首页 > 最新文献

Annals of Applied Statistics最新文献

英文 中文
GENERALIZED MATRIX DECOMPOSITION REGRESSION: ESTIMATION AND INFERENCE FOR TWO-WAY STRUCTURED DATA. 广义矩阵分解回归:双向结构化数据的估计和推断。
IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-12-01 Epub Date: 2023-10-30 DOI: 10.1214/23-aoas1746
Yue Wang, Ali Shojaie, Timothy Randolph, Parker Knight, Jing Ma

Motivated by emerging applications in ecology, microbiology, and neuroscience, this paper studies high-dimensional regression with two-way structured data. To estimate the high-dimensional coefficient vector, we propose the generalized matrix decomposition regression (GMDR) to efficiently leverage auxiliary information on row and column structures. GMDR extends the principal component regression (PCR) to two-way structured data, but unlike PCR, GMDR selects the components that are most predictive of the outcome, leading to more accurate prediction. For inference on regression coefficients of individual variables, we propose the generalized matrix decomposition inference (GMDI), a general high-dimensional inferential framework for a large family of estimators that include the proposed GMDR estimator. GMDI provides more flexibility for incorporating relevant auxiliary row and column structures. As a result, GMDI does not require the true regression coefficients to be sparse, but constrains the coordinate system representing the regression coefficients according to the column structure. GMDI also allows dependent and heteroscedastic observations. We study the theoretical properties of GMDI in terms of both the type-I error rate and power and demonstrate the effectiveness of GMDR and GMDI in simulation studies and an application to human microbiome data.

受生态学、微生物学和神经科学新兴应用的启发,本文研究了双向结构数据的高维回归。为了估计高维系数向量,我们提出了广义矩阵分解回归(GMDR),以有效利用行列结构的辅助信息。GMDR 将主成分回归(PCR)扩展到了双向结构数据,但与 PCR 不同的是,GMDR 会选择对结果最具预测性的成分,从而实现更准确的预测。为了推断单个变量的回归系数,我们提出了广义矩阵分解推断法(GMDI),这是一种通用的高维推断框架,适用于包括所提出的 GMDR 估计器在内的一大系列估计器。GMDI 提供了更大的灵活性,可纳入相关的辅助行列结构。因此,GMDI 并不要求真正的回归系数是稀疏的,而是根据列结构来约束代表回归系数的坐标系。GMDI 还允许依赖和异方差观测。我们研究了 GMDI 在 I 类错误率和功率方面的理论特性,并在模拟研究和人类微生物组数据应用中证明了 GMDR 和 GMDI 的有效性。
{"title":"GENERALIZED MATRIX DECOMPOSITION REGRESSION: ESTIMATION AND INFERENCE FOR TWO-WAY STRUCTURED DATA.","authors":"Yue Wang, Ali Shojaie, Timothy Randolph, Parker Knight, Jing Ma","doi":"10.1214/23-aoas1746","DOIUrl":"10.1214/23-aoas1746","url":null,"abstract":"<p><p>Motivated by emerging applications in ecology, microbiology, and neuroscience, this paper studies high-dimensional regression with two-way structured data. To estimate the high-dimensional coefficient vector, we propose the generalized matrix decomposition regression (GMDR) to efficiently leverage auxiliary information on row and column structures. GMDR extends the principal component regression (PCR) to two-way structured data, but unlike PCR, GMDR selects the components that are most predictive of the outcome, leading to more accurate prediction. For inference on regression coefficients of individual variables, we propose the generalized matrix decomposition inference (GMDI), a general high-dimensional inferential framework for a large family of estimators that include the proposed GMDR estimator. GMDI provides more flexibility for incorporating relevant auxiliary row and column structures. As a result, GMDI does not require the true regression coefficients to be sparse, but constrains the coordinate system representing the regression coefficients according to the column structure. GMDI also allows dependent and heteroscedastic observations. We study the theoretical properties of GMDI in terms of both the type-I error rate and power and demonstrate the effectiveness of GMDR and GMDI in simulation studies and an application to human microbiome data.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 4","pages":"2944-2969"},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10751029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139040863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A DYNAMIC ADDITIVE AND MULTIPLICATIVE EFFECTS NETWORK MODEL WITH APPLICATION TO THE UNITED NATIONS VOTING BEHAVIORS. 将动态加乘效应网络模型应用于联合国投票行为。
IF 1.8 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-12-01 Epub Date: 2023-10-30 DOI: 10.1214/23-aoas1762
Bomin Kim, Xiaoyue Niu, David Hunter, Xun CaO

Motivated by a study of United Nations voting behaviors, we introduce a regression model for a series of networks that are correlated over time. Our model is a dynamic extension of the additive and multiplicative effects network model (AMEN) of Hoff (2021). In addition to incorporating a temporal structure, the model accommodates two types of missing data thus allows the size of the network to vary over time. We demonstrate via simulations the necessity of various components of the model. We apply the model to the United Nations General Assembly voting data from 1983 to 2014 (Voeten, 2013) to answer interesting research questions regarding international voting behaviors. In addition to finding important factors that could explain the voting behaviors, the model-estimated additive effects, multiplicative effects, and their movements reveal meaningful foreign policy positions and alliances of various countries.

