首页 > 最新文献

Annals of Applied Statistics最新文献

英文 中文
PREDICTION OF HEREDITARY CANCERS USING NEURAL NETWORKS. 使用神经网络预测遗传性癌症。
IF 1.8 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2022-03-01 Epub Date: 2022-03-28 DOI: 10.1214/21-aoas1510
By Zoe Guan, Giovanni Parmigiani, Danielle Braun, Lorenzo Trippa

Family history is a major risk factor for many types of cancer. Mendelian risk prediction models translate family histories into cancer risk predictions, based on knowledge of cancer susceptibility genes. These models are widely used in clinical practice to help identify high-risk individuals. Mendelian models leverage the entire family history, but they rely on many assumptions about cancer susceptibility genes that are either unrealistic or challenging to validate, due to low mutation prevalence. Training more flexible models, such as neural networks, on large databases of pedigrees can potentially lead to accuracy gains. In this paper we develop a framework to apply neural networks to family history data and investigate their ability to learn inherited susceptibility to cancer. While there is an extensive literature on neural networks and their state-of-the-art performance in many tasks, there is little work applying them to family history data. We propose adaptations of fully-connected neural networks and convolutional neural networks to pedigrees. In data simulated under Mendelian inheritance, we demonstrate that our proposed neural network models are able to achieve nearly optimal prediction performance. Moreover, when the observed family history includes misreported cancer diagnoses, neural networks are able to outperform the Mendelian BRCAPRO model embedding the correct inheritance laws. Using a large dataset of over 200,000 family histories, the Risk Service cohort, we train prediction models for future risk of breast cancer. We validate the models using data from the Cancer Genetics Network.

家族史是多种癌症的主要危险因素。孟德尔风险预测模型基于癌症易感性基因的知识,将家族史转化为癌症风险预测。这些模型在临床实践中被广泛用于帮助识别高危个体。孟德尔模型利用了整个家族史,但它们依赖于许多关于癌症易感性基因的假设,由于突变率低,这些假设要么不切实际,要么难以验证。在大型谱系数据库上训练更灵活的模型,如神经网络,可能会提高准确性。在这篇论文中,我们开发了一个将神经网络应用于家族史数据的框架,并研究了他们学习癌症遗传易感性的能力。虽然有大量关于神经网络及其在许多任务中最先进性能的文献,但很少有工作将其应用于家族史数据。我们提出了全连接神经网络和卷积神经网络对谱系的适应。在孟德尔遗传下模拟的数据中,我们证明了我们提出的神经网络模型能够实现几乎最优的预测性能。此外,当观察到的家族史包括误报的癌症诊断时,神经网络能够优于嵌入正确遗传规律的孟德尔BRCAPRO模型。使用一个包含20多万家族史的大型数据集,即风险服务队列,我们训练了癌症未来风险的预测模型。我们使用癌症遗传学网络的数据来验证这些模型。
{"title":"PREDICTION OF HEREDITARY CANCERS USING NEURAL NETWORKS.","authors":"By Zoe Guan,&nbsp;Giovanni Parmigiani,&nbsp;Danielle Braun,&nbsp;Lorenzo Trippa","doi":"10.1214/21-aoas1510","DOIUrl":"10.1214/21-aoas1510","url":null,"abstract":"<p><p>Family history is a major risk factor for many types of cancer. Mendelian risk prediction models translate family histories into cancer risk predictions, based on knowledge of cancer susceptibility genes. These models are widely used in clinical practice to help identify high-risk individuals. Mendelian models leverage the entire family history, but they rely on many assumptions about cancer susceptibility genes that are either unrealistic or challenging to validate, due to low mutation prevalence. Training more flexible models, such as neural networks, on large databases of pedigrees can potentially lead to accuracy gains. In this paper we develop a framework to apply neural networks to family history data and investigate their ability to learn inherited susceptibility to cancer. While there is an extensive literature on neural networks and their state-of-the-art performance in many tasks, there is little work applying them to family history data. We propose adaptations of fully-connected neural networks and convolutional neural networks to pedigrees. In data simulated under Mendelian inheritance, we demonstrate that our proposed neural network models are able to achieve nearly optimal prediction performance. Moreover, when the observed family history includes misreported cancer diagnoses, neural networks are able to outperform the Mendelian BRCAPRO model embedding the correct inheritance laws. Using a large dataset of over 200,000 family histories, the Risk Service cohort, we train prediction models for future risk of breast cancer. We validate the models using data from the Cancer Genetics Network.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"16 1","pages":"495-520"},"PeriodicalIF":1.8,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10593124/pdf/nihms-1937267.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49693607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PARTITIONING AROUND MEDOIDS CLUSTERING AND RANDOM FOREST CLASSIFICATION FOR GIS-INFORMED IMPUTATION OF FLUORIDE CONCENTRATION DATA. 基于地理信息系统的氟化物浓度数据的聚类和随机森林分类划分。
IF 1.8 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2022-03-01 DOI: 10.1214/21-aoas1516
Yu Gu, John S Preisser, Donglin Zeng, Poojan Shrestha, Molina Shah, Miguel A Simancas-Pallares, Jeannie Ginnis, Kimon Divaris

