首页 > 最新文献

Advances in Mathematics of Communications最新文献

英文 中文
Quantum states associated to mixed graphs and their algebraic characterization 与混合图相关的量子态及其代数表征
IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/AMC.2021015
Constanza Riera, M. Parker, P. Stănică
Graph states are present in quantum information and found applications ranging from quantum network protocols (like secret sharing) to measurement based quantum computing. In this paper, we extend the notion of graph states, which can be regarded as pure quantum graph states, or as homogeneous quadratic Boolean functions associated to simple undirected graphs, to quantum states based on mixed graphs (graphs which allow both directed and undirected edges), obtaining mixed quantum states, which are defined by matrices associated to the measurement of homogeneous quadratic Boolean functions in some (ancillary) variables. In our main result, we describe the extended graph state as the sum of terms of a commutative subgroup of the stabilizer group of the corresponding mixed graph with the edges' directions reversed.
图态存在于量子信息中,应用范围从量子网络协议(如秘密共享)到基于测量的量子计算。本文将纯量子图态或与简单无向图相关的齐次二次布尔函数的图态的概念推广到基于混合图(既允许有向边也允许无向边的图)的量子态,得到了由与齐次二次布尔函数在某些(辅助)变量中的测量相关的矩阵定义的混合量子态。在我们的主要结果中,我们将扩展图状态描述为相应边方向反转的混合图的稳定群的交换子群的项和。
{"title":"Quantum states associated to mixed graphs and their algebraic characterization","authors":"Constanza Riera, M. Parker, P. Stănică","doi":"10.3934/AMC.2021015","DOIUrl":"https://doi.org/10.3934/AMC.2021015","url":null,"abstract":"Graph states are present in quantum information and found applications ranging from quantum network protocols (like secret sharing) to measurement based quantum computing. In this paper, we extend the notion of graph states, which can be regarded as pure quantum graph states, or as homogeneous quadratic Boolean functions associated to simple undirected graphs, to quantum states based on mixed graphs (graphs which allow both directed and undirected edges), obtaining mixed quantum states, which are defined by matrices associated to the measurement of homogeneous quadratic Boolean functions in some (ancillary) variables. In our main result, we describe the extended graph state as the sum of terms of a commutative subgroup of the stabilizer group of the corresponding mixed graph with the edges' directions reversed.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"14 1","pages":"660-680"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84538118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some progress on optimal $ 2 $-D $ (ntimes m,3,2,1) $-optical orthogonal codes 最优$ 2 $-D $ (n乘以m,3,2,1) $-光学正交码的研究进展
IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/AMC.2021012
Kailu Yang, Xiaomiao Wang, Menglong Zhang, Lidong Wang
In this paper, we are concerned about bounds and constructions of optimal begin{document}$ 2 $end{document} -D begin{document}$ (ntimes m,3,2,1) $end{document} -optical orthogonal codes. The exact number of codewords of an optimal begin{document}$ 2 $end{document} -D begin{document}$ (ntimes m,3,2,1) $end{document} -optical orthogonal code is determined for begin{document}$ n = 2 $end{document} , begin{document}$ mequiv 1 pmod{2} $end{document} , and begin{document}$ nequiv 1 pmod{2} $end{document} , begin{document}$ mequiv 1,3,5 pmod{12} $end{document} , and begin{document}$ nequiv 4 pmod{6} $end{document} , begin{document}$ mequiv 8 pmod{16} $end{document} .
In this paper, we are concerned about bounds and constructions of optimal begin{document}$ 2 $end{document} -D begin{document}$ (ntimes m,3,2,1) $end{document} -optical orthogonal codes. The exact number of codewords of an optimal begin{document}$ 2 $end{document} -D begin{document}$ (ntimes m,3,2,1) $end{document} -optical orthogonal code is determined for begin{document}$ n = 2 $end{document} , begin{document}$ mequiv 1 pmod{2} $end{document} , and begin{document}$ nequiv 1 pmod{2} $end{document} , begin{document}$ mequiv 1,3,5 pmod{12} $end{document} , and begin{document}$ nequiv 4 pmod{6} $end{document} , begin{document}$ mequiv 8 pmod{16} $end{document} .
