首页 > 最新文献

European Heart Journal - Digital Health最新文献

英文 中文
International evaluation of an artificial intelligence-powered ecg model detecting acute coronary occlusion myocardial infarction 检测急性冠状动脉闭塞性心肌梗死的人工智能驱动心电图模型的国际评估
Pub Date : 2023-11-28 DOI: 10.1093/ehjdh/ztad074
R. Herman, H. P. Meyers, Stephen W Smith, D. Bertolone, A. Leone, Konstantinos Bermpeis, M. M. Viscusi, M. Belmonte, A. Demolder, V. Boza, B. Vavrik, V. Kresnakova, Andrej Iring, M. Martonak, Jakub Bahyl, Timea Kisova, D. Schelfaut, M. Vanderheyden, L. Perl, Emre Aslanger, R. Hatala, Wojtek Wojakowski, J. Bartunek, Emanuele Barbato
Majority of acute coronary syndromes (ACS) present without typical ST-elevation. One third of Non-ST-elevation myocardial infarction (NSTEMI) patients have an acutely occluded culprit coronary artery (occlusion myocardial infarction [OMI]), leading to poor outcomes due to delayed identification and invasive management. We sought to develop a versatile artificial intelligence (AI)-model detecting acute OMI on single standard 12-lead electrocardiograms (ECGs) and compare its performance to existing state-of-the-art diagnostic criteria. An AI model was developed using 18,616 ECGs from 10,543 patients with suspected ACS from an international database with clinically validated outcomes. The model was evaluated in an international cohort and compared with STEMI criteria and ECG experts in detecting OMI. Primary outcome of OMI was an acutely occluded or flow-limiting culprit artery requiring emergent revascularization. In the overall test set of 3,254 ECGs from 2,222 patients (age 62 ± 14 years, 67% males, 21.6% OMI), the AI model achieved an area under the curve (AUC) of 0.938 (95% CI: 0.924-0.951) in identifying the primary OMI outcome, with superior performance (accuracy 90.9% [95% CI: 89.7-92.0], sensitivity 80.6% [95% CI: 76.8-84.0], specificity 93.7 [95% CI: 92.6-94.8]) compared to STEMI criteria (accuracy 83.6% [95% CI: 82.1-85.1], sensitivity 32.5% [95% CI: 28.4-36.6], specificity 97.7% [95% CI: 97.0-98.3]) and similar performance compared to ECG experts (accuracy 90.8% [95% CI: 89.5-91.9], sensitivity 73.0% [95% CI: 68.7-77.0], specificity 95.7% [95% CI: 94.7-96.6]). The present novel ECG AI model demonstrates superior accuracy to detect acute OMI when compared to the STEMI criteria. This suggests its potential to improve ACS triage ensuring appropriate and timely referral for immediate revascularization.