受联合国投票行为研究的启发,我们为一系列随时间相关的网络引入了一个回归模型。我们的模型是对 Hoff(2021 年)的加法和乘法效应网络模型(AMEN)的动态扩展。除了包含时间结构外,该模型还容纳了两种类型的缺失数据,从而允许网络规模随时间变化。我们通过模拟演示了模型各组成部分的必要性。我们将该模型应用于 1983 年至 2014 年的联合国大会投票数据(Voeten,2013 年),以回答有关国际投票行为的有趣研究问题。除了发现可以解释投票行为的重要因素外,模型估计的加法效应、乘法效应及其变动揭示了各国有意义的外交政策立场和联盟。
{"title":"A DYNAMIC ADDITIVE AND MULTIPLICATIVE EFFECTS NETWORK MODEL WITH APPLICATION TO THE UNITED NATIONS VOTING BEHAVIORS.","authors":"Bomin Kim, Xiaoyue Niu, David Hunter, Xun CaO","doi":"10.1214/23-aoas1762","DOIUrl":"10.1214/23-aoas1762","url":null,"abstract":"<p><p>Motivated by a study of United Nations voting behaviors, we introduce a regression model for a series of networks that are correlated over time. Our model is a dynamic extension of the additive and multiplicative effects network model (AMEN) of Hoff (2021). In addition to incorporating a temporal structure, the model accommodates two types of missing data thus allows the size of the network to vary over time. We demonstrate via simulations the necessity of various components of the model. We apply the model to the United Nations General Assembly voting data from 1983 to 2014 (Voeten, 2013) to answer interesting research questions regarding international voting behaviors. In addition to finding important factors that could explain the voting behaviors, the model-estimated additive effects, multiplicative effects, and their movements reveal meaningful foreign policy positions and alliances of various countries.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 4","pages":"3283-3299"},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10798233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139514175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Debiased lasso for stratified Cox models with application to the national kidney transplant data. 分层 Cox 模型的去偏套索,并应用于全国肾移植数据。
IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-12-01 Epub Date: 2023-10-30 DOI: 10.1214/23-aoas1775
Lu Xia, Bin Nan, Yi Li

The Scientific Registry of Transplant Recipients (SRTR) system has become a rich resource for understanding the complex mechanisms of graft failure after kidney transplant, a crucial step for allocating organs effectively and implementing appropriate care. As transplant centers that treated patients might strongly confound graft failures, Cox models stratified by centers can eliminate their confounding effects. Also, since recipient age is a proven non-modifiable risk factor, a common practice is to fit models separately by recipient age groups. The moderate sample sizes, relative to the number of covariates, in some age groups may lead to biased maximum stratified partial likelihood estimates and unreliable confidence intervals even when samples still outnumber covariates. To draw reliable inference on a comprehensive list of risk factors measured from both donors and recipients in SRTR, we propose a de-biased lasso approach via quadratic programming for fitting stratified Cox models. We establish asymptotic properties and verify via simulations that our method produces consistent estimates and confidence intervals with nominal coverage probabilities. Accounting for nearly 100 confounders in SRTR, the de-biased method detects that the graft failure hazard nonlinearly increases with donor's age among all recipient age groups, and that organs from older donors more adversely impact the younger recipients. Our method also delineates the associations between graft failure and many risk factors such as recipients' primary diagnoses (e.g. polycystic disease, glomerular disease, and diabetes) and donor-recipient mismatches for human leukocyte antigen loci across recipient age groups. These results may inform the refinement of donor-recipient matching criteria for stakeholders.

移植受者科学登记(SRTR)系统已成为了解肾移植后移植物失败复杂机制的丰富资源,是有效分配器官和实施适当护理的关键一步。由于治疗患者的移植中心可能会对移植物失败造成很大的混淆,因此按中心分层的 Cox 模型可以消除其混淆效应。此外,由于受者年龄是一个已被证实的不可改变的风险因素,通常的做法是按受者年龄组别分别拟合模型。相对于协变量的数量而言,某些年龄组的样本量适中,这可能会导致最大分层偏似然估计值出现偏差,即使样本数量仍然多于协变量,置信区间也不可靠。为了可靠地推断 SRTR 中从供体和受体测得的综合风险因素列表,我们提出了一种通过二次编程拟合分层 Cox 模型的去偏 lasso 方法。我们建立了渐近特性,并通过模拟验证了我们的方法能产生具有名义覆盖概率的一致估计值和置信区间。考虑到 SRTR 中的近 100 个混杂因素,去偏倚方法发现,在所有受体年龄组中,移植物失败的危险随捐献者年龄的增加而非线性增加,而且年龄较大的捐献者的器官对年龄较小的受体的不利影响更大。我们的方法还划分了移植物失败与许多风险因素之间的关系,如受体的主要诊断(如多囊性疾病、肾小球疾病和糖尿病)以及不同受体年龄组的人类白细胞抗原位点的供体-受体不匹配。这些结果可为完善利益相关者的供体-受体匹配标准提供参考。
{"title":"Debiased lasso for stratified Cox models with application to the national kidney transplant data.","authors":"Lu Xia, Bin Nan, Yi Li","doi":"10.1214/23-aoas1775","DOIUrl":"10.1214/23-aoas1775","url":null,"abstract":"<p><p>The Scientific Registry of Transplant Recipients (SRTR) system has become a rich resource for understanding the complex mechanisms of graft failure after kidney transplant, a crucial step for allocating organs effectively and implementing appropriate care. As transplant centers that treated patients might strongly confound graft failures, Cox models stratified by centers can eliminate their confounding effects. Also, since recipient age is a proven non-modifiable risk factor, a common practice is to fit models separately by recipient age groups. The moderate sample sizes, relative to the number of covariates, in some age groups may lead to biased maximum stratified partial likelihood estimates and unreliable confidence intervals even when samples still outnumber covariates. To draw reliable inference on a comprehensive list of risk factors measured from both donors and recipients in SRTR, we propose a de-biased lasso approach via quadratic programming for fitting stratified Cox models. We establish asymptotic properties and verify via simulations that our method produces consistent estimates and confidence intervals with nominal coverage probabilities. Accounting for nearly 100 confounders in SRTR, the de-biased method detects that the graft failure hazard nonlinearly increases with donor's age among all recipient age groups, and that organs from older donors more adversely impact the younger recipients. Our method also delineates the associations between graft failure and many risk factors such as recipients' primary diagnoses (e.g. polycystic disease, glomerular disease, and diabetes) and donor-recipient mismatches for human leukocyte antigen loci across recipient age groups. These results may inform the refinement of donor-recipient matching criteria for stakeholders.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 4","pages":"3550-3569"},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10720921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138813084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BAYESIAN HIERARCHICAL MODELING AND ANALYSIS FOR ACTIGRAPH DATA FROM WEARABLE DEVICES. 对来自可穿戴设备的动作图数据进行贝叶斯分层建模和分析。
IF 1.8 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-12-01 Epub Date: 2023-10-30 DOI: 10.1214/23-aoas1742
Pierfrancesco Alaimo Di Loro, Marco Mingione, Jonah Lipsitt, Christina M Batteate, Michael Jerrett, Sudipto Banerjee