{"title":"Some progress on optimal $ 2 $-D $ (ntimes m,3,2,1) $-optical orthogonal codes","authors":"Kailu Yang, Xiaomiao Wang, Menglong Zhang, Lidong Wang","doi":"10.3934/AMC.2021012","DOIUrl":"https://doi.org/10.3934/AMC.2021012","url":null,"abstract":"In this paper, we are concerned about bounds and constructions of optimal begin{document}$ 2 $end{document} -D begin{document}$ (ntimes m,3,2,1) $end{document} -optical orthogonal codes. The exact number of codewords of an optimal begin{document}$ 2 $end{document} -D begin{document}$ (ntimes m,3,2,1) $end{document} -optical orthogonal code is determined for begin{document}$ n = 2 $end{document} , begin{document}$ mequiv 1 pmod{2} $end{document} , and begin{document}$ nequiv 1 pmod{2} $end{document} , begin{document}$ mequiv 1,3,5 pmod{12} $end{document} , and begin{document}$ nequiv 4 pmod{6} $end{document} , begin{document}$ mequiv 8 pmod{16} $end{document} .","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"2016 1","pages":"605-625"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86130061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some invariants related to threshold and chain graphs 与阈值图和链图有关的不变量
IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/amc.2023020
R. Raja, Samir Ahmad Wagay
{"title":"Some invariants related to threshold and chain graphs","authors":"R. Raja, Samir Ahmad Wagay","doi":"10.3934/amc.2023020","DOIUrl":"https://doi.org/10.3934/amc.2023020","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"3 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87321439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The weight recursions for the 2-rotation symmetric quartic Boolean functions 二次旋转对称四次布尔函数的权值递归
IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/AMC.2021011
T. Cusick, Younhwan Cheon
A Boolean function in begin{document}$ n $end{document} variables is 2-rotation symmetric if it is invariant under even powers of begin{document}$ rho(x_1, ldots, x_n) = (x_2, ldots, x_n, x_1) $end{document} , but not under the first power (ordinary rotation symmetry); we call such a function a 2-function. A 2-function is called monomial rotation symmetric (MRS) if it is generated by applying powers of begin{document}$ rho^2 $end{document} to a single monomial. If the quartic MRS 2-function in begin{document}$ 2n $end{document} variables has a monomial begin{document}$ x_1 x_q x_r x_s $end{document} , then we use the notation begin{document}$ {2-}(1,q,r,s)_{2n} $end{document} for the function. A detailed theory of equivalence of quartic MRS 2-functions in begin{document}$ 2n $end{document} variables was given in a begin{document}$ 2020 $end{document} paper by Cusick, Cheon and Dougan. This theory divides naturally into two classes, called begin{document}$ mf1 $end{document} and begin{document}$ mf2 $end{document} in the paper. After describing the equivalence classes, the second major problem is giving details of the linear recursions that the Hamming weights for any sequence of functions begin{document}$ {2-}(1,q,r,s)_{2n} $end{document} (with begin{document}$ q say), begin{document}$ n = s, s+1, ldots $end{document} can be shown to satisfy. This problem was solved for the begin{document}$ mf1 $end{document} case only in the begin{document}$ 2020 $end{document} paper. Using new ideas about "short" functions, Cusick and Cheon found formulas for the begin{document}$ mf2 $end{document} weights in a begin{document}$ 2021 $end{document} sequel to the begin{document}$ 2020 $end{document} paper. In this paper the actual recursions for the weights in the begin{document}$ mf2 $end{document} case are determined.