大多数急性冠状动脉综合征(ACS)没有典型的ST段抬高。三分之一的非 ST 段抬高型心肌梗死(NSTEMI)患者的冠状动脉有急性闭塞(闭塞性心肌梗死 [OMI]),由于延迟识别和有创治疗,导致预后不良。我们试图开发一种多功能人工智能(AI)模型,在单张标准 12 导联心电图(ECG)上检测急性 OMI,并将其性能与现有的最先进诊断标准进行比较。 我们利用一个国际数据库中 10,543 名疑似 ACS 患者的 18,616 张心电图开发了一个人工智能模型,并对其结果进行了临床验证。该模型在国际队列中进行了评估,并在检测 OMI 方面与 STEMI 标准和心电图专家进行了比较。OMI 的主要结果是需要紧急血管重建的急性闭塞或血流受限的罪魁祸首动脉。 在来自 2,222 名患者(年龄 62 ± 14 岁,67% 为男性,21.6% 为 OMI)的 3,254 张心电图的总体测试集中,人工智能模型在识别主要 OMI 结果方面的曲线下面积(AUC)为 0.938(95% CI:0.924-0.951),性能优越(准确性 90.9% [95% CI:89.7-92.0],灵敏度 80.6% [95% CI:76.8-84.0],特异性 93.7 [95% CI:92.0])。7[95%CI:92.6-94.8])相比(准确率 83.6% [95% CI:82.1-85.1],灵敏度 32.5% [95% CI:28.4-36.6],特异性 97.7% [95% CI:97.0-98.3]),表现相似。3]),与心电图专家的表现相似(准确率 90.8% [95% CI: 89.5-91.9],灵敏度 73.0% [95% CI: 68.7-77.0],特异性 95.7% [95% CI: 94.7-96.6])。 与 STEMI 标准相比,本新型心电图 AI 模型检测急性 OMI 的准确性更高。这表明该模型具有改善 ACS 分诊的潜力,可确保适当、及时地转诊以立即进行血管重建。
{"title":"International evaluation of an artificial intelligence-powered ecg model detecting acute coronary occlusion myocardial infarction","authors":"R. Herman, H. P. Meyers, Stephen W Smith, D. Bertolone, A. Leone, Konstantinos Bermpeis, M. M. Viscusi, M. Belmonte, A. Demolder, V. Boza, B. Vavrik, V. Kresnakova, Andrej Iring, M. Martonak, Jakub Bahyl, Timea Kisova, D. Schelfaut, M. Vanderheyden, L. Perl, Emre Aslanger, R. Hatala, Wojtek Wojakowski, J. Bartunek, Emanuele Barbato","doi":"10.1093/ehjdh/ztad074","DOIUrl":"https://doi.org/10.1093/ehjdh/ztad074","url":null,"abstract":"Majority of acute coronary syndromes (ACS) present without typical ST-elevation. One third of Non-ST-elevation myocardial infarction (NSTEMI) patients have an acutely occluded culprit coronary artery (occlusion myocardial infarction [OMI]), leading to poor outcomes due to delayed identification and invasive management. We sought to develop a versatile artificial intelligence (AI)-model detecting acute OMI on single standard 12-lead electrocardiograms (ECGs) and compare its performance to existing state-of-the-art diagnostic criteria. An AI model was developed using 18,616 ECGs from 10,543 patients with suspected ACS from an international database with clinically validated outcomes. The model was evaluated in an international cohort and compared with STEMI criteria and ECG experts in detecting OMI. Primary outcome of OMI was an acutely occluded or flow-limiting culprit artery requiring emergent revascularization. In the overall test set of 3,254 ECGs from 2,222 patients (age 62 ± 14 years, 67% males, 21.6% OMI), the AI model achieved an area under the curve (AUC) of 0.938 (95% CI: 0.924-0.951) in identifying the primary OMI outcome, with superior performance (accuracy 90.9% [95% CI: 89.7-92.0], sensitivity 80.6% [95% CI: 76.8-84.0], specificity 93.7 [95% CI: 92.6-94.8]) compared to STEMI criteria (accuracy 83.6% [95% CI: 82.1-85.1], sensitivity 32.5% [95% CI: 28.4-36.6], specificity 97.7% [95% CI: 97.0-98.3]) and similar performance compared to ECG experts (accuracy 90.8% [95% CI: 89.5-91.9], sensitivity 73.0% [95% CI: 68.7-77.0], specificity 95.7% [95% CI: 94.7-96.6]). The present novel ECG AI model demonstrates superior accuracy to detect acute OMI when compared to the STEMI criteria. This suggests its potential to improve ACS triage ensuring appropriate and timely referral for immediate revascularization.","PeriodicalId":508387,"journal":{"name":"European Heart Journal - Digital Health","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139219332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and internal validation of machine learning-based models and external validation of existing risk scores for outcome prediction in patients with ischemic stroke 开发基于机器学习的模型并进行内部验证,对现有风险评分进行外部验证,以预测缺血性中风患者的预后
Pub Date : 2023-11-22 DOI: 10.1093/ehjdh/ztad073
