We introduce a modification of the linear sieve whose weights satisfy strong factorization properties, and consequently equidistribute primes up to size in arithmetic progressions to moduli up to . This surpasses the level of distribution with the linear sieve weights from well-known work of Bombieri, Friedlander, and Iwaniec, and which was recently extended to by Maynard. As an application, we obtain a new upper bound on the count of twin primes. Our method simplifies the 2004 argument of Wu, and gives the largest percentage improvement since the 1986 bound of Bombieri, Friedlander, and Iwaniec.
{"title":"A modification of the linear sieve, and the count of twin primes","authors":"Jared Duker Lichtman","doi":"10.2140/ant.2025.19.1","DOIUrl":"https://doi.org/10.2140/ant.2025.19.1","url":null,"abstract":"<p>We introduce a modification of the linear sieve whose weights satisfy strong factorization properties, and consequently equidistribute primes up to size <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>x</mi></math> in arithmetic progressions to moduli up to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>x</mi></mrow><mrow><mn>1</mn><mn>0</mn><mo>∕</mo><mn>1</mn><mn>7</mn></mrow></msup></math>. This surpasses the level of distribution <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>x</mi></mrow><mrow><mn>4</mn><mo>∕</mo><mn>7</mn></mrow></msup></math> with the linear sieve weights from well-known work of Bombieri, Friedlander, and Iwaniec, and which was recently extended to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mrow><mi>x</mi></mrow><mrow><mn>7</mn><mo>∕</mo><mn>1</mn><mn>2</mn></mrow></msup></math> by Maynard. As an application, we obtain a new upper bound on the count of twin primes. Our method simplifies the 2004 argument of Wu, and gives the largest percentage improvement since the 1986 bound of Bombieri, Friedlander, and Iwaniec. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"28 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142776367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Let <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mi>A</mi></math> be an abelian variety over a number field <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mi>F</mi></math>, and suppose that <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mi>ℤ</mi><mo stretchy="false">[</mo><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy="false">]</mo></math> embeds in <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi> End</mi><mo> <!--FUNCTION APPLICATION--> </mo><!--nolimits--></mrow><mrow><mover accent="true"><mrow><mi>F</mi></mrow><mo accent="true">¯</mo></mover></mrow></msub><mi>A</mi></math>, for some root of unity <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>ζ</mi></mrow><mrow><mi>n</mi></mrow></msub></math> of order <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi>