High gradient magnetic separation (HGMS) is effective for the separation of weakly magnetic minerals, and this method is achieved through the use of matrix, which is made of huge numbers of rod wires. So that the coupling effect of magnetic field and flow field between wires has a marked effect on the HGMS performance. In the investigation, the coupling effect between magnetic wires and its influence on high gradient magnetic separation performance were theoretically described and simulated using COMSOL Multiphysics. It is found that the magnetic field round a wire would be affected by the neighboring wires, and then a coupling effect of magnetic field between wires was produced, increasing the magnetic induction intensity on the upstream and downstream of wire surface. And the coupling effect of flow field could increase the slurry velocity at the regions of the wire surface with azimuth angles of 0° and 90°, which is beneficial for the selective capture of wire. These simulated results were basically validated with the experimental separation, using an innovative Magnetic Capture Analysis Method. It is found that the wire spacing has significant effect on the coupling effect of magnetic wires, and a critical spacing for wires could achieve an excellent coupling effect, which is beneficial for the improvement of HGMS performance. This investigation contributes to improve HGMS performance in concentrating fine weakly magnetic ores.
{"title":"Coupling effect between magnetic wires and its influence on high gradient magnetic separation performance","authors":"Yaxiong Jiang, Jianwu Zeng, Mengbing Cao, Weijun Yu, Enlong Xie, Luzheng Chen","doi":"10.37190/ppmp/183620","DOIUrl":"https://doi.org/10.37190/ppmp/183620","url":null,"abstract":"High gradient magnetic separation (HGMS) is effective for the separation of weakly magnetic minerals, and this method is achieved through the use of matrix, which is made of huge numbers of rod wires. So that the coupling effect of magnetic field and flow field between wires has a marked effect on the HGMS performance. In the investigation, the coupling effect between magnetic wires and its influence on high gradient magnetic separation performance were theoretically described and simulated using COMSOL Multiphysics. It is found that the magnetic field round a wire would be affected by the neighboring wires, and then a coupling effect of magnetic field between wires was produced, increasing the magnetic induction intensity on the upstream and downstream of wire surface. And the coupling effect of flow field could increase the slurry velocity at the regions of the wire surface with azimuth angles of 0° and 90°, which is beneficial for the selective capture of wire. These simulated results were basically validated with the experimental separation, using an innovative Magnetic Capture Analysis Method. It is found that the wire spacing has significant effect on the coupling effect of magnetic wires, and a critical spacing for wires could achieve an excellent coupling effect, which is beneficial for the improvement of HGMS performance. This investigation contributes to improve HGMS performance in concentrating fine weakly magnetic ores.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"39 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139869692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Froth flotation, as one of the most widely used separation approaches in mineral processing, is commonly used to recover valuable components from minerals. However, maintaining high flotation efficiencies is a serious challenge for conventional froth flotation in the face of decreasing particle size of the minerals to be sorted. To date, there have been plenty of reports on the software of nano-bubbles (NBS) in flotation, and the experimental consequences show that nano-bubbles' introduction has given rise to improvement's different grades in the recovery of varieties of minerals, which highlights the great potential of nano-bubbles for mineral flotation. Nanobubbles have smaller bubble radii and unusually high stability compared to conventional flotation bubbles, and their related behavior in flotation has been a hot research topic. This paper reviews some of the methods of preparing nanobubbles, equipment techniques for characterizing nanobubbles, factors affecting their stability, and some of the popular doctrines. In particular, the reinforcing mechanism of nanobubbles in the particle flotation process is discussed, first, the nanobubbles improve the electrostatic attractiveness with the particles by achieving the charge inversion while the nanobubbles that was adsorbed on the particles' surface will cover a share of the charge, which decreases the electrostatic repulsive force between the particles; and second, the nanobubbles can act as a bridge between the surfaces of the two particles, which advances the agglomeration between the particles. This review aims to be able to further advance the research related to the industrialization of nanobubbles.
{"title":"Current status of research on nanobubbles in particle flotation","authors":"Jian Chen, Jun Chen, Yali Cheng","doi":"10.37190/ppmp/183613","DOIUrl":"https://doi.org/10.37190/ppmp/183613","url":null,"abstract":"Froth flotation, as one of the most widely used separation approaches in mineral processing, is commonly used to recover valuable components from minerals. However, maintaining high flotation efficiencies is a serious challenge for conventional froth flotation in the face of decreasing particle size of the minerals to be sorted. To date, there have been plenty of reports on the software of nano-bubbles (NBS) in flotation, and the experimental consequences show that nano-bubbles' introduction has given rise to improvement's different grades in the recovery of varieties of minerals, which highlights the great potential of nano-bubbles for mineral flotation. Nanobubbles have smaller bubble radii and unusually high stability compared to conventional flotation bubbles, and their related behavior in flotation has been a hot research topic. This paper reviews some of the methods of preparing nanobubbles, equipment techniques for characterizing nanobubbles, factors affecting their stability, and some of the popular doctrines. In particular, the reinforcing mechanism of nanobubbles in the particle flotation process is discussed, first, the nanobubbles improve the electrostatic attractiveness with the particles by achieving the charge inversion while the nanobubbles that was adsorbed on the particles' surface will cover a share of the charge, which decreases the electrostatic repulsive force between the particles; and second, the nanobubbles can act as a bridge between the surfaces of the two particles, which advances the agglomeration between the particles. This review aims to be able to further advance the research related to the industrialization of nanobubbles.","PeriodicalId":508651,"journal":{"name":"Physicochemical Problems of Mineral Processing","volume":"57 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139870719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}