首页 > 最新文献

American Statistician最新文献

英文 中文
Tractable Bayesian inference for an unidentified simple linear regression model 不明简单线性回归模型的贝叶斯推断方法
IF 1.8 4区 数学 Q1 Mathematics Pub Date : 2024-03-26 DOI: 10.1080/00031305.2024.2333864
Robert Calvert Jump
In this paper, I propose a tractable approach to Bayesian inference in a simple linear regression model for which the standard exogeneity assumption does not hold. By specifying a beta prior for th...
在本文中,我提出了一种简单线性回归模型的贝叶斯推断方法,该模型的标准外生性假设并不成立。通过为该模型指定一个贝塔先验值,我们可以得到一个简单的线性回归模型。
{"title":"Tractable Bayesian inference for an unidentified simple linear regression model","authors":"Robert Calvert Jump","doi":"10.1080/00031305.2024.2333864","DOIUrl":"https://doi.org/10.1080/00031305.2024.2333864","url":null,"abstract":"In this paper, I propose a tractable approach to Bayesian inference in a simple linear regression model for which the standard exogeneity assumption does not hold. By specifying a beta prior for th...","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"13 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140291666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moments of the Nonnegative Adjusted Estimator of Squared Multiple Correlation 平方多重相关性的非负调整估计量的矩
IF 1.8 4区 数学 Q1 Mathematics Pub Date : 2024-03-18 DOI: 10.1080/00031305.2024.2332764
Joseph F. Lucke
I present the moments of the nonnegative adjusted estimator of the squared multiple correlation ρ2, the coefficient of determination for random-predictor regression. This estimator, first proposed...
我提出了多重相关平方 ρ2(随机预测回归的决定系数)的非负调整估计量的矩。这个估计器是首次提出的...
{"title":"Moments of the Nonnegative Adjusted Estimator of Squared Multiple Correlation","authors":"Joseph F. Lucke","doi":"10.1080/00031305.2024.2332764","DOIUrl":"https://doi.org/10.1080/00031305.2024.2332764","url":null,"abstract":"I present the moments of the nonnegative adjusted estimator of the squared multiple correlation ρ2, the coefficient of determination for random-predictor regression. This estimator, first proposed...","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"8 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140192675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covariance Matrix Estimation for High-Throughput Biomedical Data with Interconnected Communities 具有互联群落的高通量生物医学数据的协方差矩阵估计
IF 1.8 4区 数学 Q1 Mathematics Pub Date : 2024-03-11 DOI: 10.1080/00031305.2024.2329681
Yifan Yang, Chixiang Chen, Shuo Chen
Estimating a covariance matrix is central to high-dimensional data analysis. Empirical analyses of high-dimensional biomedical data, including genomics, proteomics, microbiome, and neuroimaging, am...
估计协方差矩阵是高维数据分析的核心。对包括基因组学、蛋白质组学、微生物组和神经影像学在内的高维生物医学数据进行实证分析,是一项非常重要的工作。
{"title":"Covariance Matrix Estimation for High-Throughput Biomedical Data with Interconnected Communities","authors":"Yifan Yang, Chixiang Chen, Shuo Chen","doi":"10.1080/00031305.2024.2329681","DOIUrl":"https://doi.org/10.1080/00031305.2024.2329681","url":null,"abstract":"Estimating a covariance matrix is central to high-dimensional data analysis. Empirical analyses of high-dimensional biomedical data, including genomics, proteomics, microbiome, and neuroimaging, am...","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"20 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thick Data Analytics (TDA): An Iterative and Inductive Framework for Algorithmic Improvement 厚数据分析(TDA):算法改进的迭代和归纳框架
IF 1.8 4区 数学 Q1 Mathematics Pub Date : 2024-03-11 DOI: 10.1080/00031305.2024.2327535
Minh Nguyen, Tiffany Eulalio, Ben Marafino, Christian Rose, Jonathan H. Chen, Michael Baiocchi
A gap remains between developing risk prediction models and deploying models to support real-world decision making, especially in high-stakes situations. Human-experts’ reasoning abilities remain c...
