首页 > 最新文献

Advances in Applied Mathematics最新文献

英文 中文
Discrete orthogonal ensemble on the exponential lattices
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-01-03 DOI: 10.1016/j.aam.2024.102836
Shi-Hao Li , Bo-Jian Shen , Guo-Fu Yu , Peter J. Forrester
Inspired by Aomoto's q-Selberg integral, a study is made of an orthogonal ensemble on an exponential lattice. By introducing a skew symmetric kernel, the configuration space of this ensemble is constructed to be symmetric and thus the corresponding skew inner product, skew orthogonal polynomials as well as correlation functions are explicitly formulated. These involve polynomials from the Askey scheme. Examples considered include the Al-Salam & Carlitz, q-Laguerre, little q-Jacobi and big q-Jacobi cases.
{"title":"Discrete orthogonal ensemble on the exponential lattices","authors":"Shi-Hao Li ,&nbsp;Bo-Jian Shen ,&nbsp;Guo-Fu Yu ,&nbsp;Peter J. Forrester","doi":"10.1016/j.aam.2024.102836","DOIUrl":"10.1016/j.aam.2024.102836","url":null,"abstract":"<div><div>Inspired by Aomoto's <em>q</em>-Selberg integral, a study is made of an orthogonal ensemble on an exponential lattice. By introducing a skew symmetric kernel, the configuration space of this ensemble is constructed to be symmetric and thus the corresponding skew inner product, skew orthogonal polynomials as well as correlation functions are explicitly formulated. These involve polynomials from the Askey scheme. Examples considered include the Al-Salam &amp; Carlitz, <em>q</em>-Laguerre, little <em>q</em>-Jacobi and big <em>q</em>-Jacobi cases.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102836"},"PeriodicalIF":1.0,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cells of fixed height in Catalan words and restricted growth functions
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-12-30 DOI: 10.1016/j.aam.2024.102835
Aubrey Blecher, Arnold Knopfmacher
A word w=w1w2wn of length n over the set of positive integers is called a Catalan word whenever w1=1 and 1wkwk1+1 for k=2,3,,n. A restricted growth function is defined as a word w=w1w2wn of length n over the set of positive integers where w1=1 and for k2 we have 1wkmax{w1,w2,,wk1}+1. We also define cells and heights of cells and we represent such words as bargraphs (otherwise known as polyominoes) where the ith column contains wi cells for 1in and where all columns have their bottom cell on the x-axis. In the case of Catalan words, we prove a relationship between the number of cells at different heights and first terms of the expanded polynomial (1+x)2n. In the case of restricted growth functions we find polynomials Fn(x) where the coefficient of xj counts the number of cells of height j across all rgfs with n parts. In this case we also find bivariate generating functions for rgfs with k blocks, where the generating functions tracks the number of cells at a given height as well as the number of parts.
{"title":"Cells of fixed height in Catalan words and restricted growth functions","authors":"Aubrey Blecher,&nbsp;Arnold Knopfmacher","doi":"10.1016/j.aam.2024.102835","DOIUrl":"10.1016/j.aam.2024.102835","url":null,"abstract":"<div><div>A word <span><math><mi>w</mi><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of length <em>n</em> over the set of positive integers is called a Catalan word whenever <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><mn>1</mn></math></span> for <span><math><mi>k</mi><mo>=</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>. A restricted growth function is defined as a word <span><math><mi>w</mi><mo>=</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⋯</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> of length <em>n</em> over the set of positive integers where <span><math><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span> and for <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> we have <span><math><mn>1</mn><mo>≤</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>≤</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>⋯</mo><mo>,</mo><msub><mrow><mi>w</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo><mo>+</mo><mn>1</mn></math></span>. We also define cells and heights of cells and we represent such words as bargraphs (otherwise known as polyominoes) where the <em>i</em>th column contains <span><math><msub><mrow><mi>w</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> cells for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></math></span> and where all columns have their bottom cell on the <em>x</em>-axis. In the case of Catalan words, we prove a relationship between the number of cells at different heights and first terms of the expanded polynomial <span><math><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>x</mi><mo>)</mo></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span>. In the case of restricted growth functions we find polynomials <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>x</mi><mo>)</mo></math></span> where the coefficient of <span><math><msup><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msup></math></span> counts the number of cells of height <em>j</em> across all rgfs with <em>n</em> parts. In this case we also find bivariate generating functions for rgfs with <em>k</em> blocks, where the generating functions tracks the number of cells at a given height as well as the number of parts.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102835"},"PeriodicalIF":1.0,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conditions for virtually Cohen–Macaulay simplicial complexes
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-12-19 DOI: 10.1016/j.aam.2024.102830
Adam Van Tuyl , Jay Yang
A simplicial complex Δ is a virtually Cohen–Macaulay simplicial complex if its associated Stanley-Reisner ring S has a virtual resolution, as defined by Berkesch, Erman, and Smith, of length codim(S). We provide a sufficient condition on Δ to be a virtually Cohen–Macaulay simplicial complex. We also introduce virtually shellable simplicial complexes, a generalization of shellable simplicial complexes. Virtually shellable complexes have the property that they are virtually Cohen–Macaulay, generalizing the well-known fact that shellable simplicial complexes are Cohen–Macaulay.