begin{document}$ n $end{document}变量中的布尔函数是2-旋转对称的,如果它在begin{document}$ rho(x_1, ldots, x_n) = (x_2, ldots, x_n, x_1) $end{document}的偶次下不变,但在一次幂下不不变(普通旋转对称);我们称这样的函数为2函数。一个2函数被称为单项式旋转对称(MRS),如果它是由begin{document}$ rho^2 $end{document}的幂对一个单项式产生的。如果在begin{document}$ 2n $end{document}变量中的四次MRS 2-函数有一个单项式begin{document}$ x_1 x_q x_r x_s $end{document},那么我们使用begin{document}$ {2-}(1,q,r,s)_{2n} $end{document}表示该函数。Cusick、Cheon和Dougan在begin{document}$ 2020 $end{document}的论文中给出了begin{document}$ 2n $end{document}变量中四次MRS - 2函数的详细等价理论。该理论在本文中自然分为begin{document}$ mf1 $end{document}和begin{document}$ mf2 $end{document}两类。在描述了等价类之后,第二个主要问题是给出线性递归的细节,即对于任意函数序列begin{document}$ {2-}(1,q,r,s)_{2n} $end{document}(以begin{document}$ q为例),begin{document}$ n = s, s+1, ldots $end{document}的汉明权重可以被证明满足。此问题仅在begin{document}$ 2020 $end{document}文件中解决了begin{document}$ mf1 $end{document}情况。使用关于“短”函数的新思想,Cusick和Cheon在begin{document}$ 2021 $end{document}的续文中找到了begin{document}$ mf2 $end{document}权重的公式。本文确定了begin{document}$ mf2 $end{document}情况下权重的实际递归。
{"title":"The weight recursions for the 2-rotation symmetric quartic Boolean functions","authors":"T. Cusick, Younhwan Cheon","doi":"10.3934/AMC.2021011","DOIUrl":"https://doi.org/10.3934/AMC.2021011","url":null,"abstract":"A Boolean function in begin{document}$ n $end{document} variables is 2-rotation symmetric if it is invariant under even powers of begin{document}$ rho(x_1, ldots, x_n) = (x_2, ldots, x_n, x_1) $end{document} , but not under the first power (ordinary rotation symmetry); we call such a function a 2-function. A 2-function is called monomial rotation symmetric (MRS) if it is generated by applying powers of begin{document}$ rho^2 $end{document} to a single monomial. If the quartic MRS 2-function in begin{document}$ 2n $end{document} variables has a monomial begin{document}$ x_1 x_q x_r x_s $end{document} , then we use the notation begin{document}$ {2-}(1,q,r,s)_{2n} $end{document} for the function. A detailed theory of equivalence of quartic MRS 2-functions in begin{document}$ 2n $end{document} variables was given in a begin{document}$ 2020 $end{document} paper by Cusick, Cheon and Dougan. This theory divides naturally into two classes, called begin{document}$ mf1 $end{document} and begin{document}$ mf2 $end{document} in the paper. After describing the equivalence classes, the second major problem is giving details of the linear recursions that the Hamming weights for any sequence of functions begin{document}$ {2-}(1,q,r,s)_{2n} $end{document} (with begin{document}$ q say), begin{document}$ n = s, s+1, ldots $end{document} can be shown to satisfy. This problem was solved for the begin{document}$ mf1 $end{document} case only in the begin{document}$ 2020 $end{document} paper. Using new ideas about \"short\" functions, Cusick and Cheon found formulas for the begin{document}$ mf2 $end{document} weights in a begin{document}$ 2021 $end{document} sequel to the begin{document}$ 2020 $end{document} paper. In this paper the actual recursions for the weights in the begin{document}$ mf2 $end{document} case are determined.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"21 1","pages":"589-604"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78042776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Constructions of irredundant orthogonal arrays 无冗余正交阵列的构造
IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/amc.2021051
Guangzhou Chen, Xiaotong Zhang
<p style='text-indent:20px;'>An <inline-formula><tex-math id="M1">begin{document}$ N times k $end{document}</tex-math></inline-formula> array <inline-formula><tex-math id="M2">begin{document}$ A $end{document}</tex-math></inline-formula> with entries from <inline-formula><tex-math id="M3">begin{document}$ v $end{document}</tex-math></inline-formula>-set <inline-formula><tex-math id="M4">begin{document}$ mathcal{V} $end{document}</tex-math></inline-formula> is said to be an <i>orthogonal array</i> with <inline-formula><tex-math id="M5">begin{document}$ v $end{document}</tex-math></inline-formula> levels, strength <inline-formula><tex-math id="M6">begin{document}$ t $end{document}</tex-math></inline-formula> and index <inline-formula><tex-math id="M7">begin{document}$ lambda $end{document}</tex-math></inline-formula>, denoted by OA<inline-formula><tex-math id="M8">begin{document}$ (N,k,v,t) $end{document}</tex-math></inline-formula>, if every <inline-formula><tex-math id="M9">begin{document}$ Ntimes t $end{document}</tex-math></inline-formula> sub-array of <inline-formula><tex-math id="M10">begin{document}$ A $end{document}</tex-math></inline-formula> contains each <inline-formula><tex-math id="M11">begin{document}$ t $end{document}</tex-math></inline-formula>-tuple based on <inline-formula><tex-math id="M12">begin{document}$ mathcal{V} $end{document}</tex-math></inline-formula> exactly <inline-formula><tex-math id="M13">begin{document}$ lambda $end{document}</tex-math></inline-formula> times as a row. An OA<inline-formula><tex-math id="M14">begin{document}$ (N,k,v,t) $end{document}</tex-math></inline-formula> is called <i>irredundant</i>, denoted by IrOA<inline-formula><tex-math id="M15">begin{document}$ (N,k,v,t) $end{document}</tex-math></inline-formula>, if in any <inline-formula><tex-math id="M16">begin{document}$ Ntimes (k-t ) $end{document}</tex-math></inline-formula> sub-array, all of its rows are different. Goyeneche and <inline-formula><tex-math id="M17">begin{document}$ dot{Z} $end{document}</tex-math></inline-formula>yczkowski firstly introduced the definition of an IrOA and showed that an IrOA<inline-formula><tex-math id="M18">begin{document}$ (N,k,v,t) $end{document}</tex-math></inline-formula> corresponds to a <inline-formula><tex-math id="M19">begin{document}$ t $end{document}</tex-math></inline-formula>-uniform state of <inline-formula><tex-math id="M20">begin{document}$ k $end{document}</tex-math></inline-formula> subsystems with local dimension <inline-formula><tex-math id="M21">begin{document}$ v $end{document}</tex-math></inline-formula> (Physical Review A. 90 (2014), 022316). In this paper, we present some new constructions of irredundant orthogonal arrays by using difference matrices and some special matrices over finite fields, respectively, as a consequence, many infinite families of irredundant orthogonal arrays are obtained. Furthermore, several infinite classes of <inline-formula><tex-math id="M22">begin{document}$ t $en
An begin{document}$ N times k $end{document} array begin{document}$ A $end{document} with entries from begin{document}$ v $end{document}-set begin{document}$ mathcal{V} $end{document} is said to be an orthogonal array with begin{document}$ v $end{document} levels, strength begin{document}$ t $end{document} and index begin{document}$ lambda $end{document}, denoted by OAbegin{document}$ (N,k,v,t) $end{document}, if every begin{document}$ Ntimes t $end{document} sub-array of begin{document}$ A $end{document} contains each begin{document}$ t $end{document}-tuple based on begin{document}$ mathcal{V} $end{document} exactly begin{document}$ lambda $end{document} times as a row. An OAbegin{document}$ (N,k,v,t) $end{document} is called irredundant, denoted by IrOAbegin{document}$ (N,k,v,t) $end{document}, if in any begin{document}$ Ntimes (k-t ) $end{document} sub-array, all of its rows are different. Goyeneche and begin{document}$ dot{Z} $end{document}yczkowski firstly introduced the definition of an IrOA and showed that an IrOAbegin{document}$ (N,k,v,t) $end{document} corresponds to a begin{document}$ t $end{document}-uniform state of begin{document}$ k $end{document} subsystems with local dimension begin{document}$ v $end{document} (Physical Review A. 90 (2014), 022316). In this paper, we present some new constructions of irredundant orthogonal arrays by using difference matrices and some special matrices over finite fields, respectively, as a consequence, many infinite families of irredundant orthogonal arrays are obtained. Furthermore, several infinite classes of begin{document}$ t $end{document}-uniform states arise from these irredundant orthogonal arrays.
{"title":"Constructions of irredundant orthogonal arrays","authors":"Guangzhou Chen, Xiaotong Zhang","doi":"10.3934/amc.2021051","DOIUrl":"https://doi.org/10.3934/amc.2021051","url":null,"abstract":"&lt;p style='text-indent:20px;'&gt;An &lt;inline-formula&gt;&lt;tex-math id=\"M1\"&gt;begin{document}$ N times k $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; array &lt;inline-formula&gt;&lt;tex-math id=\"M2\"&gt;begin{document}$ A $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; with entries from &lt;inline-formula&gt;&lt;tex-math id=\"M3\"&gt;begin{document}$ v $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;-set &lt;inline-formula&gt;&lt;tex-math id=\"M4\"&gt;begin{document}$ mathcal{V} $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; is said to be an &lt;i&gt;orthogonal array&lt;/i&gt; with &lt;inline-formula&gt;&lt;tex-math id=\"M5\"&gt;begin{document}$ v $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; levels, strength &lt;inline-formula&gt;&lt;tex-math id=\"M6\"&gt;begin{document}$ t $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; and index &lt;inline-formula&gt;&lt;tex-math id=\"M7\"&gt;begin{document}$ lambda $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;, denoted by OA&lt;inline-formula&gt;&lt;tex-math id=\"M8\"&gt;begin{document}$ (N,k,v,t) $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;, if every &lt;inline-formula&gt;&lt;tex-math id=\"M9\"&gt;begin{document}$ Ntimes t $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; sub-array of &lt;inline-formula&gt;&lt;tex-math id=\"M10\"&gt;begin{document}$ A $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; contains each &lt;inline-formula&gt;&lt;tex-math id=\"M11\"&gt;begin{document}$ t $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;-tuple based on &lt;inline-formula&gt;&lt;tex-math id=\"M12\"&gt;begin{document}$ mathcal{V} $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; exactly &lt;inline-formula&gt;&lt;tex-math id=\"M13\"&gt;begin{document}$ lambda $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; times as a row. An OA&lt;inline-formula&gt;&lt;tex-math id=\"M14\"&gt;begin{document}$ (N,k,v,t) $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; is called &lt;i&gt;irredundant&lt;/i&gt;, denoted by IrOA&lt;inline-formula&gt;&lt;tex-math id=\"M15\"&gt;begin{document}$ (N,k,v,t) $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;, if in any &lt;inline-formula&gt;&lt;tex-math id=\"M16\"&gt;begin{document}$ Ntimes (k-t ) $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; sub-array, all of its rows are different. Goyeneche and &lt;inline-formula&gt;&lt;tex-math id=\"M17\"&gt;begin{document}$ dot{Z} $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;yczkowski firstly introduced the definition of an IrOA and showed that an IrOA&lt;inline-formula&gt;&lt;tex-math id=\"M18\"&gt;begin{document}$ (N,k,v,t) $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; corresponds to a &lt;inline-formula&gt;&lt;tex-math id=\"M19\"&gt;begin{document}$ t $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt;-uniform state of &lt;inline-formula&gt;&lt;tex-math id=\"M20\"&gt;begin{document}$ k $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; subsystems with local dimension &lt;inline-formula&gt;&lt;tex-math id=\"M21\"&gt;begin{document}$ v $end{document}&lt;/tex-math&gt;&lt;/inline-formula&gt; (Physical Review A. 90 (2014), 022316). In this paper, we present some new constructions of irredundant orthogonal arrays by using difference matrices and some special matrices over finite fields, respectively, as a consequence, many infinite families of irredundant orthogonal arrays are obtained. Furthermore, several infinite classes of &lt;inline-formula&gt;&lt;tex-math id=\"M22\"&gt;begin{document}$ t $en","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"45 1","pages":"1314-1337"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79439330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Five-weight codes from three-valued correlation of M-sequences 基于m序列三值相关的五权码
IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/amc.2021022
M. Shi, Liqin Qian, T. Helleseth, P. Solé