在开发风险预测模型和部署模型以支持现实世界的决策制定之间仍然存在差距,尤其是在高风险情况下。人类专家的推理能力仍然很有限。
{"title":"Thick Data Analytics (TDA): An Iterative and Inductive Framework for Algorithmic Improvement","authors":"Minh Nguyen, Tiffany Eulalio, Ben Marafino, Christian Rose, Jonathan H. Chen, Michael Baiocchi","doi":"10.1080/00031305.2024.2327535","DOIUrl":"https://doi.org/10.1080/00031305.2024.2327535","url":null,"abstract":"A gap remains between developing risk prediction models and deploying models to support real-world decision making, especially in high-stakes situations. Human-experts’ reasoning abilities remain c...","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"21 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140188718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the term “randomization test” 关于 "随机化检验 "一词
IF 1.8 4区 数学 Q1 Mathematics Pub Date : 2024-02-21 DOI: 10.1080/00031305.2024.2319182
Jesse Hemerik
There is no consensus on the meaning of the term “randomization test”. Contradictory uses of the term are leading to confusion, misunderstandings and indeed invalid data analyses. A main source of ...
关于 "随机化测试 "一词的含义,目前还没有达成共识。对该术语的相互矛盾的使用导致了混淆、误解和实际上无效的数据分析。随机化测试的一个主要来源是...
{"title":"On the term “randomization test”","authors":"Jesse Hemerik","doi":"10.1080/00031305.2024.2319182","DOIUrl":"https://doi.org/10.1080/00031305.2024.2319182","url":null,"abstract":"There is no consensus on the meaning of the term “randomization test”. Contradictory uses of the term are leading to confusion, misunderstandings and indeed invalid data analyses. A main source of ...","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"16 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139976693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fitting log-Gaussian Cox processes using generalized additive model software 使用广义加法模型软件拟合对数高斯考克斯过程
IF 1.8 4区 数学 Q1 Mathematics Pub Date : 2024-02-08 DOI: 10.1080/00031305.2024.2316725
Elliot Dovers, Jakub Stoklosa, David I. Warton
While log-Gaussian Cox process regression models are useful tools for modeling point patterns, they can be technically difficult to fit and require users to learn/adopt bespoke software. We show th...
虽然对数高斯 Cox 过程回归模型是建模点模式的有用工具,但它们在拟合上可能存在技术难度,需要用户学习/采用定制软件。我们展示了...
{"title":"Fitting log-Gaussian Cox processes using generalized additive model software","authors":"Elliot Dovers, Jakub Stoklosa, David I. Warton","doi":"10.1080/00031305.2024.2316725","DOIUrl":"https://doi.org/10.1080/00031305.2024.2316725","url":null,"abstract":"While log-Gaussian Cox process regression models are useful tools for modeling point patterns, they can be technically difficult to fit and require users to learn/adopt bespoke software. We show th...","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"295 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139739435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applied Linear Regression for Longitudinal Data: With an Emphasis on Missing Observations 纵向数据的应用线性回归:重视缺失观察值
IF 1.8 4区 数学 Q1 Mathematics Pub Date : 2024-02-05 DOI: 10.1080/00031305.2024.2302792
Maria Francesca Marino
Published in The American Statistician (Vol. 78, No. 1, 2024)
发表于《美国统计学家》(第 78 卷第 1 期,2024 年)
{"title":"Applied Linear Regression for Longitudinal Data: With an Emphasis on Missing Observations","authors":"Maria Francesca Marino","doi":"10.1080/00031305.2024.2302792","DOIUrl":"https://doi.org/10.1080/00031305.2024.2302792","url":null,"abstract":"Published in The American Statistician (Vol. 78, No. 1, 2024)","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"15 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139720356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proximal MCMC for Bayesian Inference of Constrained and Regularized Estimation 用于约束和正则化估计的贝叶斯推理的近端 MCMC
IF 1.8 4区 数学 Q1 Mathematics Pub Date : 2024-01-23 DOI: 10.1080/00031305.2024.2308821
Xinkai Zhou, Qiang Heng, Eric C. Chi, Hua Zhou
This paper advocates proximal Markov Chain Monte Carlo (ProxMCMC) as a flexible and general Bayesian inference framework for constrained or regularized estimation. Originally introduced in the Baye...