The majority of Americans fail to achieve recommended levels of physical activity, which leads to numerous preventable health problems such as diabetes, hypertension, and heart diseases. This has generated substantial interest in monitoring human activity to gear interventions toward environmental features that may relate to higher physical activity. Wearable devices, such as wrist-worn sensors that monitor gross motor activity (actigraph units) continuously record the activity levels of a subject, producing massive amounts of high-resolution measurements. Analyzing actigraph data needs to account for spatial and temporal information on trajectories or paths traversed by subjects wearing such devices. Inferential objectives include estimating a subject's physical activity levels along a given trajectory; identifying trajectories that are more likely to produce higher levels of physical activity for a given subject; and predicting expected levels of physical activity in any proposed new trajectory for a given set of health attributes. Here, we devise a Bayesian hierarchical modeling framework for spatial-temporal actigraphy data to deliver fully model-based inference on trajectories while accounting for subject-level health attributes and spatial-temporal dependencies. We undertake a comprehensive analysis of an original dataset from the Physical Activity through Sustainable Transport Approaches in Los Angeles (PASTA-LA) study to ascertain spatial zones and trajectories exhibiting significantly higher levels of physical activity while accounting for various sources of heterogeneity.

大多数美国人未能达到建议的体育锻炼水平,这导致了许多可预防的健康问题,如糖尿病、高血压和心脏病。这引起了人们对监测人类活动的极大兴趣,以便针对可能与提高身体活动有关的环境特征采取干预措施。可穿戴设备,如监测大运动量的腕戴式传感器(actigraph 装置),可持续记录受试者的活动水平,产生大量高分辨率测量数据。分析动图数据需要考虑佩戴此类设备的受试者所走过的轨迹或路径的空间和时间信息。推理目标包括估算受试者在给定轨迹上的体力活动水平;识别更有可能为受试者带来更高水平体力活动的轨迹;以及预测在任何建议的新轨迹上给定健康属性集的预期体力活动水平。在这里,我们为空间-时间动图数据设计了一个贝叶斯分层建模框架,以提供完全基于模型的轨迹推断,同时考虑到受试者的健康属性和空间-时间依赖性。我们对 "通过洛杉矶可持续交通方法开展体育活动"(PASTA-LA)研究的原始数据集进行了全面分析,以确定体育活动水平显著较高的空间区域和轨迹,同时考虑各种异质性来源。
{"title":"BAYESIAN HIERARCHICAL MODELING AND ANALYSIS FOR ACTIGRAPH DATA FROM WEARABLE DEVICES.","authors":"Pierfrancesco Alaimo Di Loro, Marco Mingione, Jonah Lipsitt, Christina M Batteate, Michael Jerrett, Sudipto Banerjee","doi":"10.1214/23-aoas1742","DOIUrl":"10.1214/23-aoas1742","url":null,"abstract":"<p><p>The majority of Americans fail to achieve recommended levels of physical activity, which leads to numerous preventable health problems such as diabetes, hypertension, and heart diseases. This has generated substantial interest in monitoring human activity to gear interventions toward environmental features that may relate to higher physical activity. Wearable devices, such as wrist-worn sensors that monitor gross motor activity (actigraph units) continuously record the activity levels of a subject, producing massive amounts of high-resolution measurements. Analyzing actigraph data needs to account for spatial and temporal information on trajectories or paths traversed by subjects wearing such devices. Inferential objectives include estimating a subject's physical activity levels along a given trajectory; identifying trajectories that are more likely to produce higher levels of physical activity for a given subject; and predicting expected levels of physical activity in any proposed new trajectory for a given set of health attributes. Here, we devise a Bayesian hierarchical modeling framework for spatial-temporal actigraphy data to deliver fully model-based inference on trajectories while accounting for subject-level health attributes and spatial-temporal dependencies. We undertake a comprehensive analysis of an original dataset from the Physical Activity through Sustainable Transport Approaches in Los Angeles (PASTA-LA) study to ascertain spatial zones and trajectories exhibiting significantly higher levels of physical activity while accounting for various sources of heterogeneity.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 4","pages":"2865-2886"},"PeriodicalIF":1.8,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10815935/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139572045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A DYNAMIC SPATIAL FILTERING APPROACH TO MITIGATE UNDERESTIMATION BIAS IN FIELD CALIBRATED LOW-COST SENSOR AIR POLLUTION DATA. 一种动态空间过滤方法,用于减轻现场校准的低成本传感器空气污染数据的低估偏差。
IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-12-01 Epub Date: 2023-10-30 DOI: 10.1214/23-aoas1751
Claire Heffernan, Roger PenG, Drew R Gentner, Kirsten Koehler, Abhirup Datta

