Pub Date : 2024-01-24DOI: 10.1146/annurev-pathmechdis-051222-015009
Alejandra Aroca-Crevillén, Tommaso Vicanolo, Samuel Ovadia, Andrés Hidalgo
Infections, cardiovascular disease, and cancer are major causes of disease and death worldwide. Neutrophils are inescapably associated with each of these health concerns, by either protecting from, instigating, or aggravating their impact on the host. However, each of these disorders has a very different etiology, and understanding how neutrophils contribute to each of them requires understanding the intricacies of this immune cell type, including their immune and nonimmune contributions to physiology and pathology. Here, we review some of these intricacies, from basic concepts in neutrophil biology, such as their production and acquisition of functional diversity, to the variety of mechanisms by which they contribute to preventing or aggravating infections, cardiovascular events, and cancer. We also review poorly explored aspects of how neutrophils promote health by favoring tissue repair and discuss how discoveries about their basic biology inform the development of new therapeutic strategies.
{"title":"Neutrophils in Physiology and Pathology.","authors":"Alejandra Aroca-Crevillén, Tommaso Vicanolo, Samuel Ovadia, Andrés Hidalgo","doi":"10.1146/annurev-pathmechdis-051222-015009","DOIUrl":"10.1146/annurev-pathmechdis-051222-015009","url":null,"abstract":"<p><p>Infections, cardiovascular disease, and cancer are major causes of disease and death worldwide. Neutrophils are inescapably associated with each of these health concerns, by either protecting from, instigating, or aggravating their impact on the host. However, each of these disorders has a very different etiology, and understanding how neutrophils contribute to each of them requires understanding the intricacies of this immune cell type, including their immune and nonimmune contributions to physiology and pathology. Here, we review some of these intricacies, from basic concepts in neutrophil biology, such as their production and acquisition of functional diversity, to the variety of mechanisms by which they contribute to preventing or aggravating infections, cardiovascular events, and cancer. We also review poorly explored aspects of how neutrophils promote health by favoring tissue repair and discuss how discoveries about their basic biology inform the development of new therapeutic strategies.</p>","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":"19 ","pages":"227-259"},"PeriodicalIF":36.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11060889/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139547577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24Epub Date: 2023-10-23DOI: 10.1146/annurev-pathmechdis-051222-121126
Carlos R Ferreira, Thomas O Carpenter, Demetrios T Braddock
The enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein that hydrolyzes extracellular ATP to generate pyrophosphate (PPi) and adenosine monophosphate, thereby contributing to downstream purinergic signaling pathways. The clinical phenotypes induced by ENPP1 deficiency are seemingly contradictory and include early-onset osteoporosis in middle-aged adults and life-threatening vascular calcifications in the large arteries of infants with generalized arterial calcification of infancy. The progressive overmineralization of soft tissue and concurrent undermineralization of skeleton also occur in the general medical population, where it is referred to as paradoxical mineralization to highlight the confusing pathophysiology. This review summarizes the clinical presentation and pathophysiology of paradoxical mineralization unveiled by ENPP1 deficiency and the bench-to-bedside development of a novel ENPP1 biologics designed to treat mineralization disorders in the rare disease and general medical population.