本文提倡将近似马尔可夫链蒙特卡罗(ProxMCMC)作为一种灵活、通用的贝叶斯推理框架,用于约束或正则化估计。ProxMCMC 最初是在贝叶斯推理中引入的。
{"title":"Proximal MCMC for Bayesian Inference of Constrained and Regularized Estimation","authors":"Xinkai Zhou, Qiang Heng, Eric C. Chi, Hua Zhou","doi":"10.1080/00031305.2024.2308821","DOIUrl":"https://doi.org/10.1080/00031305.2024.2308821","url":null,"abstract":"This paper advocates proximal Markov Chain Monte Carlo (ProxMCMC) as a flexible and general Bayesian inference framework for constrained or regularized estimation. Originally introduced in the Baye...","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"154 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parole Board Decision-Making using Adversarial Risk Analysis 假释委员会利用对抗性风险分析进行决策
IF 1.8 4区 数学 Q1 Mathematics Pub Date : 2024-01-22 DOI: 10.1080/00031305.2024.2303416
Chaitanya Joshi, Charné Nel, Javier Cano, Devon L.L. Polaschek
Adversarial Risk Analysis (ARA) allows for much more realistic modeling of game theoretic decision problems than Bayesian game theory. While ARA solutions for various applications have been discuss...
与贝叶斯博弈论相比,对抗性风险分析(ARA)可以对博弈论决策问题进行更真实的建模。虽然针对各种应用的 ARA 解决方案已被讨论过,但仍有许多问题有待解决。
{"title":"Parole Board Decision-Making using Adversarial Risk Analysis","authors":"Chaitanya Joshi, Charné Nel, Javier Cano, Devon L.L. Polaschek","doi":"10.1080/00031305.2024.2303416","DOIUrl":"https://doi.org/10.1080/00031305.2024.2303416","url":null,"abstract":"Adversarial Risk Analysis (ARA) allows for much more realistic modeling of game theoretic decision problems than Bayesian game theory. While ARA solutions for various applications have been discuss...","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"23 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prioritizing Variables for Observational Study Design using the Joint Variable Importance Plot 利用联合变量重要性图确定观察研究设计变量的优先次序
IF 1.8 4区 数学 Q1 Mathematics Pub Date : 2024-01-10 DOI: 10.1080/00031305.2024.2303419
Lauren D. Liao, Yeyi Zhu, Amanda L. Ngo, Rana F. Chehab, Samuel D. Pimentel
Observational studies of treatment effects require adjustment for confounding variables. However, causal inference methods typically cannot deliver perfect adjustment on all measured baseline varia...
对治疗效果的观察研究需要对混杂变量进行调整。然而,因果推断方法通常无法对所有测量的基线变量进行完美的调整。
{"title":"Prioritizing Variables for Observational Study Design using the Joint Variable Importance Plot","authors":"Lauren D. Liao, Yeyi Zhu, Amanda L. Ngo, Rana F. Chehab, Samuel D. Pimentel","doi":"10.1080/00031305.2024.2303419","DOIUrl":"https://doi.org/10.1080/00031305.2024.2303419","url":null,"abstract":"Observational studies of treatment effects require adjustment for confounding variables. However, causal inference methods typically cannot deliver perfect adjustment on all measured baseline varia...","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"73 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139407646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American Statistician
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1