Low-cost air pollution sensors, offering hyper-local characterization of pollutant concentrations, are becoming increasingly prevalent in environmental and public health research. However, low-cost air pollution data can be noisy, biased by environmental conditions, and usually need to be field-calibrated by collocating low-cost sensors with reference-grade instruments. We show, theoretically and empirically, that the common procedure of regression-based calibration using collocated data systematically underestimates high air pollution concentrations, which are critical to diagnose from a health perspective. Current calibration practices also often fail to utilize the spatial correlation in pollutant concentrations. We propose a novel spatial filtering approach to collocation-based calibration of low-cost networks that mitigates the underestimation issue by using an inverse regression. The inverse-regression also allows for incorporating spatial correlations by a second-stage model for the true pollutant concentrations using a conditional Gaussian Process. Our approach works with one or more collocated sites in the network and is dynamic, leveraging spatial correlation with the latest available reference data. Through extensive simulations, we demonstrate how the spatial filtering substantially improves estimation of pollutant concentrations, and measures peak concentrations with greater accuracy. We apply the methodology for calibration of a low-cost PM2.5 network in Baltimore, Maryland, and diagnose air pollution peaks that are missed by the regression-calibration.

低成本空气污染传感器可提供污染物浓度的超局部特征,在环境和公共卫生研究中越来越普遍。然而,低成本空气污染数据可能会受到环境条件的影响而产生噪声和偏差,通常需要通过将低成本传感器与参考级仪器搭配使用来进行现场校准。我们从理论和经验上证明,使用同位数据进行回归校准的常见程序会系统性地低估空气污染的高浓度,而从健康角度来看,高浓度是诊断空气污染的关键。目前的校准方法通常也无法利用污染物浓度的空间相关性。我们提出了一种新颖的空间过滤方法,通过使用反回归来减轻低估问题。反回归还允许通过使用条件高斯过程的真实污染物浓度第二阶段模型纳入空间相关性。我们的方法适用于网络中的一个或多个定位点,并且是动态的,充分利用了与最新参考数据的空间相关性。通过大量模拟,我们展示了空间过滤如何大幅提高污染物浓度的估计值,并以更高的精度测量峰值浓度。我们将该方法应用于校准马里兰州巴尔的摩市的低成本 PM2.5 网络,并诊断出回归校准所遗漏的空气污染峰值。
{"title":"A DYNAMIC SPATIAL FILTERING APPROACH TO MITIGATE UNDERESTIMATION BIAS IN FIELD CALIBRATED LOW-COST SENSOR AIR POLLUTION DATA.","authors":"Claire Heffernan, Roger PenG, Drew R Gentner, Kirsten Koehler, Abhirup Datta","doi":"10.1214/23-aoas1751","DOIUrl":"10.1214/23-aoas1751","url":null,"abstract":"<p><p>Low-cost air pollution sensors, offering hyper-local characterization of pollutant concentrations, are becoming increasingly prevalent in environmental and public health research. However, low-cost air pollution data can be noisy, biased by environmental conditions, and usually need to be field-calibrated by collocating low-cost sensors with reference-grade instruments. We show, theoretically and empirically, that the common procedure of regression-based calibration using collocated data systematically underestimates high air pollution concentrations, which are critical to diagnose from a health perspective. Current calibration practices also often fail to utilize the spatial correlation in pollutant concentrations. We propose a novel spatial filtering approach to collocation-based calibration of low-cost networks that mitigates the underestimation issue by using an inverse regression. The inverse-regression also allows for incorporating spatial correlations by a second-stage model for the true pollutant concentrations using a conditional Gaussian Process. Our approach works with one or more collocated sites in the network and is dynamic, leveraging spatial correlation with the latest available reference data. Through extensive simulations, we demonstrate how the spatial filtering substantially improves estimation of pollutant concentrations, and measures peak concentrations with greater accuracy. We apply the methodology for calibration of a low-cost PM<sub>2.5</sub> network in Baltimore, Maryland, and diagnose air pollution peaks that are missed by the regression-calibration.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 4","pages":"3056-3087"},"PeriodicalIF":1.3,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11031266/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian combinatorial MultiStudy factor analysis. 贝叶斯组合多因素分析。
IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-09-01 Epub Date: 2023-09-07 DOI: 10.1214/22-aoas1715
Isabella N Grabski, Roberta De Vito, Lorenzo Trippa, Giovanni Parmigiani

