首页 > 最新文献

Advances in Anatomy Embryology and Cell Biology最新文献

英文 中文
The Ultrastructure and Composition of Bovine Spermatozoa. 牛精子的超微结构和组成。
4区 生物学 Q3 Medicine Pub Date : 2025-01-01 DOI: 10.1007/978-3-031-70126-9_1
Albert Barth, Viv E A Perry, Lauren E Hamilton, Peter Sutovsky, Richard Oko

This chapter provides a cytological and compositional evaluation of the various compartments and sub-compartments making up the bull spermatozoon. The intention is to define the sperm head and tail compartments from an ultrastructural perspective and attribute to them their protein constituents gathered from both traditional and modern proteomic approaches. Common to both approaches, the compositional analysis is dependent on the fractionation and isolation of the sperm compartments combined with polyacrylamide gel electrophoresis (PAGE) and Western blotting to detect the identities of the proteins, and immunocytochemistry to confirm their residency. As will be appreciated, the identity of a particular sperm protein together with its residency provide valuable insights not only into its role, but also to the role of the specific sperm compartment it occupies, in development and/or fertilization. Attention is also given in this chapter to the consequences (on sperm structure and fertility) of inactivating genes that play key roles in sperm formation, especially if their phenotypes appear to match common bull sperm abnormalities. The keywords below cover the sperm head and tail compartments addressed in this chapter.

本章提供了构成公牛精子的各个室和子室的细胞学和成分评价。目的是从超微结构的角度定义精子的头部和尾部,并将从传统和现代蛋白质组学方法收集到的蛋白质成分归为它们。这两种方法的共同点是,成分分析依赖于精子区室的分离和分离,结合聚丙烯酰胺凝胶电泳(PAGE)和Western blotting来检测蛋白质的身份,以及免疫细胞化学来确认它们的存在。正如我们所理解的,一个特定精子蛋白的身份及其驻留不仅提供了对其作用的有价值的见解,而且还提供了它在发育和/或受精中所占据的特定精子区室的作用。本章还将关注在精子形成中起关键作用的失活基因的后果(对精子结构和生育能力),特别是如果它们的表型似乎与常见的公牛精子异常相匹配。下面的关键词涵盖了本章讨论的精子头部和尾部的隔室。
{"title":"The Ultrastructure and Composition of Bovine Spermatozoa.","authors":"Albert Barth, Viv E A Perry, Lauren E Hamilton, Peter Sutovsky, Richard Oko","doi":"10.1007/978-3-031-70126-9_1","DOIUrl":"10.1007/978-3-031-70126-9_1","url":null,"abstract":"<p><p>This chapter provides a cytological and compositional evaluation of the various compartments and sub-compartments making up the bull spermatozoon. The intention is to define the sperm head and tail compartments from an ultrastructural perspective and attribute to them their protein constituents gathered from both traditional and modern proteomic approaches. Common to both approaches, the compositional analysis is dependent on the fractionation and isolation of the sperm compartments combined with polyacrylamide gel electrophoresis (PAGE) and Western blotting to detect the identities of the proteins, and immunocytochemistry to confirm their residency. As will be appreciated, the identity of a particular sperm protein together with its residency provide valuable insights not only into its role, but also to the role of the specific sperm compartment it occupies, in development and/or fertilization. Attention is also given in this chapter to the consequences (on sperm structure and fertility) of inactivating genes that play key roles in sperm formation, especially if their phenotypes appear to match common bull sperm abnormalities. The keywords below cover the sperm head and tail compartments addressed in this chapter.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"240 ","pages":"1-64"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144007480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Standardization of the Assessment of Bovine Spermatozoal Abnormalities, in Relation to Fertility, as Part of the Bull Breeding Soundness Examination. 修正:牛精子异常评估标准化,与生育能力有关,作为公牛育种健康检查的一部分。
4区 生物学 Q3 Medicine Pub Date : 2025-01-01 DOI: 10.1007/978-3-031-70126-9_10
Albert Barth, Viv E A Perry, Lauren E Hamilton, Peter Sutovsky, Richard Oko
{"title":"Correction to: Standardization of the Assessment of Bovine Spermatozoal Abnormalities, in Relation to Fertility, as Part of the Bull Breeding Soundness Examination.","authors":"Albert Barth, Viv E A Perry, Lauren E Hamilton, Peter Sutovsky, Richard Oko","doi":"10.1007/978-3-031-70126-9_10","DOIUrl":"https://doi.org/10.1007/978-3-031-70126-9_10","url":null,"abstract":"","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"240 ","pages":"C1"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145967701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing Bovine Male Fertility in a Technological Age. 评估技术时代的牛雄性生育能力。
4区 生物学 Q3 Medicine Pub Date : 2025-01-01 DOI: 10.1007/978-3-031-70126-9_7
Albert Barth, Viv E A Perry, Lauren E Hamilton, Peter Sutovsky, Richard Oko