Community water fluoridation is an important component of oral health promotion, as fluoride exposure is a well-documented dental caries-preventive agent. Direct measurements of domestic water fluoride content provide valuable information regarding individuals' fluoride exposure and thus caries risk; however, they are logistically challenging to carry out at a large scale in oral health research. This article describes the development and evaluation of a novel method for the imputation of missing domestic water fluoride concentration data informed by spatial autocorrelation. The context is a state-wide epidemiologic study of pediatric oral health in North Carolina, where domestic water fluoride concentration information was missing for approximately 75% of study participants with clinical data on dental caries. A new machine-learning-based imputation method that combines partitioning around medoids clustering and random forest classification (PAMRF) is developed and implemented. Imputed values are filtered according to allowable error rates or target sample size, depending on the requirements of each application. In leave-one-out cross-validation and simulation studies, PAMRF outperforms four existing imputation approaches-two conventional spatial interpolation methods (i.e., inverse-distance weighting, IDW and universal kriging, UK) and two supervised learning methods (k-nearest neighbors, KNN and classification and regression trees, CART). The inclusion of multiply imputed values in the estimation of the association between fluoride concentration and dental caries prevalence resulted in essentially no change in PAMRF estimates but substantial gains in precision due to larger effective sample size. PAMRF is a powerful new method for the imputation of missing fluoride values where geographical information exists.

社区饮水加氟是促进口腔健康的一个重要组成部分,因为氟化物暴露是一种有充分证据的龋齿预防剂。对生活用水氟化物含量的直接测量提供了有关个人接触氟化物的宝贵信息,从而提供了龋齿风险;然而,在口腔健康研究中进行大规模的后勤挑战。本文介绍了一种基于空间自相关信息的生活用水氟化物浓度缺失数据补全新方法的开发与评价。本研究的背景是北卡罗来纳州一项全州范围的儿童口腔健康流行病学研究,其中约75%的研究参与者缺少有关龋齿临床数据的家庭用水氟化物浓度信息。提出并实现了一种基于机器学习的围绕介质聚类和随机森林分类相结合的插值方法。根据每个应用程序的要求,根据允许错误率或目标样本量对输入值进行过滤。在留一交叉验证和仿真研究中,PAMRF优于四种现有的插值方法,即两种传统的空间插值方法(即逆距离加权,IDW和通用克里格,UK)和两种监督学习方法(k-近邻,KNN和分类与回归树,CART)。在估计氟化物浓度与龋齿患病率之间的关系时纳入多个估算值,导致PAMRF估计值基本上没有变化,但由于有效样本量的增加,精度大大提高。PAMRF是一种强大的新方法,用于在存在地理信息的情况下计算缺失的氟化物值。
{"title":"PARTITIONING AROUND MEDOIDS CLUSTERING AND RANDOM FOREST CLASSIFICATION FOR GIS-INFORMED IMPUTATION OF FLUORIDE CONCENTRATION DATA.","authors":"Yu Gu,&nbsp;John S Preisser,&nbsp;Donglin Zeng,&nbsp;Poojan Shrestha,&nbsp;Molina Shah,&nbsp;Miguel A Simancas-Pallares,&nbsp;Jeannie Ginnis,&nbsp;Kimon Divaris","doi":"10.1214/21-aoas1516","DOIUrl":"https://doi.org/10.1214/21-aoas1516","url":null,"abstract":"<p><p>Community water fluoridation is an important component of oral health promotion, as fluoride exposure is a well-documented dental caries-preventive agent. Direct measurements of domestic water fluoride content provide valuable information regarding individuals' fluoride exposure and thus caries risk; however, they are logistically challenging to carry out at a large scale in oral health research. This article describes the development and evaluation of a novel method for the imputation of missing domestic water fluoride concentration data informed by spatial autocorrelation. The context is a state-wide epidemiologic study of pediatric oral health in North Carolina, where domestic water fluoride concentration information was missing for approximately 75% of study participants with clinical data on dental caries. A new machine-learning-based imputation method that combines partitioning around medoids clustering and random forest classification (PAMRF) is developed and implemented. Imputed values are filtered according to allowable error rates or target sample size, depending on the requirements of each application. In leave-one-out cross-validation and simulation studies, PAMRF outperforms four existing imputation approaches-two conventional spatial interpolation methods (i.e., inverse-distance weighting, IDW and universal kriging, UK) and two supervised learning methods (<i>k</i>-nearest neighbors, KNN and classification and regression trees, CART). The inclusion of multiply imputed values in the estimation of the association between fluoride concentration and dental caries prevalence resulted in essentially no change in PAMRF estimates but substantial gains in precision due to larger effective sample size. PAMRF is a powerful new method for the imputation of missing fluoride values where geographical information exists.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"16 1","pages":"551-572"},"PeriodicalIF":1.8,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8963777/pdf/nihms-1731052.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9615691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
ORDINAL PROBIT FUNCTIONAL OUTCOME REGRESSION WITH APPLICATION TO COMPUTER-USE BEHAVIOR IN RHESUS MONKEYS. 序概率函数结果回归及其在恒河猴计算机使用行为中的应用。
IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2022-03-01 Epub Date: 2022-03-28 DOI: 10.1214/21-aoas1513
Mark J Meyer, Jeffrey S Morris, Regina Paxton Gazes, Brent A Coull

Research in functional regression has made great strides in expanding to non-Gaussian functional outcomes, but exploration of ordinal functional outcomes remains limited. Motivated by a study of computer-use behavior in rhesus macaques (Macaca mulatta), we introduce the Ordinal Probit Functional Outcome Regression model (OPFOR). OPFOR models can be fit using one of several basis functions including penalized B-splines, wavelets, and O'Sullivan splines-the last of which typically performs best. Simulation using a variety of underlying covariance patterns shows that the model performs reasonably well in estimation under multiple basis functions with near nominal coverage for joint credible intervals. Finally, in application, we use Bayesian model selection criteria adapted to functional outcome regression to best characterize the relation between several demographic factors of interest and the monkeys' computer use over the course of a year. In comparison with a standard ordinal longitudinal analysis, OPFOR outperforms a cumulative-link mixed-effects model in simulation and provides additional and more nuanced information on the nature of the monkeys' computer-use behavior.