Mutations in the BRCA1 and BRCA2 genes are known to be highly associated with breast cancer. Identifying both shared and unique transcript expression patterns in blood samples from these groups can shed insight into if and how the disease mechanisms differ among individuals by mutation status, but this is challenging in the high-dimensional setting. A recent method, Bayesian Multi-Study Factor Analysis (BMSFA), identifies latent factors common to all studies (or equivalently, groups) and latent factors specific to individual studies. However, BMSFA does not allow for factors shared by more than one but less than all studies. This is critical in our context, as we may expect some but not all signals to be shared by BRCA1-and BRCA2-mutation carriers but not necessarily other high-risk groups. We extend BMSFA by introducing a new method, Tetris, for Bayesian combinatorial multi-study factor analysis, which identifies latent factors that any combination of studies or groups can share. We model the subsets of studies that share latent factors with an Indian Buffet Process, and offer a way to summarize uncertainty in the sharing patterns using credible balls. We test our method with an extensive range of simulations, and showcase its utility not only in dimension reduction but also in covariance estimation. When applied to transcript expression data from high-risk families grouped by mutation status, Tetris reveals the features and pathways characterizing each group and the sharing patterns among them. Finally, we further extend Tetris to discover groupings of samples when group labels are not provided, which can elucidate additional structure in these data.

已知BRCA1和BRCA2基因突变与癌症高度相关。在这些群体的血液样本中识别共享和独特的转录物表达模式,可以深入了解不同个体的疾病机制是否以及如何因突变状态而不同,但这在高维环境中具有挑战性。最近的一种方法,贝叶斯多研究因素分析(BMSFA),确定了所有研究(或相当于组)共同的潜在因素和个体研究特有的潜在因素。然而,BMSFA不允许一项以上但并非所有研究共享的因素。这在我们的背景下至关重要,因为我们可能预计BRCA1和BRCA2突变携带者会分享一些但不是所有的信号,但不一定是其他高危人群。我们通过引入一种用于贝叶斯组合多研究因素分析的新方法俄罗斯方块来扩展BMSFA,该方法可以识别任何研究或小组组合都可以共享的潜在因素。我们对与印度自助餐过程共享潜在因素的研究子集进行了建模,并提供了一种使用可信球来总结共享模式中的不确定性的方法。我们用大量的模拟测试了我们的方法,并展示了它不仅在降维方面,而且在协方差估计方面的实用性。当应用于按突变状态分组的高危家族的转录物表达数据时,俄罗斯方块揭示了每个群体的特征和途径,以及它们之间的共享模式。最后,我们进一步扩展俄罗斯方块,在没有提供组标签的情况下发现样本的分组,这可以阐明这些数据中的额外结构。
{"title":"Bayesian combinatorial MultiStudy factor analysis.","authors":"Isabella N Grabski, Roberta De Vito, Lorenzo Trippa, Giovanni Parmigiani","doi":"10.1214/22-aoas1715","DOIUrl":"10.1214/22-aoas1715","url":null,"abstract":"<p><p>Mutations in the <i>BRCA1</i> and <i>BRCA2</i> genes are known to be highly associated with breast cancer. Identifying both shared and unique transcript expression patterns in blood samples from these groups can shed insight into if and how the disease mechanisms differ among individuals by mutation status, but this is challenging in the high-dimensional setting. A recent method, Bayesian Multi-Study Factor Analysis (BMSFA), identifies latent factors common to all studies (or equivalently, groups) and latent factors specific to individual studies. However, BMSFA does not allow for factors shared by more than one but less than all studies. This is critical in our context, as we may expect some but not all signals to be shared by BRCA1-and BRCA2-mutation carriers but not necessarily other high-risk groups. We extend BMSFA by introducing a new method, Tetris, for Bayesian combinatorial multi-study factor analysis, which identifies latent factors that any combination of studies or groups can share. We model the subsets of studies that share latent factors with an Indian Buffet Process, and offer a way to summarize uncertainty in the sharing patterns using credible balls. We test our method with an extensive range of simulations, and showcase its utility not only in dimension reduction but also in covariance estimation. When applied to transcript expression data from high-risk families grouped by mutation status, Tetris reveals the features and pathways characterizing each group and the sharing patterns among them. Finally, we further extend Tetris to discover groupings of samples when group labels are not provided, which can elucidate additional structure in these data.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 3","pages":"2212-2235"},"PeriodicalIF":1.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10543692/pdf/nihms-1926927.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41156472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BAYESIAN INFERENCE AND DYNAMIC PREDICTION FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA. 多变量纵向和生存数据的贝叶斯推理和动态预测。
IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-09-01 Epub Date: 2023-09-07 DOI: 10.1214/23-aoas1733
Haotian Zou, Donglin Zeng, Luo Xiao, Sheng Luo

Alzheimer's disease (AD) is a complex neurological disorder impairing multiple domains such as cognition and daily functions. To better understand the disease and its progression, many AD research studies collect multiple longitudinal outcomes that are strongly predictive of the onset of AD dementia. We propose a joint model based on a multivariate functional mixed model framework (referred to as MFMM-JM) that simultaneously models the multiple longitudinal outcomes and the time to dementia onset. We develop six functional forms to fully investigate the complex association between longitudinal outcomes and dementia onset. Moreover, we use the Bayesian methods for statistical inference and develop a dynamic prediction framework that provides accurate personalized predictions of disease progressions based on new subject-specific data. We apply the proposed MFMM-JM to two large ongoing AD studies: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and National Alzheimer's Coordinating Center (NACC), and identify the functional forms with the best predictive performance. our method is also validated by extensive simulation studies with five settings.