Daniel Axford, Ferdous Sohel, V. Abedi, Ye Zhu, R. Zand, Ebrahim Barkoudah, Troy Krupica, Kingsley Iheasirim, U. M. Sharma, S. Dugani, Paul Y Takahashi, S. Bhagra, Mohammad H Murad, Gustavo Saposnik, M. Yousufuddin
We developed new ML models and externally validated existing statistical models (ischemic stroke predictive risk score [iScore] and totaled health risks in vascular events [THRIVE] scores) for predicting the composite of recurrent stroke or all-cause mortality at 90 days and at 3 years after hospitalization for first AIS. In adults hospitalized with AIS from January 2005 to November 2016, with follow-up until November 2019, we developed three ML models (random forest [RF], support vector machine [SVM], and extreme gradient boosting [XGBOOST]) and externally validated the iScore and THRIVE scores for predicting the composite outcomes after AIS hospitalization, using data from 721 patients and 90 potential predictor variables. At 90 days and 3 years, 11% and 34% of patients, respectively, reached the composite outcome. For the 90-day prediction, the area under the receiver operating characteristic curves (AUC) was 0.779 for RF, 0.771 for SVM, 0.772 for XGBOOST, 0.720 for iScore, and 0.664 for THRIVE. For 3-year prediction the AUC was 0.743 for RF, 0.777 for SVM, 0.773 for XGBOOST, 0.710 for iScore, and 0.675 for THRIVE. The study provided three ML-based predictive models that achieved good discrimination and clinical usefulness in outcome prediction after AIS and broadened the application of the iScore and THRIVE scoring system for long-term outcome prediction. Our findings warrant comparative analyses of ML and existing statistical method-based risk prediction tools for outcome prediction after AIS in new datasets.
我们开发了新的 ML 模型并从外部验证了现有的统计模型(缺血性卒中预测风险评分 [iScore] 和血管事件健康风险总计 [THRIVE] 评分),用于预测首次 AIS 住院后 90 天和 3 年的复发性卒中或全因死亡率的复合情况。 在 2005 年 1 月至 2016 年 11 月期间因 AIS 住院治疗并随访至 2019 年 11 月的成人中,我们开发了三种 ML 模型(随机森林 [RF]、支持向量机 [SVM] 和极端梯度提升 [XGBOOST]),并利用 721 名患者的数据和 90 个潜在预测变量对 iScore 和 THRIVE 评分预测 AIS 住院治疗后的综合结果进行了外部验证。 90天和3年后,分别有11%和34%的患者达到了综合结果。在 90 天的预测中,RF、SVM、XGBOOST、iScore 和 THRIVE 的接收器操作特征曲线下面积(AUC)分别为 0.779、0.771、0.772、0.720 和 0.664。对于 3 年预测,RF 的 AUC 为 0.743,SVM 为 0.777,XGBOOST 为 0.773,iScore 为 0.710,THRIVE 为 0.675。 该研究提供了三种基于 ML 的预测模型,这些模型在 AIS 后的预后预测中具有良好的区分度和临床实用性,并拓宽了 iScore 和 THRIVE 评分系统在长期预后预测中的应用。我们的研究结果值得在新的数据集中对基于 ML 和现有统计方法的风险预测工具进行比较分析,以预测 AIS 后的预后。
{"title":"Development and internal validation of machine learning-based models and external validation of existing risk scores for outcome prediction in patients with ischemic stroke","authors":"Daniel Axford, Ferdous Sohel, V. Abedi, Ye Zhu, R. Zand, Ebrahim Barkoudah, Troy Krupica, Kingsley Iheasirim, U. M. Sharma, S. Dugani, Paul Y Takahashi, S. Bhagra, Mohammad H Murad, Gustavo Saposnik, M. Yousufuddin","doi":"10.1093/ehjdh/ztad073","DOIUrl":"https://doi.org/10.1093/ehjdh/ztad073","url":null,"abstract":"We developed new ML models and externally validated existing statistical models (ischemic stroke predictive risk score [iScore] and totaled health risks in vascular events [THRIVE] scores) for predicting the composite of recurrent stroke or all-cause mortality at 90 days and at 3 years after hospitalization for first AIS. In adults hospitalized with AIS from January 2005 to November 2016, with follow-up until November 2019, we developed three ML models (random forest [RF], support vector machine [SVM], and extreme gradient boosting [XGBOOST]) and externally validated the iScore and THRIVE scores for predicting the composite outcomes after AIS hospitalization, using data from 721 patients and 90 potential predictor variables. At 90 days and 3 years, 11% and 34% of patients, respectively, reached the composite outcome. For the 90-day prediction, the area under the receiver operating characteristic curves (AUC) was 0.779 for RF, 0.771 for SVM, 0.772 for XGBOOST, 0.720 for iScore, and 0.664 for THRIVE. For 3-year prediction the AUC was 0.743 for RF, 0.777 for SVM, 0.773 for XGBOOST, 0.710 for iScore, and 0.675 for THRIVE. The study provided three ML-based predictive models that achieved good discrimination and clinical usefulness in outcome prediction after AIS and broadened the application of the iScore and THRIVE scoring system for long-term outcome prediction. Our findings warrant comparative analyses of ML and existing statistical method-based risk prediction tools for outcome prediction after AIS in new datasets.","PeriodicalId":508387,"journal":{"name":"European Heart Journal - Digital Health","volume":"65 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139247684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Data to Wisdom: Harnessing the Power of Multimodal Approach for Personalized Atherosclerotic Cardiovascular Risk Assessment 从数据到智慧:利用多模式方法的力量进行个性化动脉粥样硬化性心血管风险评估
Pub Date : 2023-11-18 DOI: 10.1093/ehjdh/ztad068
Sadeer Al-Kindi, Khurram Nasir
{"title":"From Data to Wisdom: Harnessing the Power of Multimodal Approach for Personalized Atherosclerotic Cardiovascular Risk Assessment","authors":"Sadeer Al-Kindi, Khurram Nasir","doi":"10.1093/ehjdh/ztad068","DOIUrl":"https://doi.org/10.1093/ehjdh/ztad068","url":null,"abstract":"","PeriodicalId":508387,"journal":{"name":"European Heart Journal - Digital Health","volume":"53 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139261015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Population data-based federated machine-learning improves automated echocardiographic quantification of cardiac structure and function – the AVE project 基于人口数据的联合机器学习改进了心脏结构和功能的自动超声心动图量化 - AVE 项目
Pub Date : 2023-11-15 DOI: 10.1093/ehjdh/ztad069
Caroline Morbach, Götz Gelbrich, M. Schreckenberg, Maike Hedemann, Dora Pelin, N. Scholz, O. Miljukov, Achim Wagner, Fabian Theisen, N. Hitschrich, Hendrik Wiebel, Daniel Stapf, Oliver Karch, Stefan Frantz, Peter U Heuschmann, Stefan Störk
Machine-learning (ML)-based automated measurement of echocardiography images emerged as an option to reduce observer variability. To improve the accuracy of a pre-existing automated reading tool (“original detector”) by federated ML-based re-training. AVE (Automatisierte Vermessung der Echokardiographie) was based on the echocardiography images of n = 4,965 participants of the population-based Characteristics and Course of Heart Failure Stages A-B and Determinants of Progression Cohort Study. We implemented federated ML: echocardiography images were read by the Academic CoreLab Ultrasound-based Cardiovascular Imaging at the University Hospital Würzburg (UKW). A random algorithm selected 3,226 participants for re-training of the original detector. According to data protection rules, generation of ground truth and ML training cycles took place within the UKW network. Only non-personal training weights were exchanged with the external cooperation partner for refinement of ML algorithms. Both the original detector as the re-trained detector were then applied to the echocardiograms of n = 563 participants not used for training. With regards to the human referent the re-trained detector revealed 1) superior accuracy when contrasted with the original detector´s performance as it arrived at significantly smaller mean differences in all but one parameter, and 2) smaller absolute difference between measurements when compared to a group of different human observers. Population data based ML in a federated ML set-up was feasible. The re-trained detector exhibited a much lower measurement variability than human readers. This gain in accuracy and precision strengthens the confidence into automated echocardiographic readings, which carries large potential for applications in various settings.
