首页 > 最新文献

American Statistician最新文献

英文 中文
Laplace's law of succession estimator and M-statistics. 拉普拉斯演替估计量和m统计量。
IF 2.1 4区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-08-01 Epub Date: 2025-02-25 DOI: 10.1080/00031305.2024.2448430
Eugene Demidenko

The classic formula for estimating the binomial probability as the proportion of successes contradicts common sense for extreme probabilities when the event never occurs or occurs every time. Laplace's law of succession estimator, one of the first applications of Bayesian statistics, has been around for over 250 years and resolves the paradoxes, although rarely discussed in modern statistics texts. This work aims to introduce a new theory for exact optimal statistical inference using Laplace's law of succession estimator as a motivating example. We prove that this estimator may be viewed from a different theoretical perspective as the limit point of the short confidence interval on the double-log scale when the confidence level approaches zero. This motivating example paves the road to the definition of an estimator as the inflection point on the cumulative distribution function as a function of the parameter given the observed statistic. This estimator has the maximum infinitesimal probability of the coverage of the unknown parameter and, therefore, is called the maximum concentration (MC) estimator as a part of a more general M-statistics theory. The new theory is illustrated with exact optimal confidence intervals for the normal standard deviation and the respective MC estimators.

估计二项概率的经典公式是成功的比例,当事件从未发生或每次都发生时,这与极端概率的常识相矛盾。拉普拉斯演替估计律是贝叶斯统计的最早应用之一,它已经存在了250多年,解决了这些悖论,尽管在现代统计文献中很少讨论。本文以拉普拉斯演替估计器为例,介绍了一种新的精确最优统计推断理论。我们证明了这个估计量可以从另一个理论角度看作是当置信水平趋近于零时,双对数尺度上短置信区间的极限点。这个鼓舞人心的例子为估计量的定义铺平了道路,估计量是累积分布函数的拐点,是给定观察到的统计量的参数的函数。该估计量具有未知参数覆盖的最大无穷小概率,因此,作为更一般的m统计理论的一部分,称为最大浓度(MC)估计量。新理论用正态标准差的精确最优置信区间和各自的MC估计来说明。
{"title":"Laplace's law of succession estimator and M-statistics.","authors":"Eugene Demidenko","doi":"10.1080/00031305.2024.2448430","DOIUrl":"10.1080/00031305.2024.2448430","url":null,"abstract":"<p><p>The classic formula for estimating the binomial probability as the proportion of successes contradicts common sense for extreme probabilities when the event never occurs or occurs every time. Laplace's law of succession estimator, one of the first applications of Bayesian statistics, has been around for over 250 years and resolves the paradoxes, although rarely discussed in modern statistics texts. This work aims to introduce a new theory for exact optimal statistical inference using Laplace's law of succession estimator as a motivating example. We prove that this estimator may be viewed from a different theoretical perspective as the limit point of the short confidence interval on the double-log scale when the confidence level approaches zero. This motivating example paves the road to the definition of an estimator as the inflection point on the cumulative distribution function as a function of the parameter given the observed statistic. This estimator has the maximum infinitesimal probability of the coverage of the unknown parameter and, therefore, is called the maximum concentration (MC) estimator as a part of a more general M-statistics theory. The new theory is illustrated with exact optimal confidence intervals for the normal standard deviation and the respective MC estimators.</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"79 3","pages":"311-319"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12333967/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144818119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Multiple Imputation Approach for the Cumulative Incidence, with Implications for Variance Estimation. 累积发生率的多重归算方法及其对方差估计的影响。
IF 2.1 4区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-08-01 Epub Date: 2025-02-28 DOI: 10.1080/00031305.2025.2453674
Elizabeth C Chase, Philip S Boonstra, Jeremy M G Taylor

We present an alternative approach to estimating the cumulative incidence function that uses non-parametric multiple imputation to reduce the problem to that of estimating a binomial proportion. In the standard competing risks setting, we show mathematically and empirically that our imputation-based estimator is equivalent to the Aalen-Johansen estimator of the cumulative incidence given a sufficient number of imputations. However, our approach allows for the use of a wider variety of methods for the analysis of binary outcomes, including preferred options for uncertainty estimation. While we focus on the cumulative incidence function, the multiple imputation approach likely extends to more complex problems in competing risks.