阿尔茨海默病(AD)是一种复杂的神经系统疾病,损害认知和日常功能等多个领域。为了更好地了解这种疾病及其进展,许多AD研究收集了多种纵向结果,这些结果有力地预测了AD痴呆的发作。我们提出了一个基于多变量功能混合模型框架(称为MFMM-JM)的联合模型,该模型同时对多个纵向结果和痴呆发作时间进行建模。我们开发了六种功能形式,以全面研究纵向结果与痴呆症发作之间的复杂关联。此外,我们使用贝叶斯方法进行统计推断,并开发了一个动态预测框架,该框架基于新的特定受试者数据对疾病进展进行准确的个性化预测。我们将所提出的MFMM-JM应用于两项正在进行的大型AD研究:阿尔茨海默病神经成像倡议(ADNI)和国家阿尔茨海默病协调中心(NACC),并确定具有最佳预测性能的功能形式。我们的方法也通过五个设置的大量模拟研究得到了验证。
{"title":"BAYESIAN INFERENCE AND DYNAMIC PREDICTION FOR MULTIVARIATE LONGITUDINAL AND SURVIVAL DATA.","authors":"Haotian Zou, Donglin Zeng, Luo Xiao, Sheng Luo","doi":"10.1214/23-aoas1733","DOIUrl":"10.1214/23-aoas1733","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a complex neurological disorder impairing multiple domains such as cognition and daily functions. To better understand the disease and its progression, many AD research studies collect multiple longitudinal outcomes that are strongly predictive of the onset of AD dementia. We propose a joint model based on a multivariate functional mixed model framework (referred to as MFMM-JM) that simultaneously models the multiple longitudinal outcomes and the time to dementia onset. We develop six functional forms to fully investigate the complex association between longitudinal outcomes and dementia onset. Moreover, we use the Bayesian methods for statistical inference and develop a dynamic prediction framework that provides accurate personalized predictions of disease progressions based on new subject-specific data. We apply the proposed MFMM-JM to two large ongoing AD studies: the Alzheimer's Disease Neuroimaging Initiative (ADNI) and National Alzheimer's Coordinating Center (NACC), and identify the functional forms with the best predictive performance. our method is also validated by extensive simulation studies with five settings.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 3","pages":"2574-2595"},"PeriodicalIF":1.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10339586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
THE SCALABLE BIRTH-DEATH MCMC ALGORITHM FOR MIXED GRAPHICAL MODEL LEARNING WITH APPLICATION TO GENOMIC DATA INTEGRATION. 用于混合图形模型学习的可扩展出生路径MCMC算法及其在基因组数据集成中的应用。
IF 1.3 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-09-01 Epub Date: 2023-10-07 DOI: 10.1214/22-aoas1701
Nanwei Wang, Hélène Massam, Xin Gao, Laurent Briollais

Recent advances in biological research have seen the emergence of high-throughput technologies with numerous applications that allow the study of biological mechanisms at an unprecedented depth and scale. A large amount of genomic data is now distributed through consortia like The Cancer Genome Atlas (TCGA), where specific types of biological information on specific type of tissue or cell are available. In cancer research, the challenge is now to perform integrative analyses of high-dimensional multi-omic data with the goal to better understand genomic processes that correlate with cancer outcomes, e.g. elucidate gene networks that discriminate a specific cancer subgroups (cancer sub-typing) or discovering gene networks that overlap across different cancer types (pan-cancer studies). In this paper, we propose a novel mixed graphical model approach to analyze multi-omic data of different types (continuous, discrete and count) and perform model selection by extending the Birth-Death MCMC (BDMCMC) algorithm initially proposed by Stephens (2000) and later developed by Mohammadi and Wit (2015). We compare the performance of our method to the LASSO method and the standard BDMCMC method using simulations and find that our method is superior in terms of both computational efficiency and the accuracy of the model selection results. Finally, an application to the TCGA breast cancer data shows that integrating genomic information at different levels (mutation and expression data) leads to better subtyping of breast cancers.