{"title":"Conditions for virtually Cohen–Macaulay simplicial complexes","authors":"Adam Van Tuyl ,&nbsp;Jay Yang","doi":"10.1016/j.aam.2024.102830","DOIUrl":"10.1016/j.aam.2024.102830","url":null,"abstract":"<div><div>A simplicial complex Δ is a virtually Cohen–Macaulay simplicial complex if its associated Stanley-Reisner ring <em>S</em> has a virtual resolution, as defined by Berkesch, Erman, and Smith, of length <span><math><mrow><mi>codim</mi></mrow><mo>(</mo><mi>S</mi><mo>)</mo></math></span>. We provide a sufficient condition on Δ to be a virtually Cohen–Macaulay simplicial complex. We also introduce virtually shellable simplicial complexes, a generalization of shellable simplicial complexes. Virtually shellable complexes have the property that they are virtually Cohen–Macaulay, generalizing the well-known fact that shellable simplicial complexes are Cohen–Macaulay.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102830"},"PeriodicalIF":1.0,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamics of pop-tsack torsing
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-12-18 DOI: 10.1016/j.aam.2024.102826
Anqi Li
<div><div>For a finite irreducible Coxeter group <span><math><mo>(</mo><mi>W</mi><mo>,</mo><mi>S</mi><mo>)</mo></math></span> with a fixed Coxeter element <em>c</em> and set of reflections <em>T</em>, Defant and Williams define a pop-tsack torsing operation <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>:</mo><mi>W</mi><mo>→</mo><mi>W</mi></math></span> given by <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><mi>w</mi><mo>⋅</mo><mi>π</mi><msup><mrow><mo>(</mo><mi>w</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> where <span><math><mi>π</mi><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><msubsup><mrow><mo>⋁</mo></mrow><mrow><mi>t</mi><msub><mrow><mo>≤</mo></mrow><mrow><mi>T</mi></mrow></msub><mi>w</mi><mo>,</mo><mspace></mspace><mi>t</mi><mo>∈</mo><mi>T</mi></mrow><mrow><mi>N</mi><mi>C</mi><mo>(</mo><mi>w</mi><mo>,</mo><mi>c</mi><mo>)</mo></mrow></msubsup><mi>t</mi></math></span> is the join of all reflections lying below <em>w</em> in the absolute order in the non-crossing partition lattice <span><math><mi>N</mi><mi>C</mi><mo>(</mo><mi>w</mi><mo>,</mo><mi>c</mi><mo>)</mo></math></span>. This is a “dual” notion of the pop-stack sorting operator <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span>; <span><math><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>S</mi></mrow></msub></mrow></math></span> was introduced by Defant as a way to generalize the pop-stack sorting operator on <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> to general Coxeter groups. Define the forward orbit of an element <span><math><mi>w</mi><mo>∈</mo><mi>W</mi></math></span> to be <span><math><msub><mrow><mi>O</mi></mrow><mrow><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mo>=</mo><mo>{</mo><mi>w</mi><mo>,</mo><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mo>(</mo><mi>w</mi><mo>)</mo><mo>,</mo><msup><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>w</mi><mo>)</mo><mo>,</mo><mo>…</mo><mo>}</mo></math></span>. Defant and Williams established the length of the longest possible forward orbits <span><math><msub><mrow><mi>max</mi></mrow><mrow><mi>w</mi><mo>∈</mo><mi>W</mi></mrow></msub><mo>⁡</mo><mo>|</mo><msub><mrow><mi>O</mi></mrow><mrow><mrow><mi>Po</mi><msub><mrow><mi>p</mi></mrow><mrow><mi>T</mi></mrow></msub></mrow></mrow></msub><mo>(</mo><mi>w</mi><mo>)</mo><mo>|</mo></math></span> for Coxeter groups of coincidental types and Type D in terms of the corresponding Coxeter number of the group. In their paper, they also proposed multiple conjectures about enumerating elements with near maximal orbit length. We resolve all the