New and emerging technologies allow for a deeper and more comprehensive understanding of sperm physiology that can be harnessed to improve bull fertility selection. This chapter focuses on (1) the use of conventional and emerging flow cytometry techniques to further enhance functional sperm assessments; (2) new developments in proteomic and metabolomic biomarkers of bull fertility and how they can better inform fertility evaluations; and (3) the use of sperm selection technologies to optimize the fertility outcomes of bulls in artificial insemination service. As our knowledge of sperm physiology continues to expand, technology will allow for a faster translational capacity and continuous development of techniques. The technologies and techniques presented are current tools that can be used to enhance the efficiency, precision and accuracy of bull fertility assessments and better inform herd management.

新的和新兴的技术允许更深入、更全面地了解精子生理,可以利用来提高公牛的生育选择。本章的重点是(1)使用传统的和新兴的流式细胞术技术来进一步增强功能性精子的评估;(2)公牛生育力蛋白质组学和代谢组学生物标志物的新进展及其如何更好地为生育力评估提供信息;(3)利用精子选择技术优化人工授精服务公牛的生育效果。随着我们对精子生理学知识的不断扩展,技术将允许更快的翻译能力和技术的持续发展。所介绍的技术和技术是当前的工具,可用于提高公牛生育力评估的效率、精度和准确性,并更好地为牛群管理提供信息。
{"title":"Assessing Bovine Male Fertility in a Technological Age.","authors":"Albert Barth, Viv E A Perry, Lauren E Hamilton, Peter Sutovsky, Richard Oko","doi":"10.1007/978-3-031-70126-9_7","DOIUrl":"10.1007/978-3-031-70126-9_7","url":null,"abstract":"<p><p>New and emerging technologies allow for a deeper and more comprehensive understanding of sperm physiology that can be harnessed to improve bull fertility selection. This chapter focuses on (1) the use of conventional and emerging flow cytometry techniques to further enhance functional sperm assessments; (2) new developments in proteomic and metabolomic biomarkers of bull fertility and how they can better inform fertility evaluations; and (3) the use of sperm selection technologies to optimize the fertility outcomes of bulls in artificial insemination service. As our knowledge of sperm physiology continues to expand, technology will allow for a faster translational capacity and continuous development of techniques. The technologies and techniques presented are current tools that can be used to enhance the efficiency, precision and accuracy of bull fertility assessments and better inform herd management.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"240 ","pages":"297-329"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144047035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bovine Sperm Maturation. 牛精子成熟。
4区 生物学 Q3 Medicine Pub Date : 2025-01-01 DOI: 10.1007/978-3-031-70126-9_3
Albert Barth, Viv E A Perry, Lauren E Hamilton, Peter Sutovsky, Richard Oko

On completion of spermatogenesis, testicular spermatozoa appear structurally mature but are infertile and must undergo a sequential maturational process in the epididymis to become motile and acquire fertilizing potential. This chapter provides a cell biological overview of the endocytic and secretory activities, along the extratesticular duct system, that provide appropriate conditions for epididymal maturation of bull spermatozoa. The compartmentalization of the bovine epididymis is illustrated and discussed in terms of epithelial cell types and merocrine and apocrine protein secretions by principal cells that influence maturation. Sequential maturational events are followed with examples, first, of testicular proteins associated with spermatozoa that are endocytosed to form a 'clean slate' and then, of epididymal secretory proteins that recondition the sperm milieu and bind to spermatozoa in order to attain its full fertilization potential. Finally, an assessment is made of the potential contributions to epididymal maturation of some well-characterized and identified secretory proteins that interact with the cytoplasmic membrane of spermatozoa.