生物研究的最新进展见证了高通量技术的出现,这些技术具有许多应用,可以以前所未有的深度和规模研究生物机制。大量的基因组数据现在通过癌症基因组图谱(TCGA)等联盟分发,其中可以获得关于特定类型组织或细胞的特定类型生物信息。在癌症研究中,现在的挑战是对高维多组数据进行综合分析,以更好地理解与癌症结果相关的基因组过程,例如阐明区分特定癌症亚群(癌症亚型)的基因网络,或发现不同癌症类型重叠的基因网络(泛癌研究)。在本文中,我们提出了一种新的混合图形模型方法来分析不同类型(连续、离散和计数)的多组数据,并通过扩展最初由Stephens(2000)提出、后来由Mohammadi和Wit(2015)开发的出生-死亡MCMC(BDMCMC)算法来进行模型选择。我们使用仿真将我们的方法的性能与LASSO方法和标准BDMCMC方法进行了比较,发现我们的方法在计算效率和模型选择结果的准确性方面都是优越的。最后,TCGA乳腺癌症数据的应用表明,整合不同水平的基因组信息(突变和表达数据)可以更好地分型乳腺癌。
{"title":"THE SCALABLE BIRTH-DEATH MCMC ALGORITHM FOR MIXED GRAPHICAL MODEL LEARNING WITH APPLICATION TO GENOMIC DATA INTEGRATION.","authors":"Nanwei Wang, Hélène Massam, Xin Gao, Laurent Briollais","doi":"10.1214/22-aoas1701","DOIUrl":"10.1214/22-aoas1701","url":null,"abstract":"<p><p>Recent advances in biological research have seen the emergence of high-throughput technologies with numerous applications that allow the study of biological mechanisms at an unprecedented depth and scale. A large amount of genomic data is now distributed through consortia like The Cancer Genome Atlas (TCGA), where specific types of biological information on specific type of tissue or cell are available. In cancer research, the challenge is now to perform integrative analyses of high-dimensional multi-omic data with the goal to better understand genomic processes that correlate with cancer outcomes, e.g. elucidate gene networks that discriminate a specific cancer subgroups (cancer sub-typing) or discovering gene networks that overlap across different cancer types (pan-cancer studies). In this paper, we propose a novel mixed graphical model approach to analyze multi-omic data of different types (continuous, discrete and count) and perform model selection by extending the Birth-Death MCMC (BDMCMC) algorithm initially proposed by Stephens (2000) and later developed by Mohammadi and Wit (2015). We compare the performance of our method to the LASSO method and the standard BDMCMC method using simulations and find that our method is superior in terms of both computational efficiency and the accuracy of the model selection results. Finally, an application to the TCGA breast cancer data shows that integrating genomic information at different levels (mutation and expression data) leads to better subtyping of breast cancers.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 3","pages":"1958-1983"},"PeriodicalIF":1.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10569451/pdf/nihms-1886934.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41219379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PROBABILISTIC LEARNING OF TREATMENT TREES IN CANCER. 癌症治疗树的概率学习。
IF 1.8 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-09-01 Epub Date: 2023-09-07 DOI: 10.1214/22-aoas1696
Tsung-Hung Yao, Zhenke Wu, Karthik Bharath, Jinju Li, Veerabhadran Baladandayuthapani

Accurate identification of synergistic treatment combinations and their underlying biological mechanisms is critical across many disease domains, especially cancer. In translational oncology research, preclinical systems such as patient-derived xenografts (PDX) have emerged as a unique study design evaluating multiple treatments administered to samples from the same human tumor implanted into genetically identical mice. In this paper, we propose a novel Bayesian probabilistic tree-based framework for PDX data to investigate the hierarchical relationships between treatments by inferring treatment cluster trees, referred to as treatment trees (Rx-tree). The framework motivates a new metric of mechanistic similarity between two or more treatments accounting for inherent uncertainty in tree estimation; treatments with a high estimated similarity have potentially high mechanistic synergy. Building upon Dirichlet Diffusion Trees, we derive a closed-form marginal likelihood encoding the tree structure, which facilitates computationally efficient posterior inference via a new two-stage algorithm. Simulation studies demonstrate superior performance of the proposed method in recovering the tree structure and treatment similarities. Our analyses of a recently collated PDX dataset produce treatment similarity estimates that show a high degree of concordance with known biological mechanisms across treatments in five different cancers. More importantly, we uncover new and potentially effective combination therapies that confer synergistic regulation of specific downstream biological pathways for future clinical investigations. Our accompanying code, data, and shiny application for visualization of results are available at: https://github.com/bayesrx/RxTree.