In this paper, for each of six families of three-valued begin{document}$ m $end{document}-sequence correlation, we construct an infinite family of five-weight codes from trace codes over the ring begin{document}$ R = mathbb{F}_2+umathbb{F}_2 $end{document}, where begin{document}$ u^2 = 0. $end{document} The trace codes have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using character sums. Their support structure is determined. An application to secret sharing schemes is given. The parameters of the binary image are begin{document}$ [2^{m+1}(2^m-1),4m,2^{m}(2^m-2^r)] $end{document} for some explicit begin{document}$ r. $end{document}

In this paper, for each of six families of three-valued begin{document}$ m $end{document}-sequence correlation, we construct an infinite family of five-weight codes from trace codes over the ring begin{document}$ R = mathbb{F}_2+umathbb{F}_2 $end{document}, where begin{document}$ u^2 = 0. $end{document} The trace codes have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using character sums. Their support structure is determined. An application to secret sharing schemes is given. The parameters of the binary image are begin{document}$ [2^{m+1}(2^m-1),4m,2^{m}(2^m-2^r)] $end{document} for some explicit begin{document}$ r. $end{document}
{"title":"Five-weight codes from three-valued correlation of M-sequences","authors":"M. Shi, Liqin Qian, T. Helleseth, P. Solé","doi":"10.3934/amc.2021022","DOIUrl":"https://doi.org/10.3934/amc.2021022","url":null,"abstract":"<p style='text-indent:20px;'>In this paper, for each of six families of three-valued <inline-formula><tex-math id=\"M1\">begin{document}$ m $end{document}</tex-math></inline-formula>-sequence correlation, we construct an infinite family of five-weight codes from trace codes over the ring <inline-formula><tex-math id=\"M2\">begin{document}$ R = mathbb{F}_2+umathbb{F}_2 $end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M3\">begin{document}$ u^2 = 0. $end{document}</tex-math></inline-formula> The trace codes have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using character sums. Their support structure is determined. An application to secret sharing schemes is given. The parameters of the binary image are <inline-formula><tex-math id=\"M4\">begin{document}$ [2^{m+1}(2^m-1),4m,2^{m}(2^m-2^r)] $end{document}</tex-math></inline-formula> for some explicit <inline-formula><tex-math id=\"M5\">begin{document}$ r. $end{document}</tex-math></inline-formula></p>","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"4 1","pages":"799-814"},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91397712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Tight security analysis of the public Permutation-based $ {{textsf{PMAC_Plus}}} $ 基于公共排列的$ {{textsf{PMAC_Plus}}} $的严密安全性分析
IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/amc.2023025
Avijit Dutta, M. Nandi, Suprita Talnikar
{"title":"Tight security analysis of the public Permutation-based $ {{textsf{PMAC_Plus}}} $","authors":"Avijit Dutta, M. Nandi, Suprita Talnikar","doi":"10.3934/amc.2023025","DOIUrl":"https://doi.org/10.3934/amc.2023025","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"9 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90000371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A class of weightwise almost perfectly balanced Boolean functions 一类权重几乎完全平衡的布尔函数
4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/amc.2023048
Deepak Kumar Dalai, Krishna Mallick
Constructing Boolean functions with good cryptographic properties over a subset of vectors with fixed Hamming weight $ E_{n,k} subset {{rm{I!F}}}_2^n $ is significant in lightweight stream ciphers like FLIP [14]. In this article, we have given a construction for a class of $ n $-variable weightwise almost perfectly balanced (WAPB) Boolean functions from known support of an $ n_0 $-variable WAPB Boolean function where $ n_0 < n $. This is a generalization of constructing a weightwise perfectly balanced (WPB) Boolean function by Mesnager and Su [16]. We have studied some cryptographic properties like ANF, nonlinearity, weightwise nonlinearities, and algebraic immunity of the functions. The ANF of this function is obtained recursively, which would be a low-cost implementation in a lightweight stream cipher. Further, we have presented another class of WAPB Boolean functions by modifying the earlier function, and we studied some of its cryptographic properties. The nonlinearity and weightwise nonlinearities of the modified functions improve substantially.