{"title":"Dynamics of pop-tsack torsing","authors":"Anqi Li","doi":"10.1016/j.aam.2024.102826","DOIUrl":"10.1016/j.aam.2024.102826","url":null,"abstract":"&lt;div&gt;&lt;div&gt;For a finite irreducible Coxeter group &lt;span&gt;&lt;math&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; with a fixed Coxeter element &lt;em&gt;c&lt;/em&gt; and set of reflections &lt;em&gt;T&lt;/em&gt;, Defant and Williams define a pop-tsack torsing operation &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Po&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;mo&gt;→&lt;/mo&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; given by &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Po&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;⋅&lt;/mo&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; where &lt;span&gt;&lt;math&gt;&lt;mi&gt;π&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;⋁&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is the join of all reflections lying below &lt;em&gt;w&lt;/em&gt; in the absolute order in the non-crossing partition lattice &lt;span&gt;&lt;math&gt;&lt;mi&gt;N&lt;/mi&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;c&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. This is a “dual” notion of the pop-stack sorting operator &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Po&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;; &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;Po&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; was introduced by Defant as a way to generalize the pop-stack sorting operator on &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; to general Coxeter groups. Define the forward orbit of an element &lt;span&gt;&lt;math&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; to be &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;Po&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mrow&gt;&lt;mi&gt;Po&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;Po&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;. Defant and Williams established the length of the longest possible forward orbits &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;max&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;⁡&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mi&gt;Po&lt;/mi&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt; for Coxeter groups of coincidental types and Type D in terms of the corresponding Coxeter number of the group. In their paper, they also proposed multiple conjectures about enumerating elements with near maximal orbit length. We resolve all the ","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102826"},"PeriodicalIF":1.0,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Letter frequency vs factor frequency in pure morphic words
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-12-17 DOI: 10.1016/j.aam.2024.102834
Shuo Li
We prove that, for any pure morphic word w, if the frequencies of all letters in w exist, then the frequencies of all factors in w exist as well. This result answers a question of Saari in his doctoral thesis.
{"title":"Letter frequency vs factor frequency in pure morphic words","authors":"Shuo Li","doi":"10.1016/j.aam.2024.102834","DOIUrl":"10.1016/j.aam.2024.102834","url":null,"abstract":"<div><div>We prove that, for any pure morphic word <em>w</em>, if the frequencies of all letters in <em>w</em> exist, then the frequencies of all factors in <em>w</em> exist as well. This result answers a question of Saari in his doctoral thesis.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102834"},"PeriodicalIF":1.0,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Initial values of ML-degree polynomials
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-12-13 DOI: 10.1016/j.aam.2024.102831
Maciej Gałązka
We prove a conjecture about the initial values of ML-degree polynomials stated by Michałek, Monin, and Wiśniewski.