泛函回归的研究在扩展到非高斯函数结果方面取得了很大进展,但对有序函数结果的探索仍然有限。基于对恒河猴计算机使用行为的研究,我们引入了有序概率函数结果回归模型(OPFOR)。OPFOR模型可以使用几种基函数中的一种进行拟合,包括惩罚b样条、小波和奥沙利文样条——最后一种通常表现最好。利用多种底层协方差模式进行的仿真表明,该模型在多个基函数下的估计效果相当好,联合可信区间的覆盖范围接近名义范围。最后,在应用中,我们使用贝叶斯模型选择标准来适应功能结果回归,以最好地表征一年中几个感兴趣的人口统计学因素与猴子计算机使用之间的关系。与标准的有序纵向分析相比,OPFOR在模拟中优于累积链接混合效应模型,并提供了关于猴子计算机使用行为本质的额外和更细致的信息。
{"title":"ORDINAL PROBIT FUNCTIONAL OUTCOME REGRESSION WITH APPLICATION TO COMPUTER-USE BEHAVIOR IN RHESUS MONKEYS.","authors":"Mark J Meyer, Jeffrey S Morris, Regina Paxton Gazes, Brent A Coull","doi":"10.1214/21-aoas1513","DOIUrl":"10.1214/21-aoas1513","url":null,"abstract":"<p><p>Research in functional regression has made great strides in expanding to non-Gaussian functional outcomes, but exploration of ordinal functional outcomes remains limited. Motivated by a study of computer-use behavior in rhesus macaques (<i>Macaca mulatta</i>), we introduce the Ordinal Probit Functional Outcome Regression model (OPFOR). OPFOR models can be fit using one of several basis functions including penalized B-splines, wavelets, and O'Sullivan splines-the last of which typically performs best. Simulation using a variety of underlying covariance patterns shows that the model performs reasonably well in estimation under multiple basis functions with near nominal coverage for joint credible intervals. Finally, in application, we use Bayesian model selection criteria adapted to functional outcome regression to best characterize the relation between several demographic factors of interest and the monkeys' computer use over the course of a year. In comparison with a standard ordinal longitudinal analysis, OPFOR outperforms a cumulative-link mixed-effects model in simulation and provides additional and more nuanced information on the nature of the monkeys' computer-use behavior.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"16 1","pages":"537-550"},"PeriodicalIF":1.3,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9629817/pdf/nihms-1805320.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10428988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BAYESIAN MITIGATION OF SPATIAL COARSENING FOR A HAWKES MODEL APPLIED TO GUNFIRE, WILDFIRE AND VIRAL CONTAGION. 应用于枪火、野火和病毒传染的霍克斯模型的空间粗化的贝叶斯缓解。
IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2022-03-01 Epub Date: 2022-03-28 DOI: 10.1214/21-aoas1517
Andrew J Holbrook, Xiang Ji, Marc A Suchard

Self-exciting spatiotemporal Hawkes processes have found increasing use in the study of large-scale public health threats, ranging from gun violence and earthquakes to wildfires and viral contagion. Whereas many such applications feature locational uncertainty, that is, the exact spatial positions of individual events are unknown, most Hawkes model analyses to date have ignored spatial coarsening present in the data. Three particular 21st century public health crises-urban gun violence, rural wildfires and global viral spread-present qualitatively and quantitatively varying uncertainty regimes that exhibit: (a) different collective magnitudes of spatial coarsening, (b) uniform and mixed magnitude coarsening, (c) differently shaped uncertainty regions and-less orthodox-(d) locational data distributed within the "wrong" effective space. We explicitly model such uncertainties in a Bayesian manner and jointly infer unknown locations together with all parameters of a reasonably flexible Hawkes model, obtaining results that are practically and statistically distinct from those obtained while ignoring spatial coarsening. This work also features two different secondary contributions: first, to facilitate Bayesian inference of locations and background rate parameters, we make a subtle yet crucial change to an established kernel-based rate model, and second, to facilitate the same Bayesian inference at scale, we develop a massively parallel implementation of the model's log-likelihood gradient with respect to locations and thus avoid its quadratic computational cost in the context of Hamiltonian Monte Carlo. Our examples involve thousands of observations and allow us to demonstrate practicality at moderate scales.

自激时空霍克斯过程越来越多地应用于大规模公共健康威胁的研究,从枪支暴力和地震到野火和病毒传染。许多此类应用都具有位置不确定性,即单个事件的确切空间位置是未知的,而迄今为止的大多数霍克斯模型分析都忽略了数据中存在的空间粗化现象。21 世纪的三个特殊公共卫生危机--城市枪支暴力、农村野火和全球病毒传播--呈现出定性和定量不同的不确定性机制,表现出:(a)不同的集体空间粗化幅度,(b)均匀和混合幅度的粗化,(c)不同形状的不确定性区域,以及(d)分布在 "错误 "有效空间内的定位数据。我们以贝叶斯方式对这些不确定性进行了明确建模,并将未知位置与合理灵活的霍克斯模型的所有参数一起进行了联合推断,得到的结果与忽略空间粗化时得到的结果在实践和统计上都截然不同。这项工作还有两个不同的次要贡献:首先,为了便于对位置和背景速率参数进行贝叶斯推断,我们对一个已建立的基于核的速率模型做了一个微妙而关键的改动;其次,为了便于在规模上进行同样的贝叶斯推断,我们开发了一种大规模并行实施该模型关于位置的对数似然梯度的方法,从而避免了在汉密尔顿蒙特卡罗背景下的二次计算成本。我们的例子涉及成千上万的观测数据,使我们能够证明在中等规模下的实用性。
{"title":"BAYESIAN MITIGATION OF SPATIAL COARSENING FOR A HAWKES MODEL APPLIED TO GUNFIRE, WILDFIRE AND VIRAL CONTAGION.","authors":"Andrew J Holbrook, Xiang Ji, Marc A Suchard","doi":"10.1214/21-aoas1517","DOIUrl":"10.1214/21-aoas1517","url":null,"abstract":"<p><p>Self-exciting spatiotemporal Hawkes processes have found increasing use in the study of large-scale public health threats, ranging from gun violence and earthquakes to wildfires and viral contagion. Whereas many such applications feature locational uncertainty, that is, the exact spatial positions of individual events are unknown, most Hawkes model analyses to date have ignored spatial coarsening present in the data. Three particular 21st century public health crises-urban gun violence, rural wildfires and global viral spread-present qualitatively and quantitatively varying uncertainty regimes that exhibit: (a) different collective magnitudes of spatial coarsening, (b) uniform and mixed magnitude coarsening, (c) differently shaped uncertainty regions and-less orthodox-(d) locational data distributed within the \"wrong\" effective space. We explicitly model such uncertainties in a Bayesian manner and jointly infer unknown locations together with all parameters of a reasonably flexible Hawkes model, obtaining results that are practically and statistically distinct from those obtained while ignoring spatial coarsening. This work also features two different secondary contributions: first, to facilitate Bayesian inference of locations and background rate parameters, we make a subtle yet crucial change to an established kernel-based rate model, and second, to facilitate the same Bayesian inference at scale, we develop a massively parallel implementation of the model's log-likelihood gradient with respect to locations and thus avoid its quadratic computational cost in the context of Hamiltonian Monte Carlo. Our examples involve thousands of observations and allow us to demonstrate practicality at moderate scales.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"16 1","pages":"573-595"},"PeriodicalIF":1.3,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9536472/pdf/nihms-1797628.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9194379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BIDIMENSIONAL LINKED MATRIX FACTORIZATION FOR PAN-OMICS PAN-CANCER ANALYSIS. 用于泛组学泛癌分析的二维链接矩阵因子分解。
IF 1.8 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2022-03-01 Epub Date: 2022-03-28 DOI: 10.1214/21-AOAS1495
Eric F Lock, Jun Young Park, Katherine A Hoadley

Several modern applications require the integration of multiple large data matrices that have shared rows and/or columns. For example, cancer studies that integrate multiple omics platforms across multiple types of cancer, pan-omics pan-cancer analysis, have extended our knowledge of molecular heterogeneity beyond what was observed in single tumor and single platform studies. However, these studies have been limited by available statistical methodology. We propose a flexible approach to the simultaneous factorization and decomposition of variation across such bidimensionally linked matrices, BIDIFAC+. BIDIFAC+ decomposes variation into a series of low-rank components that may be shared across any number of row sets (e.g., omics platforms) or column sets (e.g., cancer types). This builds on a growing literature for the factorization and decomposition of linked matrices which has primarily focused on multiple matrices that are linked in one dimension (rows or columns) only. Our objective function extends nuclear norm penalization, is motivated by random matrix theory, gives a unique decomposition under relatively mild conditions, and can be shown to give the mode of a Bayesian posterior distribution. We apply BIDIFAC+ to pan-omics pan-cancer data from TCGA, identifying shared and specific modes of variability across four different omics platforms and 29 different cancer types.

一些现代应用程序需要集成具有共享行和/或列的多个大型数据矩阵。例如,整合多种类型癌症的多组学平台的癌症研究,即全组学全癌分析,扩展了我们对分子异质性的认识,超出了单肿瘤和单平台研究的范围。然而,这些研究受到现有统计方法的限制。我们提出了一种灵活的方法来同时分解和分解这种二维链接矩阵的变化,BIDIFC+。BIDIFAC+将变化分解为一系列低阶分量,这些分量可以在任何数量的行集(例如组学平台)或列集(例如癌症类型)之间共享。这建立在越来越多的链接矩阵的因子分解和分解文献的基础上,这些文献主要关注仅在一维(行或列)中链接的多个矩阵。我们的目标函数扩展了核范数惩罚,受随机矩阵理论的激励,在相对温和的条件下给出了唯一的分解,并且可以证明给出了贝叶斯后验分布的模式。我们将BIDIFAC+应用于TCGA的全组学全癌数据,确定了四个不同组学平台和29种不同癌症类型的共享和特定变异模式。
{"title":"BIDIMENSIONAL LINKED MATRIX FACTORIZATION FOR PAN-OMICS PAN-CANCER ANALYSIS.","authors":"Eric F Lock, Jun Young Park, Katherine A Hoadley","doi":"10.1214/21-AOAS1495","DOIUrl":"https://doi.org/10.1214/21-AOAS1495","url":null,"abstract":"<p><p>Several modern applications require the integration of multiple large data matrices that have shared rows and/or columns. For example, cancer studies that integrate multiple omics platforms across multiple types of cancer, <i>pan-omics pan-cancer analysis</i>, have extended our knowledge of molecular heterogeneity beyond what was observed in single tumor and single platform studies. However, these studies have been limited by available statistical methodology. We propose a flexible approach to the simultaneous factorization and decomposition of variation across such <i>bidimensionally linked</i> matrices, BIDIFAC+. BIDIFAC+ decomposes variation into a series of low-rank components that may be shared across any number of row sets (e.g., omics platforms) or column sets (e.g., cancer types). This builds on a growing literature for the factorization and decomposition of linked matrices which has primarily focused on multiple matrices that are linked in one dimension (rows or columns) only. Our objective function extends nuclear norm penalization, is motivated by random matrix theory, gives a unique decomposition under relatively mild conditions, and can be shown to give the mode of a Bayesian posterior distribution. We apply BIDIFAC+ to pan-omics pan-cancer data from TCGA, identifying shared and specific modes of variability across <i>four</i> different omics platforms and 29 different cancer types.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"16 1","pages":"193-215"},"PeriodicalIF":1.8,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9060567/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71523301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
BAGEL: A BAYESIAN GRAPHICAL MODEL FOR INFERRING DRUG EFFECT LONGITUDINALLY ON DEPRESSION IN PEOPLE WITH HIV. 百吉饼:一种贝叶斯图形模型,用于纵向推断药物对艾滋病毒感染者抑郁的影响。
IF 1.8 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2022-03-01 DOI: 10.1214/21-AOAS1492
Yuliang Li, Yang Ni, Leah H Rubin, Amanda B Spence, Yanxun Xu

Access and adherence to antiretroviral therapy (ART) has transformed the face of HIV infection from a fatal to a chronic disease. However, ART is also known for its side effects. Studies have reported that ART is associated with depressive symptomatology. Large-scale HIV clinical databases with individuals' longitudinal depression records, ART medications, and clinical characteristics offer researchers unprecedented opportunities to study the effects of ART drugs on depression over time. We develop BAGEL, a Bayesian graphical model to investigate longitudinal effects of ART drugs on a range of depressive symptoms while adjusting for participants' demographic, behavior, and clinical characteristics, and taking into account the heterogeneous population through a Bayesian nonparametric prior. We evaluate BAGEL through simulation studies. Application to a dataset from the Women's Interagency HIV Study yields interpretable and clinically useful results. BAGEL not only can improve our understanding of ART drugs effects on disparate depression symptoms, but also has clinical utility in guiding informed and effective treatment selection to facilitate precision medicine in HIV.

获得和坚持抗逆转录病毒治疗已使艾滋病毒感染的面貌从一种致命疾病转变为一种慢性病。然而,ART也因其副作用而闻名。研究报告称,抗逆转录病毒治疗与抑郁症状有关。包含个体抑郁纵向记录、抗逆转录病毒药物和临床特征的大规模HIV临床数据库为研究人员提供了前所未有的机会来研究抗逆转录病毒药物对抑郁症的长期影响。我们开发了BAGEL,一个贝叶斯图形模型来研究抗逆转录病毒药物对一系列抑郁症状的纵向影响,同时调整参与者的人口统计学、行为和临床特征,并通过贝叶斯非参数先验考虑异质性人群。我们通过模拟研究来评估BAGEL。对来自妇女跨机构艾滋病毒研究的数据集的应用产生了可解释和临床有用的结果。BAGEL不仅可以提高我们对ART药物对不同抑郁症状的疗效的认识,而且在指导知情和有效的治疗选择以促进HIV精准医疗方面具有临床应用价值。
{"title":"BAGEL: A BAYESIAN GRAPHICAL MODEL FOR INFERRING DRUG EFFECT LONGITUDINALLY ON DEPRESSION IN PEOPLE WITH HIV.","authors":"Yuliang Li,&nbsp;Yang Ni,&nbsp;Leah H Rubin,&nbsp;Amanda B Spence,&nbsp;Yanxun Xu","doi":"10.1214/21-AOAS1492","DOIUrl":"https://doi.org/10.1214/21-AOAS1492","url":null,"abstract":"<p><p>Access and adherence to antiretroviral therapy (ART) has transformed the face of HIV infection from a fatal to a chronic disease. However, ART is also known for its side effects. Studies have reported that ART is associated with depressive symptomatology. Large-scale HIV clinical databases with individuals' longitudinal depression records, ART medications, and clinical characteristics offer researchers unprecedented opportunities to study the effects of ART drugs on depression over time. We develop BAGEL, a Bayesian graphical model to investigate longitudinal effects of ART drugs on a range of depressive symptoms while adjusting for participants' demographic, behavior, and clinical characteristics, and taking into account the heterogeneous population through a Bayesian nonparametric prior. We evaluate BAGEL through simulation studies. Application to a dataset from the Women's Interagency HIV Study yields interpretable and clinically useful results. BAGEL not only can improve our understanding of ART drugs effects on disparate depression symptoms, but also has clinical utility in guiding informed and effective treatment selection to facilitate precision medicine in HIV.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"16 1","pages":"21-39"},"PeriodicalIF":1.8,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9236217/pdf/nihms-1778597.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10737070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
JOINT AND INDIVIDUAL ANALYSIS OF BREAST CANCER HISTOLOGIC IMAGES AND GENOMIC COVARIATES. 对乳腺癌组织学图像和基因组协变量进行联合和单独分析。
IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2021-12-01 Epub Date: 2021-12-21 DOI: 10.1214/20-aoas1433
Iain Carmichael, Benjamin C Calhoun, Katherine A Hoadley, Melissa A Troester, Joseph Geradts, Heather D Couture, Linnea Olsson, Charles M Perou, Marc Niethammer, Jan Hannig, J S Marron