在具有固定汉明权值的向量子集上构造具有良好密码性质的布尔函数$ E_{n,k} 子集{{rm{I!F}}}_2^n $在轻量级流密码中很重要,如FLIP[14]。在本文中,我们从已知的$ n_0 $变量WAPB布尔函数的支持中给出了一类$ n_0 $变量加权几乎完美平衡(WAPB)布尔函数的构造,其中$ n_0 <n美元。这是Mesnager和Su[16]构造加权完全平衡(WPB)布尔函数的推广。我们研究了一些密码学性质,如函数的ANF、非线性、权非线性和代数免疫。该函数的ANF是递归获得的,这将是轻量级流密码中的低成本实现。此外,我们通过修改前面的函数提出了另一类WAPB布尔函数,并研究了它的一些加密特性。修正后的函数的非线性和权值非线性得到了很大的改善。
{"title":"A class of weightwise almost perfectly balanced Boolean functions","authors":"Deepak Kumar Dalai, Krishna Mallick","doi":"10.3934/amc.2023048","DOIUrl":"https://doi.org/10.3934/amc.2023048","url":null,"abstract":"Constructing Boolean functions with good cryptographic properties over a subset of vectors with fixed Hamming weight $ E_{n,k} subset {{rm{I!F}}}_2^n $ is significant in lightweight stream ciphers like FLIP [14]. In this article, we have given a construction for a class of $ n $-variable weightwise almost perfectly balanced (WAPB) Boolean functions from known support of an $ n_0 $-variable WAPB Boolean function where $ n_0 < n $. This is a generalization of constructing a weightwise perfectly balanced (WPB) Boolean function by Mesnager and Su [16]. We have studied some cryptographic properties like ANF, nonlinearity, weightwise nonlinearities, and algebraic immunity of the functions. The ANF of this function is obtained recursively, which would be a low-cost implementation in a lightweight stream cipher. Further, we have presented another class of WAPB Boolean functions by modifying the earlier function, and we studied some of its cryptographic properties. The nonlinearity and weightwise nonlinearities of the modified functions improve substantially.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135709288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Covering radius of $ RM(4,8) $ 覆盖半径$ RM(4,8) $
4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/amc.2023038
Valérie Gillot, Philippe Langevin
We propose an effective version of the lift by derivation, an invariant that allows us to provide the classification of $ B(5,6,8) = RM(6, 8)/RM(4, 8) $. The main consequence is to establish that the covering radius of the Reed-Muller $ RM(4,8) $ is equal to 26.
我们提出了一个有效的派生提升版本,一个不变量,允许我们提供$ B(5,6,8) = RM(6,8) /RM(4,8) $的分类。主要结果是建立Reed-Muller $ RM(4,8) $的覆盖半径等于26。
{"title":"Covering radius of $ RM(4,8) $","authors":"Valérie Gillot, Philippe Langevin","doi":"10.3934/amc.2023038","DOIUrl":"https://doi.org/10.3934/amc.2023038","url":null,"abstract":"We propose an effective version of the lift by derivation, an invariant that allows us to provide the classification of $ B(5,6,8) = RM(6, 8)/RM(4, 8) $. The main consequence is to establish that the covering radius of the Reed-Muller $ RM(4,8) $ is equal to 26.","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136258527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivalence for generalized Boolean functions 广义布尔函数的等价性
IF 0.9 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Pub Date : 2023-01-01 DOI: 10.3934/amc.2023009
Ayça Çesmelioglu, W. Meidl
{"title":"Equivalence for generalized Boolean functions","authors":"Ayça Çesmelioglu, W. Meidl","doi":"10.3934/amc.2023009","DOIUrl":"https://doi.org/10.3934/amc.2023009","url":null,"abstract":"","PeriodicalId":50859,"journal":{"name":"Advances in Mathematics of Communications","volume":"77 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76836648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Mathematics of Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1