{"title":"ENPP1 in Blood and Bone: Skeletal and Soft Tissue Diseases Induced by ENPP1 Deficiency.","authors":"Carlos R Ferreira, Thomas O Carpenter, Demetrios T Braddock","doi":"10.1146/annurev-pathmechdis-051222-121126","DOIUrl":"10.1146/annurev-pathmechdis-051222-121126","url":null,"abstract":"<p><p>The enzyme ectonucleotide pyrophosphatase/phosphodiesterase 1 (<i>ENPP1</i>) codes for a type 2 transmembrane glycoprotein that hydrolyzes extracellular ATP to generate pyrophosphate (PP<sub>i</sub>) and adenosine monophosphate, thereby contributing to downstream purinergic signaling pathways. The clinical phenotypes induced by ENPP1 deficiency are seemingly contradictory and include early-onset osteoporosis in middle-aged adults and life-threatening vascular calcifications in the large arteries of infants with generalized arterial calcification of infancy. The progressive overmineralization of soft tissue and concurrent undermineralization of skeleton also occur in the general medical population, where it is referred to as paradoxical mineralization to highlight the confusing pathophysiology. This review summarizes the clinical presentation and pathophysiology of paradoxical mineralization unveiled by ENPP1 deficiency and the bench-to-bedside development of a novel ENPP1 biologics designed to treat mineralization disorders in the rare disease and general medical population.</p>","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":" ","pages":"507-540"},"PeriodicalIF":36.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11062289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49693604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24DOI: 10.1146/annurev-pathmechdis-031521-025623
Harry Sutton, Saul J Karpen, Binita M Kamath
Cholestasis is the predominate feature of many pediatric hepatobiliary diseases. The physiologic flow of bile requires multiple complex processes working in concert. Bile acid (BA) synthesis and excretion, the formation and flow of bile, and the enterohepatic reuptake of BAs all function to maintain the circulation of BAs, a key molecule in lipid digestion, metabolic and cellular signaling, and, as discussed in the review, a crucial mediator in the pathogenesis of cholestasis. Disruption of one or several of these steps can result in the accumulation of toxic BAs in bile ducts and hepatocytes leading to inflammation, fibrosis, and, over time, biliary and hepatic cirrhosis. Biliary atresia, progressive familial intrahepatic cholestasis, primary sclerosing cholangitis, and Alagille syndrome are four of the most common pediatric cholestatic conditions. Through understanding the commonalities and differences in these diseases, the important cellular mechanistic underpinnings of cholestasis can be greater appreciated.
{"title":"Pediatric Cholestatic Diseases: Common and Unique Pathogenic Mechanisms.","authors":"Harry Sutton, Saul J Karpen, Binita M Kamath","doi":"10.1146/annurev-pathmechdis-031521-025623","DOIUrl":"10.1146/annurev-pathmechdis-031521-025623","url":null,"abstract":"<p><p>Cholestasis is the predominate feature of many pediatric hepatobiliary diseases. The physiologic flow of bile requires multiple complex processes working in concert. Bile acid (BA) synthesis and excretion, the formation and flow of bile, and the enterohepatic reuptake of BAs all function to maintain the circulation of BAs, a key molecule in lipid digestion, metabolic and cellular signaling, and, as discussed in the review, a crucial mediator in the pathogenesis of cholestasis. Disruption of one or several of these steps can result in the accumulation of toxic BAs in bile ducts and hepatocytes leading to inflammation, fibrosis, and, over time, biliary and hepatic cirrhosis. Biliary atresia, progressive familial intrahepatic cholestasis, primary sclerosing cholangitis, and Alagille syndrome are four of the most common pediatric cholestatic conditions. Through understanding the commonalities and differences in these diseases, the important cellular mechanistic underpinnings of cholestasis can be greater appreciated.</p>","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":"19 ","pages":"319-344"},"PeriodicalIF":28.4,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139547579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24Epub Date: 2023-09-22DOI: 10.1146/annurev-pathmechdis-031521-042754
Katharina Röltgen, Scott D Boyd
As the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell-mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.
{"title":"Antibody and B Cell Responses to SARS-CoV-2 Infection and Vaccination: The End of the Beginning.","authors":"Katharina Röltgen, Scott D Boyd","doi":"10.1146/annurev-pathmechdis-031521-042754","DOIUrl":"10.1146/annurev-pathmechdis-031521-042754","url":null,"abstract":"<p><p>As the COVID-19 pandemic has evolved during the past years, interactions between human immune systems, rapidly mutating and selected SARS-CoV-2 viral variants, and effective vaccines have complicated the landscape of individual immunological histories. Here, we review some key findings for antibody and B cell-mediated immunity, including responses to the highly mutated omicron variants; immunological imprinting and other impacts of successive viral antigenic variant exposures on antibody and B cell memory; responses in secondary lymphoid and mucosal tissues and non-neutralizing antibody-mediated immunity; responses in populations vulnerable to severe disease such as those with cancer, immunodeficiencies, and other comorbidities, as well as populations showing apparent resistance to severe disease such as many African populations; and evidence of antibody involvement in postacute sequelae of infection or long COVID. Despite the initial phase of the pandemic ending, human populations will continue to face challenges presented by this unpredictable virus.</p>","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":" ","pages":"69-97"},"PeriodicalIF":36.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41158606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24Epub Date: 2023-09-22DOI: 10.1146/annurev-pathmechdis-051122-110756
Mirja Thomsen, Lara M Lange, Michael Zech, Katja Lohmann
Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., KMT2B, THAP1), calcium homeostasis (e.g., ANO3, HPCA), striatal dopamine signaling (e.g., GNAL), endoplasmic reticulum stress response (e.g., EIF2AK2, PRKRA, TOR1A), autophagy (e.g., VPS16), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.