准确识别协同治疗组合及其潜在的生物学机制对于许多疾病领域至关重要,尤其是癌症。在转化肿瘤学研究中,患者来源的异种移植物(PDX)等临床前系统已成为一种独特的研究设计,用于评估对植入基因相同小鼠的同一人类肿瘤样本进行的多种治疗。在本文中,我们提出了一种新的基于贝叶斯概率树的PDX数据框架,通过推断处理聚类树(称为处理树(Rx树))来研究处理之间的层次关系。该框架激发了两种或两种以上处理之间机制相似性的新度量,考虑到树估计中固有的不确定性;具有高估计相似性的处理具有潜在的高机制协同作用。在Dirichlet扩散树的基础上,我们推导了一种对树结构进行编码的闭式边缘似然,这有助于通过一种新的两阶段算法进行计算高效的后验推理。仿真研究表明,该方法在恢复树结构和处理相似性方面具有优越的性能。我们对最近整理的PDX数据集的分析产生了治疗相似性估计,显示出与五种不同癌症治疗的已知生物学机制高度一致。更重要的是,我们发现了新的、潜在有效的联合疗法,为未来的临床研究提供了对特定下游生物途径的协同调节。我们的附带代码、数据和用于结果可视化的闪亮应用程序可在以下位置获得:https://github.com/bayesrx/RxTree.
{"title":"PROBABILISTIC LEARNING OF TREATMENT TREES IN CANCER.","authors":"Tsung-Hung Yao,&nbsp;Zhenke Wu,&nbsp;Karthik Bharath,&nbsp;Jinju Li,&nbsp;Veerabhadran Baladandayuthapani","doi":"10.1214/22-aoas1696","DOIUrl":"10.1214/22-aoas1696","url":null,"abstract":"<p><p>Accurate identification of synergistic treatment combinations and their underlying biological mechanisms is critical across many disease domains, especially cancer. In translational oncology research, preclinical systems such as patient-derived xenografts (PDX) have emerged as a unique study design evaluating multiple treatments administered to samples from the same human tumor implanted into genetically identical mice. In this paper, we propose a novel Bayesian probabilistic tree-based framework for PDX data to investigate the hierarchical relationships between treatments by inferring treatment cluster trees, referred to as treatment trees (R<sub>x</sub>-tree). The framework motivates a new metric of mechanistic similarity between two or more treatments accounting for inherent uncertainty in tree estimation; treatments with a high estimated similarity have potentially high mechanistic synergy. Building upon Dirichlet Diffusion Trees, we derive a closed-form marginal likelihood encoding the tree structure, which facilitates computationally efficient posterior inference via a new two-stage algorithm. Simulation studies demonstrate superior performance of the proposed method in recovering the tree structure and treatment similarities. Our analyses of a recently collated PDX dataset produce treatment similarity estimates that show a high degree of concordance with known biological mechanisms across treatments in five different cancers. More importantly, we uncover new and potentially effective combination therapies that confer synergistic regulation of specific downstream biological pathways for future clinical investigations. Our accompanying code, data, and shiny application for visualization of results are available at: https://github.com/bayesrx/RxTree.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 3","pages":"1884-1908"},"PeriodicalIF":1.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10501503/pdf/nihms-1857187.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10308161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IDENTIFICATION OF IMMUNE RESPONSE COMBINATIONS ASSOCIATED WITH HETEROGENEOUS INFECTION RISK IN THE IMMUNE CORRELATES ANALYSIS OF HIV VACCINE STUDIES. 在艾滋病毒疫苗研究的免疫相关性分析中确定与异质性感染风险相关的免疫反应组合。
IF 1.8 4区 数学 Q2 STATISTICS & PROBABILITY Pub Date : 2023-06-01 Epub Date: 2023-05-01 DOI: 10.1214/22-aoas1665
Chaeryon Kang, Ying Huang

In HIV vaccine/prevention research, probing into the vaccine-induced immune responses that can help predict the risk of HIV infection provides valuable information for the development of vaccine regimens. Previous correlate analysis of the Thai vaccine trial aided the discovery of interesting immune correlates related to the risk of developing an HIV infection. The present study aimed to identify the combinations of immune responses associated with the heterogeneous infection risk. We explored a "change-plane" via combination of a subset of immune responses that could help separate vaccine recipients into two heterogeneous subgroups in terms of the association between immune responses and the risk of developing infection. Additionally, we developed a new variable selection algorithm through a penalized likelihood approach to investigate a parsimonious marker combination for the change-plane. The resulting marker combinations can serve as candidate correlates of protection and can be used for predicting the protective effect of the vaccine against HIV infection. The application of the proposed statistical approach to the Thai trial has been presented, wherein the marker combinations were explored among several immune responses and antigens.

在艾滋病疫苗/预防研究中,探究有助于预测艾滋病感染风险的疫苗诱导免疫反应为疫苗方案的开发提供了宝贵的信息。之前对泰国疫苗试验进行的相关分析有助于发现与感染 HIV 风险有关的有趣的免疫相关因素。本研究旨在确定与不同感染风险相关的免疫反应组合。我们通过免疫反应子集的组合探索了一种 "变化平面",它可以帮助将疫苗接受者分为两个异质亚组,即免疫反应与感染风险之间的关联。此外,我们还通过惩罚似然法开发了一种新的变量选择算法,以研究变化平面的合理标记物组合。由此得出的标记物组合可作为保护的候选相关因子,并可用于预测疫苗对艾滋病感染的保护效果。本文介绍了所提出的统计方法在泰国试验中的应用,其中探讨了几种免疫反应和抗原之间的标记物组合。
{"title":"IDENTIFICATION OF IMMUNE RESPONSE COMBINATIONS ASSOCIATED WITH HETEROGENEOUS INFECTION RISK IN THE IMMUNE CORRELATES ANALYSIS OF HIV VACCINE STUDIES.","authors":"Chaeryon Kang, Ying Huang","doi":"10.1214/22-aoas1665","DOIUrl":"10.1214/22-aoas1665","url":null,"abstract":"<p><p>In HIV vaccine/prevention research, probing into the vaccine-induced immune responses that can help predict the risk of HIV infection provides valuable information for the development of vaccine regimens. Previous correlate analysis of the Thai vaccine trial aided the discovery of interesting immune correlates related to the risk of developing an HIV infection. The present study aimed to identify the combinations of immune responses associated with the heterogeneous infection risk. We explored a \"change-plane\" via combination of a subset of immune responses that could help separate vaccine recipients into two heterogeneous subgroups in terms of the association between immune responses and the risk of developing infection. Additionally, we developed a new variable selection algorithm through a penalized likelihood approach to investigate a parsimonious marker combination for the change-plane. The resulting marker combinations can serve as candidate correlates of protection and can be used for predicting the protective effect of the vaccine against HIV infection. The application of the proposed statistical approach to the Thai trial has been presented, wherein the marker combinations were explored among several immune responses and antigens.</p>","PeriodicalId":50772,"journal":{"name":"Annals of Applied Statistics","volume":"17 2","pages":"1199-1219"},"PeriodicalIF":1.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9755428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Annals of Applied Statistics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1