{"title":"Initial values of ML-degree polynomials","authors":"Maciej Gałązka","doi":"10.1016/j.aam.2024.102831","DOIUrl":"10.1016/j.aam.2024.102831","url":null,"abstract":"<div><div>We prove a conjecture about the initial values of ML-degree polynomials stated by Michałek, Monin, and Wiśniewski.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102831"},"PeriodicalIF":1.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chordal matroids arising from generalized parallel connections II
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-12-13 DOI: 10.1016/j.aam.2024.102833
James Dylan Douthitt, James Oxley
In 1961, Dirac showed that chordal graphs are exactly the graphs that can be constructed from complete graphs by a sequence of clique-sums. In an earlier paper, by analogy with Dirac's result, we introduced the class of GF(q)-chordal matroids as those matroids that can be constructed from projective geometries over GF(q) by a sequence of generalized parallel connections across projective geometries over GF(q). Our main result showed that when q=2, such matroids have no induced minor in {M(C4),M(K4)}. In this paper, we show that the class of GF(2)-chordal matroids coincides with the class of binary matroids that have none of M(K4), M(K3,3), or M(Cn) for n4 as a flat. We also show that GF(q)-chordal matroids can be characterized by an analogous result to Rose's 1970 characterization of chordal graphs as those that have a perfect elimination ordering of vertices.
{"title":"Chordal matroids arising from generalized parallel connections II","authors":"James Dylan Douthitt,&nbsp;James Oxley","doi":"10.1016/j.aam.2024.102833","DOIUrl":"10.1016/j.aam.2024.102833","url":null,"abstract":"<div><div>In 1961, Dirac showed that chordal graphs are exactly the graphs that can be constructed from complete graphs by a sequence of clique-sums. In an earlier paper, by analogy with Dirac's result, we introduced the class of <span><math><mi>G</mi><mi>F</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>-chordal matroids as those matroids that can be constructed from projective geometries over <span><math><mi>G</mi><mi>F</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span> by a sequence of generalized parallel connections across projective geometries over <span><math><mi>G</mi><mi>F</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. Our main result showed that when <span><math><mi>q</mi><mo>=</mo><mn>2</mn></math></span>, such matroids have no induced minor in <span><math><mo>{</mo><mi>M</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo><mo>,</mo><mi>M</mi><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo><mo>}</mo></math></span>. In this paper, we show that the class of <span><math><mi>G</mi><mi>F</mi><mo>(</mo><mn>2</mn><mo>)</mo></math></span>-chordal matroids coincides with the class of binary matroids that have none of <span><math><mi>M</mi><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>)</mo></math></span>, <span><math><msup><mrow><mi>M</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>)</mo></math></span>, or <span><math><mi>M</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span> as a flat. We also show that <span><math><mi>G</mi><mi>F</mi><mo>(</mo><mi>q</mi><mo>)</mo></math></span>-chordal matroids can be characterized by an analogous result to Rose's 1970 characterization of chordal graphs as those that have a perfect elimination ordering of vertices.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102833"},"PeriodicalIF":1.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143154471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Consecutive pattern containment and c-Wilf equivalence
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-12-13 DOI: 10.1016/j.aam.2024.102829
Reza Rastegar
We offer elementary proofs for several results in consecutive pattern containment that were previously demonstrated using ideas from cluster method and analytical combinatorics. Furthermore, we establish new general bounds on the growth rates of consecutive pattern avoidance in permutations.
{"title":"Consecutive pattern containment and c-Wilf equivalence","authors":"Reza Rastegar","doi":"10.1016/j.aam.2024.102829","DOIUrl":"10.1016/j.aam.2024.102829","url":null,"abstract":"<div><div>We offer elementary proofs for several results in consecutive pattern containment that were previously demonstrated using ideas from cluster method and analytical combinatorics. Furthermore, we establish new general bounds on the growth rates of consecutive pattern avoidance in permutations.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102829"},"PeriodicalIF":1.0,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous orderings and combinatorial interpretations of generalized factorials and binomial coefficients
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-12-05 DOI: 10.1016/j.aam.2024.102810
Lan Nguyen
In this paper, we answer several questions raised by Manjul Bhargava concerning p-orderings, p-sequences, and combinatorial interpretations of generalized factorials and binomial coefficients associated with subsets S of Z. First, we prove some results of Bhargava concerning p-orderings, p-sequences and the integrality of generalized binomial coefficients directly from definitions, answering two questions of Bhargava. As a result, we also obtain some explicit descriptions of the p-sequences associated with p-orderings which do not exist in Bhargava's proofs. Second, we provide some combinatorial interpretations for the generalized factorials and the generalized binomial coefficients associated with subsets of Z which possess simultaneous p-orderings, answering two other questions raised by Bhargava.