我们提出了一种估计累积关联函数的替代方法,该方法使用非参数多重imputation将问题减少到估计二项比例的问题。在标准竞争风险设置中,我们在数学上和经验上表明,在给定足够数量的估算的情况下,我们基于估算的估计量相当于累积发生率的aallen - johansen估计量。然而,我们的方法允许使用更广泛的方法来分析二元结果,包括不确定性估计的首选选项。虽然我们关注的是累积关联函数,但多重归算方法可能会扩展到竞争风险中更复杂的问题。
{"title":"A Multiple Imputation Approach for the Cumulative Incidence, with Implications for Variance Estimation.","authors":"Elizabeth C Chase, Philip S Boonstra, Jeremy M G Taylor","doi":"10.1080/00031305.2025.2453674","DOIUrl":"10.1080/00031305.2025.2453674","url":null,"abstract":"<p><p>We present an alternative approach to estimating the cumulative incidence function that uses non-parametric multiple imputation to reduce the problem to that of estimating a binomial proportion. In the standard competing risks setting, we show mathematically and empirically that our imputation-based estimator is equivalent to the Aalen-Johansen estimator of the cumulative incidence given a sufficient number of imputations. However, our approach allows for the use of a wider variety of methods for the analysis of binary outcomes, including preferred options for uncertainty estimation. While we focus on the cumulative incidence function, the multiple imputation approach likely extends to more complex problems in competing risks.</p>","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"79 3","pages":"291-301"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360614/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144884242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards explainable data and sports analytics: A case study on pass completion prediction in American Football 迈向可解释数据和体育分析:美式足球传球完成预测的案例研究
IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-07-31 DOI: 10.1080/00031305.2025.2541085
Anton Augustine, Gabe P Redding, Steven Le Moan
{"title":"Towards explainable data and sports analytics: A case study on pass completion prediction in American Football","authors":"Anton Augustine, Gabe P Redding, Steven Le Moan","doi":"10.1080/00031305.2025.2541085","DOIUrl":"https://doi.org/10.1080/00031305.2025.2541085","url":null,"abstract":"","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"27 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144755733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A statistical approach to latent dynamic modeling with differential equations 用微分方程进行潜在动力学建模的统计方法
IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-07-31 DOI: 10.1080/00031305.2025.2539999
Maren Hackenberg, Astrid Pechmann, Clemens Kreutz, Janbernd Kirschner, Harald Binder
{"title":"A statistical approach to latent dynamic modeling with differential equations","authors":"Maren Hackenberg, Astrid Pechmann, Clemens Kreutz, Janbernd Kirschner, Harald Binder","doi":"10.1080/00031305.2025.2539999","DOIUrl":"https://doi.org/10.1080/00031305.2025.2539999","url":null,"abstract":"","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"137 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144755721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Handling Missingness, Failures, and Non-Convergence in Simulation Studies: A Review of Current Practices and Recommendations 在模拟研究中处理缺失、失败和不收敛:当前实践和建议的回顾
IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-07-30 DOI: 10.1080/00031305.2025.2540002
Samuel Pawel, František Bartoš, Björn S. Siepe, Anna Lohmann
{"title":"Handling Missingness, Failures, and Non-Convergence in Simulation Studies: A Review of Current Practices and Recommendations","authors":"Samuel Pawel, František Bartoš, Björn S. Siepe, Anna Lohmann","doi":"10.1080/00031305.2025.2540002","DOIUrl":"https://doi.org/10.1080/00031305.2025.2540002","url":null,"abstract":"","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"27 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144747263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forecasting Future Eruptions using Hierarchical Trend Renewal Processes 利用分层趋势更新过程预测未来火山爆发
IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-07-30 DOI: 10.1080/00031305.2025.2540590
Joel Carman, Ting Wang, Mark Bebbington, Shane Cronin, Marco Brenna, Ingrid Ukstins
{"title":"Forecasting Future Eruptions using Hierarchical Trend Renewal Processes","authors":"Joel Carman, Ting Wang, Mark Bebbington, Shane Cronin, Marco Brenna, Ingrid Ukstins","doi":"10.1080/00031305.2025.2540590","DOIUrl":"https://doi.org/10.1080/00031305.2025.2540590","url":null,"abstract":"","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"13 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144747265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Storyboard: A Tool to Synthesize, Reflect On, and Write About Data Investigations 故事板:一个综合、反思和撰写数据调查的工具
IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-07-30 DOI: 10.1080/00031305.2025.2539997
Sara Stoudt, Deborah Nolan
{"title":"The Storyboard: A Tool to Synthesize, Reflect On, and Write About Data Investigations","authors":"Sara Stoudt, Deborah Nolan","doi":"10.1080/00031305.2025.2539997","DOIUrl":"https://doi.org/10.1080/00031305.2025.2539997","url":null,"abstract":"","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"1 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144747266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
American Football Scores: Using Partially Regularized Ordinal Regression to Adjust for Strength of Opponents, Within-Team Complementary Unit Performance 美式足球比分:使用部分正则化有序回归调整对手实力,队内互补单位表现
IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-07-30 DOI: 10.1080/00031305.2025.2539998
Andrey Skripnikov, Sujit Sivadanam
{"title":"American Football Scores: Using Partially Regularized Ordinal Regression to Adjust for Strength of Opponents, Within-Team Complementary Unit Performance","authors":"Andrey Skripnikov, Sujit Sivadanam","doi":"10.1080/00031305.2025.2539998","DOIUrl":"https://doi.org/10.1080/00031305.2025.2539998","url":null,"abstract":"","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"13 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144747264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fisher’s exact test justification of the TF–IDF term-weighting scheme TF-IDF期限加权方案的费雪精确检验证明
IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-07-29 DOI: 10.1080/00031305.2025.2539241
Paul Sheridan, Zeyad Ahmed, Aitazaz A. Farooque
{"title":"A Fisher’s exact test justification of the TF–IDF term-weighting scheme","authors":"Paul Sheridan, Zeyad Ahmed, Aitazaz A. Farooque","doi":"10.1080/00031305.2025.2539241","DOIUrl":"https://doi.org/10.1080/00031305.2025.2539241","url":null,"abstract":"","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"27 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144737008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explainable Linear and Generalized Linear Models by the Predictions Plot 可解释线性和广义线性模型的预测图
IF 1.8 4区 数学 Q1 STATISTICS & PROBABILITY Pub Date : 2025-07-28 DOI: 10.1080/00031305.2025.2539235
Peter J. Rousseeuw
{"title":"Explainable Linear and Generalized Linear Models by the Predictions Plot","authors":"Peter J. Rousseeuw","doi":"10.1080/00031305.2025.2539235","DOIUrl":"https://doi.org/10.1080/00031305.2025.2539235","url":null,"abstract":"","PeriodicalId":50801,"journal":{"name":"American Statistician","volume":"63 1","pages":""},"PeriodicalIF":1.8,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144715456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
American Statistician
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1