The two main approaches in the study of breast cancer are histopathology (analyzing visual characteristics of tumors) and genomics. While both histopathology and genomics are fundamental to cancer research, the connections between these fields have been relatively superficial. We bridge this gap by investigating the Carolina Breast Cancer Study through the development of an integrative, exploratory analysis framework. Our analysis gives insights - some known, some novel - that are engaging to both pathologists and geneticists. Our analysis framework is based on Angle-based Joint and Individual Variation Explained (AJIVE) for statistical data integration and exploits Convolutional Neural Networks (CNNs) as a powerful, automatic method for image feature extraction. CNNs raise interpretability issues that we address by developing novel methods to explore visual modes of variation captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features.

研究乳腺癌的两种主要方法是组织病理学(分析肿瘤的视觉特征)和基因组学。虽然组织病理学和基因组学都是癌症研究的基础,但这两个领域之间的联系却相对肤浅。我们通过开发一个综合探索性分析框架来研究卡罗莱纳乳腺癌研究,从而弥补了这一差距。我们的分析提供了对病理学家和遗传学家都有启发的见解--有些是已知的,有些是新颖的。我们的分析框架基于基于角度的联合和个体差异解释(AJIVE)进行统计数据整合,并利用卷积神经网络(CNN)作为图像特征提取的强大自动方法。卷积神经网络提出了可解释性问题,我们通过开发新颖的方法来解决这些问题,以探索应用于卷积神经网络特征的统计算法(如 PCA 或 AJIVE)所捕捉到的视觉变异模式。
{"title":"JOINT AND INDIVIDUAL ANALYSIS OF BREAST CANCER HISTOLOGIC IMAGES AND GENOMIC COVARIATES.","authors":"Iain Carmichael, Benjamin C Calhoun, Katherine A Hoadley, Melissa A Troester, Joseph Geradts, Heather D Couture, Linnea Olsson, Charles M Perou, Marc Niethammer, Jan Hannig, J S Marron","doi":"10.1214/20-aoas1433","DOIUrl":"10.1214/20-aoas1433","url":null,"abstract":"<p><p>The two main approaches in the study of breast cancer are histopathology (analyzing visual characteristics of tumors) and genomics. While both histopathology and genomics are fundamental to cancer research, the connections between these fields have been relatively superficial. We bridge this gap by investigating the Carolina Breast Cancer Study through the development of an integrative, exploratory analysis framework. Our analysis gives insights - some known, some novel - that are engaging to both pathologists and geneticists. Our analysis framework is based on Angle-based Joint and Individual Variation Explained (AJIVE) for statistical data integration and exploits Convolutional Neural Networks (CNNs) as a powerful, automatic method for image feature extraction. CNNs raise interpretability issues that we address by developing novel methods to explore visual modes of variation captured by statistical algorithms (e.g. PCA or AJIVE) applied to CNN features.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"15 4","pages":"1697-1722"},"PeriodicalIF":1.3,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9007558/pdf/nihms-1780328.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10147676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ASSESSING SELECTION BIAS IN REGRESSION COEFFICIENTS ESTIMATED FROM NONPROBABILITY SAMPLES WITH APPLICATIONS TO GENETICS AND DEMOGRAPHIC SURVEYS. 评估从非概率样本估计的回归系数中的选择偏差,并应用于遗传学和人口统计学调查。
IF 1.8 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2021-09-01 DOI: 10.1214/21-aoas1453
Brady T West, Roderick J Little, Rebecca R Andridge, Philip S Boonstra, Erin B Ware, Anita Pandit, Fernanda Alvarado-Leiton

Selection bias is a serious potential problem for inference about relationships of scientific interest based on samples without well-defined probability sampling mechanisms. Motivated by the potential for selection bias in: (a) estimated relationships of polygenic scores (PGSs) with phenotypes in genetic studies of volunteers and (b) estimated differences in subgroup means in surveys of smartphone users, we derive novel measures of selection bias for estimates of the coefficients in linear and probit regression models fitted to nonprobability samples, when aggregate-level auxiliary data are available for the selected sample and the target population. The measures arise from normal pattern-mixture models that allow analysts to examine the sensitivity of their inferences to assumptions about nonignorable selection in these samples. We examine the effectiveness of the proposed measures in a simulation study and then use them to quantify the selection bias in: (a) estimated PGS-phenotype relationships in a large study of volunteers recruited via Facebook and (b) estimated subgroup differences in mean past-year employment duration in a nonprobability sample of low-educated smartphone users. We evaluate the performance of the measures in these applications using benchmark estimates from large probability samples.