{"title":"Simultaneous orderings and combinatorial interpretations of generalized factorials and binomial coefficients","authors":"Lan Nguyen","doi":"10.1016/j.aam.2024.102810","DOIUrl":"10.1016/j.aam.2024.102810","url":null,"abstract":"<div><div>In this paper, we answer several questions raised by Manjul Bhargava concerning <em>p</em>-orderings, <em>p</em>-sequences, and combinatorial interpretations of generalized factorials and binomial coefficients associated with subsets <em>S</em> of <span><math><mi>Z</mi></math></span>. First, we prove some results of Bhargava concerning <em>p</em>-orderings, <em>p</em>-sequences and the integrality of generalized binomial coefficients directly from definitions, answering two questions of Bhargava. As a result, we also obtain some explicit descriptions of the <em>p</em>-sequences associated with <em>p</em>-orderings which do not exist in Bhargava's proofs. Second, we provide some combinatorial interpretations for the generalized factorials and the generalized binomial coefficients associated with subsets of <span><math><mi>Z</mi></math></span> which possess simultaneous <em>p</em>-orderings, answering two other questions raised by Bhargava.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"164 ","pages":"Article 102810"},"PeriodicalIF":1.0,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143153923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A direct proof of well-definedness for the polymatroid Tutte polynomial 多面体图特多项式定义明确性的直接证明
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2024-11-27 DOI: 10.1016/j.aam.2024.102809
Xiaxia Guan , Xian'an Jin
For a polymatroid P over [n], Bernardi et al. (2022) [1] introduced the polymatroid Tutte polynomial TP relying on the order 1<2<<n of [n], which generalizes the classical Tutte polynomial from matroids to polymatroids. They proved the independence of this order by the fact that TP is equivalent to another polynomial that only depends on P. In this paper, similar to the Tutte's original proof of the well-definedness of the Tutte polynomial defined by the summation over all spanning trees using activities depending on the order of edges, we give a direct and elementary proof of the well-definedness of the polymatroid Tutte polynomial.
Bernardi 等人(2022 年)[1] 根据 [n] 的阶 1<2<⋯<n,对 [n] 上的多母题 P 提出了多母题图特多项式 TP,它将经典的图特多项式从母题推广到多母题。在本文中,与 Tutte 利用边的阶数活动对所有生成树求和所定义的 Tutte 多项式的定义良好性的原始证明类似,我们给出了多马特人 Tutte 多项式定义良好性的直接而基本的证明。
{"title":"A direct proof of well-definedness for the polymatroid Tutte polynomial","authors":"Xiaxia Guan ,&nbsp;Xian'an Jin","doi":"10.1016/j.aam.2024.102809","DOIUrl":"10.1016/j.aam.2024.102809","url":null,"abstract":"<div><div>For a polymatroid <em>P</em> over <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, Bernardi et al. (2022) <span><span>[1]</span></span> introduced the polymatroid Tutte polynomial <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> relying on the order <span><math><mn>1</mn><mo>&lt;</mo><mn>2</mn><mo>&lt;</mo><mo>⋯</mo><mo>&lt;</mo><mi>n</mi></math></span> of <span><math><mo>[</mo><mi>n</mi><mo>]</mo></math></span>, which generalizes the classical Tutte polynomial from matroids to polymatroids. They proved the independence of this order by the fact that <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>P</mi></mrow></msub></math></span> is equivalent to another polynomial that only depends on <em>P</em>. In this paper, similar to the Tutte's original proof of the well-definedness of the Tutte polynomial defined by the summation over all spanning trees using activities depending on the order of edges, we give a direct and elementary proof of the well-definedness of the polymatroid Tutte polynomial.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"163 ","pages":"Article 102809"},"PeriodicalIF":1.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1