{"title":"Genetics and Pathogenesis of Dystonia.","authors":"Mirja Thomsen, Lara M Lange, Michael Zech, Katja Lohmann","doi":"10.1146/annurev-pathmechdis-051122-110756","DOIUrl":"10.1146/annurev-pathmechdis-051122-110756","url":null,"abstract":"<p><p>Dystonia is a clinically and genetically highly heterogeneous neurological disorder characterized by abnormal movements and postures caused by involuntary sustained or intermittent muscle contractions. A number of groundbreaking genetic and molecular insights have recently been gained. While they enable genetic testing and counseling, their translation into new therapies is still limited. However, we are beginning to understand shared pathophysiological pathways and molecular mechanisms. It has become clear that dystonia results from a dysfunctional network involving the basal ganglia, cerebellum, thalamus, and cortex. On the molecular level, more than a handful of, often intertwined, pathways have been linked to pathogenic variants in dystonia genes, including gene transcription during neurodevelopment (e.g., <i>KMT2B</i>, <i>THAP1</i>), calcium homeostasis (e.g., <i>ANO3</i>, <i>HPCA</i>), striatal dopamine signaling (e.g., <i>GNAL</i>), endoplasmic reticulum stress response (e.g., <i>EIF2AK2</i>, <i>PRKRA</i>, <i>TOR1A</i>), autophagy (e.g., <i>VPS16</i>), and others. Thus, different forms of dystonia can be molecularly grouped, which may facilitate treatment development in the future.</p>","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":" ","pages":"99-131"},"PeriodicalIF":36.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41123252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24Epub Date: 2023-10-13DOI: 10.1146/annurev-pathmechdis-031621-025610
Ben Z Stanger, Geoffrey M Wahl
In the 160 years since Rudolf Virchow first postulated that neoplasia arises by the same law that regulates embryonic development, scientists have come to recognize the striking overlap between the molecular and cellular programs used by cancers and embryos. Advances in cancer biology and molecular techniques have further highlighted the similarities between carcinogenesis and embryogenesis, where cellular growth, differentiation, motility, and intercellular cross talk are mediated by common drivers and regulatory networks. This review highlights the many connections linking cancer biology and developmental biology to provide a deeper understanding of how a tissue's developmental history may both enable and constrain cancer cell evolution.
Rudolf Virchow首次假设肿瘤是由调节胚胎发育的同一定律引起的,在这160年里,科学家们已经认识到癌症和胚胎所使用的分子和细胞程序之间的惊人重叠。癌症生物学和分子技术的进展进一步突出了致癌作用和胚胎发生之间的相似性,其中细胞生长、分化、运动和细胞间串扰是由共同的驱动因素和调节网络介导的。这篇综述强调了癌症生物学和发育生物学之间的许多联系,以更深入地了解组织的发育史如何既能促进又能限制癌症细胞的进化。《病理学年度评论:疾病机制》第19卷预计最终在线出版日期为2024年1月。请参阅http://www.annualreviews.org/page/journal/pubdates用于修订估算。
{"title":"Cancer as a Disease of Development Gone Awry.","authors":"Ben Z Stanger, Geoffrey M Wahl","doi":"10.1146/annurev-pathmechdis-031621-025610","DOIUrl":"10.1146/annurev-pathmechdis-031621-025610","url":null,"abstract":"<p><p>In the 160 years since Rudolf Virchow first postulated that neoplasia arises by the same law that regulates embryonic development, scientists have come to recognize the striking overlap between the molecular and cellular programs used by cancers and embryos. Advances in cancer biology and molecular techniques have further highlighted the similarities between carcinogenesis and embryogenesis, where cellular growth, differentiation, motility, and intercellular cross talk are mediated by common drivers and regulatory networks. This review highlights the many connections linking cancer biology and developmental biology to provide a deeper understanding of how a tissue's developmental history may both enable and constrain cancer cell evolution.</p>","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":" ","pages":"397-421"},"PeriodicalIF":28.4,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24Epub Date: 2023-10-23DOI: 10.1146/annurev-pathmechdis-051222-113147
Frederick Klauschen, Jonas Dippel, Philipp Keyl, Philipp Jurmeister, Michael Bockmayr, Andreas Mock, Oliver Buchstab, Maximilian Alber, Lukas Ruff, Grégoire Montavon, Klaus-Robert Müller
The rapid development of precision medicine in recent years has started to challenge diagnostic pathology with respect to its ability to analyze histological images and increasingly large molecular profiling data in a quantitative, integrative, and standardized way. Artificial intelligence (AI) and, more precisely, deep learning technologies have recently demonstrated the potential to facilitate complex data analysis tasks, including clinical, histological, and molecular data for disease classification; tissue biomarker quantification; and clinical outcome prediction. This review provides a general introduction to AI and describes recent developments with a focus on applications in diagnostic pathology and beyond. We explain limitations including the black-box character of conventional AI and describe solutions to make machine learning decisions more transparent with so-called explainable AI. The purpose of the review is to foster a mutual understanding of both the biomedical and the AI side. To that end, in addition to providing an overview of the relevant foundations in pathology and machine learning, we present worked-through examples for a better practical understanding of what AI can achieve and how it should be done.