选择偏差是基于没有明确定义的概率抽样机制的样本来推断科学兴趣关系的一个严重的潜在问题。考虑到以下方面可能存在的选择偏差:(a)志愿者遗传研究中多基因得分(pgs)与表型的估计关系,以及(b)智能手机用户调查中亚组均值的估计差异,我们推导出了新的选择偏差测量方法,用于拟合非概率样本的线性和概率回归模型的系数估计,当所选样本和目标人群可获得总体水平的辅助数据时。这些措施来自正常的模式混合模型,允许分析人员检查他们的推断对这些样本中不可忽略的选择的假设的敏感性。我们在模拟研究中检验了所提出措施的有效性,然后使用它们来量化选择偏差:(a)在通过Facebook招募的志愿者的大型研究中估计pgs表型关系;(b)在低教育程度智能手机用户的非概率样本中估计过去一年平均就业时间的亚组差异。我们使用来自大概率样本的基准估计来评估这些应用程序中度量的性能。
{"title":"ASSESSING SELECTION BIAS IN REGRESSION COEFFICIENTS ESTIMATED FROM NONPROBABILITY SAMPLES WITH APPLICATIONS TO GENETICS AND DEMOGRAPHIC SURVEYS.","authors":"Brady T West,&nbsp;Roderick J Little,&nbsp;Rebecca R Andridge,&nbsp;Philip S Boonstra,&nbsp;Erin B Ware,&nbsp;Anita Pandit,&nbsp;Fernanda Alvarado-Leiton","doi":"10.1214/21-aoas1453","DOIUrl":"https://doi.org/10.1214/21-aoas1453","url":null,"abstract":"<p><p>Selection bias is a serious potential problem for inference about relationships of scientific interest based on samples without well-defined probability sampling mechanisms. Motivated by the potential for selection bias in: (a) estimated relationships of polygenic scores (PGSs) with phenotypes in genetic studies of volunteers and (b) estimated differences in subgroup means in surveys of smartphone users, we derive novel measures of selection bias for estimates of the coefficients in linear and probit regression models fitted to nonprobability samples, when aggregate-level auxiliary data are available for the selected sample and the target population. The measures arise from normal pattern-mixture models that allow analysts to examine the sensitivity of their inferences to assumptions about nonignorable selection in these samples. We examine the effectiveness of the proposed measures in a simulation study and then use them to quantify the selection bias in: (a) estimated PGS-phenotype relationships in a large study of volunteers recruited via Facebook and (b) estimated subgroup differences in mean past-year employment duration in a nonprobability sample of low-educated smartphone users. We evaluate the performance of the measures in these applications using benchmark estimates from large probability samples.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"15 3","pages":"1556-1581"},"PeriodicalIF":1.8,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8887878/pdf/nihms-1773953.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10686307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A COMPOSITIONAL MODEL TO ASSESS EXPRESSION CHANGES FROM SINGLE-CELL RNA-SEQ DATA. 从单细胞rna-seq数据中评估表达变化的组成模型。
IF 1.8 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2021-06-01 DOI: 10.1214/20-aoas1423
Xiuyu Ma, Keegan Korthauer, Christina Kendziorski, Michael A Newton

On the problem of scoring genes for evidence of changes in the distribution of single-cell expression, we introduce an empirical Bayesian mixture approach and evaluate its operating characteristics in a range of numerical experiments. The proposed approach leverages cell-subtype structure revealed in cluster analysis in order to boost gene-level information on expression changes. Cell clustering informs gene-level analysis through a specially-constructed prior distribution over pairs of multinomial probability vectors; this prior meshes with available model-based tools that score patterns of differential expression over multiple subtypes. We derive an explicit formula for the posterior probability that a gene has the same distribution in two cellular conditions, allowing for a gene-specific mixture over subtypes in each condition. Advantage is gained by the compositional structure of the model not only in which a host of gene-specific mixture components are allowed but also in which the mixing proportions are constrained at the whole cell level. This structure leads to a novel form of information sharing through which the cell-clustering results support gene-level scoring of differential distribution. The result, according to our numerical experiments, is improved sensitivity compared to several standard approaches for detecting distributional expression changes.