基于机器学习(ML)的超声心动图图像自动测量是减少观察者变异性的一种选择。 通过基于联合 ML 的再训练,提高已有自动读取工具("原始检测器")的准确性。 AVE(Automatisierte Vermessung der Echokardiographie)基于基于人群的心力衰竭 A-B 期特征和病程及进展决定因素队列研究中 n = 4965 名参与者的超声心动图图像。我们采用了联盟式 ML:超声心动图图像由维尔茨堡大学医院(UKW)的超声心血管成像学术核心实验室读取。随机算法选择了 3226 名参与者对原始检测器进行再训练。根据数据保护规则,基本事实的生成和 ML 训练周期均在 UKW 网络内进行。为改进 ML 算法,只与外部合作伙伴交换非个人训练权重。 然后,原始检测器和重新训练的检测器都应用于未用于训练的 n = 563 名参与者的超声心动图。就人类参照物而言,重新训练的检测器显示:1)与原始检测器的性能相比,其准确性更高,因为除一个参数外,它在所有参数上的平均差异都明显更小;2)与一组不同的人类观察者相比,测量结果之间的绝对差异更小。 在联合 ML 设置中基于种群数据的 ML 是可行的。与人类读者相比,经过重新训练的检测器显示出更低的测量变异性。准确度和精确度的提高增强了人们对自动超声心动图读数的信心,这在各种场合都有巨大的应用潜力。
{"title":"Population data-based federated machine-learning improves automated echocardiographic quantification of cardiac structure and function – the AVE project","authors":"Caroline Morbach, Götz Gelbrich, M. Schreckenberg, Maike Hedemann, Dora Pelin, N. Scholz, O. Miljukov, Achim Wagner, Fabian Theisen, N. Hitschrich, Hendrik Wiebel, Daniel Stapf, Oliver Karch, Stefan Frantz, Peter U Heuschmann, Stefan Störk","doi":"10.1093/ehjdh/ztad069","DOIUrl":"https://doi.org/10.1093/ehjdh/ztad069","url":null,"abstract":"Machine-learning (ML)-based automated measurement of echocardiography images emerged as an option to reduce observer variability. To improve the accuracy of a pre-existing automated reading tool (“original detector”) by federated ML-based re-training. AVE (Automatisierte Vermessung der Echokardiographie) was based on the echocardiography images of n = 4,965 participants of the population-based Characteristics and Course of Heart Failure Stages A-B and Determinants of Progression Cohort Study. We implemented federated ML: echocardiography images were read by the Academic CoreLab Ultrasound-based Cardiovascular Imaging at the University Hospital Würzburg (UKW). A random algorithm selected 3,226 participants for re-training of the original detector. According to data protection rules, generation of ground truth and ML training cycles took place within the UKW network. Only non-personal training weights were exchanged with the external cooperation partner for refinement of ML algorithms. Both the original detector as the re-trained detector were then applied to the echocardiograms of n = 563 participants not used for training. With regards to the human referent the re-trained detector revealed 1) superior accuracy when contrasted with the original detector´s performance as it arrived at significantly smaller mean differences in all but one parameter, and 2) smaller absolute difference between measurements when compared to a group of different human observers. Population data based ML in a federated ML set-up was feasible. The re-trained detector exhibited a much lower measurement variability than human readers. This gain in accuracy and precision strengthens the confidence into automated echocardiographic readings, which carries large potential for applications in various settings.","PeriodicalId":508387,"journal":{"name":"European Heart Journal - Digital Health","volume":"37 9-10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139275005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
European Heart Journal - Digital Health
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1