{"title":"Toward Explainable Artificial Intelligence for Precision Pathology.","authors":"Frederick Klauschen, Jonas Dippel, Philipp Keyl, Philipp Jurmeister, Michael Bockmayr, Andreas Mock, Oliver Buchstab, Maximilian Alber, Lukas Ruff, Grégoire Montavon, Klaus-Robert Müller","doi":"10.1146/annurev-pathmechdis-051222-113147","DOIUrl":"10.1146/annurev-pathmechdis-051222-113147","url":null,"abstract":"<p><p>The rapid development of precision medicine in recent years has started to challenge diagnostic pathology with respect to its ability to analyze histological images and increasingly large molecular profiling data in a quantitative, integrative, and standardized way. Artificial intelligence (AI) and, more precisely, deep learning technologies have recently demonstrated the potential to facilitate complex data analysis tasks, including clinical, histological, and molecular data for disease classification; tissue biomarker quantification; and clinical outcome prediction. This review provides a general introduction to AI and describes recent developments with a focus on applications in diagnostic pathology and beyond. We explain limitations including the black-box character of conventional AI and describe solutions to make machine learning decisions more transparent with so-called explainable AI. The purpose of the review is to foster a mutual understanding of both the biomedical and the AI side. To that end, in addition to providing an overview of the relevant foundations in pathology and machine learning, we present worked-through examples for a better practical understanding of what AI can achieve and how it should be done.</p>","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":" ","pages":"541-570"},"PeriodicalIF":36.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49693605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24DOI: 10.1146/annurev-pathmechdis-051122-094016
Hartmut Jaeschke, Anup Ramachandran
Acetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of N-acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.
对乙酰氨基酚(APAP)过量是西方国家临床上最常见的药物肝毒性,由于动物模型的转化相关性,从机理上讲,对乙酰氨基酚是研究最多的药物。本综述从药物代谢和线粒体功能障碍(涉及氧化应激和过氧亚硝酸盐)的核心作用入手,阐述了细胞内信号转导事件。线粒体衍生的内切酶会引发核 DNA 断裂,这是细胞死亡的不归路。此外,还讨论了限制细胞死亡的适应机制,包括自噬、线粒体形态变化和生物生成。大量证据支持肿瘤性坏死是细胞死亡的模式;然而,与细胞凋亡、铁凋亡和热凋亡信号事件的部分重叠是有争议的讨论的基础。此外,本文还介绍了损伤和修复过程中无菌炎症的最新情况,以及 Kupffer 细胞、单核细胞衍生巨噬细胞和中性粒细胞的激活情况。对这些细胞死亡机制的了解促使人们发现 N-乙酰半胱氨酸和最近发现的福美吡唑可作为 APAP 毒性的有效解毒剂。
{"title":"Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury.","authors":"Hartmut Jaeschke, Anup Ramachandran","doi":"10.1146/annurev-pathmechdis-051122-094016","DOIUrl":"10.1146/annurev-pathmechdis-051122-094016","url":null,"abstract":"<p><p>Acetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of <i>N</i>-acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.</p>","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":"19 ","pages":"453-478"},"PeriodicalIF":36.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139547539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24Epub Date: 2023-10-13DOI: 10.1146/annurev-pathmechdis-051122-093128
Stephanie Panier, Siyao Wang, Björn Schumacher
Genetic material is constantly subjected to genotoxic insults and is critically dependent on DNA repair. Genome maintenance mechanisms differ in somatic and germ cells as the soma only requires maintenance during an individual's lifespan, while the germline indefinitely perpetuates its genetic information. DNA lesions are recognized and repaired by mechanistically highly diverse repair machineries. The DNA damage response impinges on a vast array of homeostatic processes and can ultimately result in cell fate changes such as apoptosis or cellular senescence. DNA damage causally contributes to the aging process and aging-associated diseases, most prominently cancer. By causing mutations, DNA damage in germ cells can lead to genetic diseases and impact the evolutionary trajectory of a species. The mechanisms ensuring tight control of germline DNA repair could be highly instructive in defining strategies for improved somatic DNA repair. They may provide future interventions to maintain health and prevent disease during aging.