在对单细胞表达分布变化的证据进行基因评分的问题上,我们引入了经验贝叶斯混合方法,并在一系列数值实验中评估了其操作特性。该方法利用聚类分析中揭示的细胞亚型结构,以提高表达变化的基因水平信息。细胞聚类通过对多项概率向量的特殊构造的先验分布通知基因水平分析;这种先验与可用的基于模型的工具相匹配,这些工具对多个亚型的差异表达模式进行评分。我们推导了一个明确的后验概率公式,即基因在两种细胞条件下具有相同的分布,允许在每种条件下的基因特异性混合在亚型上。该模型的优势在于其组成结构不仅允许大量的基因特异性混合成分,而且混合比例在整个细胞水平上受到限制。这种结构导致了一种新的信息共享形式,通过这种形式,细胞聚类结果支持差异分布的基因水平评分。结果,根据我们的数值实验,与检测分布表达变化的几种标准方法相比,灵敏度有所提高。
{"title":"A COMPOSITIONAL MODEL TO ASSESS EXPRESSION CHANGES FROM SINGLE-CELL RNA-SEQ DATA.","authors":"Xiuyu Ma,&nbsp;Keegan Korthauer,&nbsp;Christina Kendziorski,&nbsp;Michael A Newton","doi":"10.1214/20-aoas1423","DOIUrl":"https://doi.org/10.1214/20-aoas1423","url":null,"abstract":"<p><p>On the problem of scoring genes for evidence of changes in the distribution of single-cell expression, we introduce an empirical Bayesian mixture approach and evaluate its operating characteristics in a range of numerical experiments. The proposed approach leverages cell-subtype structure revealed in cluster analysis in order to boost gene-level information on expression changes. Cell clustering informs gene-level analysis through a specially-constructed prior distribution over pairs of multinomial probability vectors; this prior meshes with available model-based tools that score patterns of differential expression over multiple subtypes. We derive an explicit formula for the posterior probability that a gene has the same distribution in two cellular conditions, allowing for a gene-specific mixture over subtypes in each condition. Advantage is gained by the compositional structure of the model not only in which a host of gene-specific mixture components are allowed but also in which the mixing proportions are constrained at the whole cell level. This structure leads to a novel form of information sharing through which the cell-clustering results support gene-level scoring of differential distribution. The result, according to our numerical experiments, is improved sensitivity compared to several standard approaches for detecting distributional expression changes.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"15 2","pages":"880-901"},"PeriodicalIF":1.8,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10275512/pdf/nihms-1901161.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9762402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MODEL-BASED FEATURE SELECTION AND CLUSTERING OF RNA-SEQ DATA FOR UNSUPERVISED SUBTYPE DISCOVERY. 基于模型的特征选择和 rna-seq 数据聚类,用于无监督亚型发现。
IF 1.8 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2021-03-01 Epub Date: 2021-03-18 DOI: 10.1214/20-aoas1407
David K Lim, Naim U Rashid, Joseph G Ibrahim

Clustering is a form of unsupervised learning that aims to uncover latent groups within data based on similarity across a set of features. A common application of this in biomedical research is in delineating novel cancer subtypes from patient gene expression data, given a set of informative genes. However, it is typically unknown a priori what genes may be informative in discriminating between clusters, and what the optimal number of clusters are. Few methods exist for performing unsupervised clustering of RNA-seq samples, and none currently adjust for between-sample global normalization factors, select cluster-discriminatory genes, or account for potential confounding variables during clustering. To address these issues, we propose the Feature Selection and Clustering of RNA-seq (FSCseq): a model-based clustering algorithm that utilizes a finite mixture of regression (FMR) model and the quadratic penalty method with a Smoothly-Clipped Absolute Deviation (SCAD) penalty. The maximization is done by a penalized Classification EM algorithm, allowing us to include normalization factors and confounders in our modeling framework. Given the fitted model, our framework allows for subtype prediction in new patients via posterior probabilities of cluster membership, even in the presence of batch effects. Based on simulations and real data analysis, we show the advantages of our method relative to competing approaches.

聚类是一种无监督学习,旨在根据一组特征的相似性发现数据中的潜在群体。这种方法在生物医学研究中的一个常见应用是,在给定一组信息基因的情况下,从病人的基因表达数据中划分出新的癌症亚型。然而,人们通常不知道哪些基因在区分群组时可能具有参考价值,也不知道最佳群组数目是多少。对 RNA-seq 样本进行无监督聚类的方法寥寥无几,目前没有一种方法能调整样本间的全局归一化因子、选择聚类区分基因或在聚类过程中考虑潜在的混杂变量。为了解决这些问题,我们提出了 RNA-seq 特征选择和聚类(FSCseq):一种基于模型的聚类算法,它利用有限混合回归(FMR)模型和带有平滑绝对偏差(SCAD)惩罚的二次惩罚法。最大化是通过受惩罚的分类 EM 算法完成的,这样我们就可以在建模框架中加入归一化因素和混杂因素。有了拟合模型,即使存在批次效应,我们的框架也能通过群组成员的后验概率对新患者进行亚型预测。基于模拟和真实数据分析,我们展示了我们的方法相对于其他方法的优势。
{"title":"MODEL-BASED FEATURE SELECTION AND CLUSTERING OF RNA-SEQ DATA FOR UNSUPERVISED SUBTYPE DISCOVERY.","authors":"David K Lim, Naim U Rashid, Joseph G Ibrahim","doi":"10.1214/20-aoas1407","DOIUrl":"10.1214/20-aoas1407","url":null,"abstract":"<p><p>Clustering is a form of unsupervised learning that aims to uncover latent groups within data based on similarity across a set of features. A common application of this in biomedical research is in delineating novel cancer subtypes from patient gene expression data, given a set of informative genes. However, it is typically unknown <i>a priori</i> what genes may be informative in discriminating between clusters, and what the optimal number of clusters are. Few methods exist for performing unsupervised clustering of RNA-seq samples, and none currently adjust for between-sample global normalization factors, select cluster-discriminatory genes, or account for potential confounding variables during clustering. To address these issues, we propose the Feature Selection and Clustering of RNA-seq (FSCseq): a model-based clustering algorithm that utilizes a finite mixture of regression (FMR) model and the quadratic penalty method with a Smoothly-Clipped Absolute Deviation (SCAD) penalty. The maximization is done by a penalized Classification EM algorithm, allowing us to include normalization factors and confounders in our modeling framework. Given the fitted model, our framework allows for subtype prediction in new patients via posterior probabilities of cluster membership, even in the presence of batch effects. Based on simulations and real data analysis, we show the advantages of our method relative to competing approaches.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"15 1","pages":"481-508"},"PeriodicalIF":1.8,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8386505/pdf/nihms-1716637.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9546884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annals of Applied Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1