants in the GRM1 gene encoding the metabotropic receptor of glutamate type 1 (mGlur1), which is highly expressed in Purkinje cerebellar cells, where it plays a fundamental role in cerebellar development. Here we discuss the case of an 8-year-old patient who presented with a severe neurodevelopmental disorder with balance disturbance, absence of independent walking, absence of language, diffuse hypotonia, mild nystagmus, and mild dysphagia. Whole-exome sequencing revealed a compound heterozygosity for two likely pathogenic variants in the GRM1 gene, responsible for the patient's phenotype, and made it possible to diagnose autosomal recessive spinocerebellar ataxia SCAR13. The detected (novel) variants appear to be causative of a particularly severe picture with regard to neurodevelopment, in the context of the typical neurological signs of spinocerebellar ataxia.</p>","PeriodicalId":50706,"journal":{"name":"Cerebellum","volume":" ","pages":"1768-1771"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}