{"title":"Genome Instability and DNA Repair in Somatic and Reproductive Aging.","authors":"Stephanie Panier, Siyao Wang, Björn Schumacher","doi":"10.1146/annurev-pathmechdis-051122-093128","DOIUrl":"10.1146/annurev-pathmechdis-051122-093128","url":null,"abstract":"<p><p>Genetic material is constantly subjected to genotoxic insults and is critically dependent on DNA repair. Genome maintenance mechanisms differ in somatic and germ cells as the soma only requires maintenance during an individual's lifespan, while the germline indefinitely perpetuates its genetic information. DNA lesions are recognized and repaired by mechanistically highly diverse repair machineries. The DNA damage response impinges on a vast array of homeostatic processes and can ultimately result in cell fate changes such as apoptosis or cellular senescence. DNA damage causally contributes to the aging process and aging-associated diseases, most prominently cancer. By causing mutations, DNA damage in germ cells can lead to genetic diseases and impact the evolutionary trajectory of a species. The mechanisms ensuring tight control of germline DNA repair could be highly instructive in defining strategies for improved somatic DNA repair. They may provide future interventions to maintain health and prevent disease during aging.</p>","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":" ","pages":"261-290"},"PeriodicalIF":36.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24Epub Date: 2023-09-27DOI: 10.1146/annurev-pathmechdis-051222-122423
Rosa Fontana, Aida Mestre-Farrera, Jing Yang
Epithelial-mesenchymal transition (EMT) is a cellular process by which epithelial cells lose their characteristics and acquire mesenchymal traits to promote cell movement. This program is aberrantly activated in human cancers and endows tumor cells with increased abilities in tumor initiation, cell migration, invasion, metastasis, and therapy resistance. The EMT program in tumors is rarely binary and often leads to a series of gradual or intermediate epithelial-mesenchymal states. Functionally, epithelial-mesenchymal plasticity (EMP) improves the fitness of cancer cells during tumor progression and in response to therapies. Here, we discuss the most recent advances in our understanding of the diverse roles of EMP in tumor initiation, progression, metastasis, and therapy resistance and address major clinical challenges due to EMP-driven phenotypic heterogeneity in cancer. Uncovering novel molecular markers and key regulators of EMP in cancer will aid the development of new therapeutic strategies to prevent cancer recurrence and overcome therapy resistance.
{"title":"Update on Epithelial-Mesenchymal Plasticity in Cancer Progression.","authors":"Rosa Fontana, Aida Mestre-Farrera, Jing Yang","doi":"10.1146/annurev-pathmechdis-051222-122423","DOIUrl":"10.1146/annurev-pathmechdis-051222-122423","url":null,"abstract":"<p><p>Epithelial-mesenchymal transition (EMT) is a cellular process by which epithelial cells lose their characteristics and acquire mesenchymal traits to promote cell movement. This program is aberrantly activated in human cancers and endows tumor cells with increased abilities in tumor initiation, cell migration, invasion, metastasis, and therapy resistance. The EMT program in tumors is rarely binary and often leads to a series of gradual or intermediate epithelial-mesenchymal states. Functionally, epithelial-mesenchymal plasticity (EMP) improves the fitness of cancer cells during tumor progression and in response to therapies. Here, we discuss the most recent advances in our understanding of the diverse roles of EMP in tumor initiation, progression, metastasis, and therapy resistance and address major clinical challenges due to EMP-driven phenotypic heterogeneity in cancer. Uncovering novel molecular markers and key regulators of EMP in cancer will aid the development of new therapeutic strategies to prevent cancer recurrence and overcome therapy resistance.</p>","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":" ","pages":"133-156"},"PeriodicalIF":36.2,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872224/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41158607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}