精子发生完成后,睾丸精子在结构上是成熟的,但是不育的,必须在附睾中经历一个连续的成熟过程才能变得有活力并获得受精潜力。本章从细胞生物学的角度概述了睾丸外管系统的内吞和分泌活动,这些活动为公牛精子的附睾成熟提供了适当的条件。根据上皮细胞类型和影响成熟的主要细胞分泌的merocrine和apocrine蛋白,说明并讨论了牛附睾的区隔化。接下来是一系列的成熟事件,首先是与精子相关的睾丸蛋白,它们被内吞以形成“干净的石板”,然后是附睾分泌蛋白,它们修复精子环境并与精子结合,以实现其充分的受精潜力。最后,评估了一些与精子细胞质膜相互作用的分泌蛋白对附睾成熟的潜在贡献。
{"title":"Bovine Sperm Maturation.","authors":"Albert Barth, Viv E A Perry, Lauren E Hamilton, Peter Sutovsky, Richard Oko","doi":"10.1007/978-3-031-70126-9_3","DOIUrl":"10.1007/978-3-031-70126-9_3","url":null,"abstract":"<p><p>On completion of spermatogenesis, testicular spermatozoa appear structurally mature but are infertile and must undergo a sequential maturational process in the epididymis to become motile and acquire fertilizing potential. This chapter provides a cell biological overview of the endocytic and secretory activities, along the extratesticular duct system, that provide appropriate conditions for epididymal maturation of bull spermatozoa. The compartmentalization of the bovine epididymis is illustrated and discussed in terms of epithelial cell types and merocrine and apocrine protein secretions by principal cells that influence maturation. Sequential maturational events are followed with examples, first, of testicular proteins associated with spermatozoa that are endocytosed to form a 'clean slate' and then, of epididymal secretory proteins that recondition the sperm milieu and bind to spermatozoa in order to attain its full fertilization potential. Finally, an assessment is made of the potential contributions to epididymal maturation of some well-characterized and identified secretory proteins that interact with the cytoplasmic membrane of spermatozoa.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"240 ","pages":"137-164"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144031289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prenatal and Preweaning Environmental Effects upon Pubertal Development and Sperm Production. 产前和断奶前环境对青春期发育和精子产生的影响。
4区 生物学 Q3 Medicine Pub Date : 2025-01-01 DOI: 10.1007/978-3-031-70126-9_8
Albert Barth, Viv E A Perry, Lauren E Hamilton, Peter Sutovsky, Richard Oko

This chapter examines the role of early life perturbations upon the developing bull calf. Surprisingly, we observe effects upon sexual development and sperm quality, including sperm morphology, as early as the periconception period (-60 to 23 days post conception). Similarly, during postnatal life (prior to 6mths of age) dietary perturbations retard sexual development and sperm quality. Herein we discuss the ontology of development and examine why these periods of development are fundamental to fertility in the bull. Ultimately, this leads to recommendations for changes to current husbandry protocols.

本章考察了早期生活扰动对发育中的小牛的作用。令人惊讶的是,我们观察到对性发育和精子质量的影响,包括精子形态,早在受孕期(受孕后-60至23天)。同样,在出生后(6个月前),饮食紊乱会延缓性发育和精子质量。在这里,我们讨论了发展的本体论,并研究了为什么这些发展时期是公牛生育的基础。最终,这导致了对当前畜牧业协议的修改建议。
{"title":"Prenatal and Preweaning Environmental Effects upon Pubertal Development and Sperm Production.","authors":"Albert Barth, Viv E A Perry, Lauren E Hamilton, Peter Sutovsky, Richard Oko","doi":"10.1007/978-3-031-70126-9_8","DOIUrl":"10.1007/978-3-031-70126-9_8","url":null,"abstract":"<p><p>This chapter examines the role of early life perturbations upon the developing bull calf. Surprisingly, we observe effects upon sexual development and sperm quality, including sperm morphology, as early as the periconception period (-60 to 23 days post conception). Similarly, during postnatal life (prior to 6mths of age) dietary perturbations retard sexual development and sperm quality. Herein we discuss the ontology of development and examine why these periods of development are fundamental to fertility in the bull. Ultimately, this leads to recommendations for changes to current husbandry protocols.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"240 ","pages":"331-347"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144042657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Telomere Elongation During Pre-Implantation Embryo Development. 胚胎植入前发育过程中的端粒伸长
4区 生物学 Q3 Medicine Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55163-5_6
Hyuk-Joon Jeon, Mia T Levine, Michael A Lampson

The primary mechanism of telomere elongation in mammals is reverse transcription by telomerase. An alternative (ALT) pathway elongates telomeres by homologous recombination in some cancer cells and during pre-implantation embryo development, when telomere length increases rapidly within a few cell cycles. The maternal and paternal telomeres in the zygote are genetically and epigenetically distinct, with differences in telomere length and in chromatin packaging. We discuss models for how these asymmetries may contribute to telomere regulation during the earliest embryonic cell cycles and suggest directions for future research.

哺乳动物端粒延长的主要机制是端粒酶的逆转录。在一些癌细胞中和胚胎植入前的发育过程中,端粒长度会在几个细胞周期内迅速增加,而另一种(ALT)途径则通过同源重组来延长端粒。子代中的母端粒和父端粒在遗传学和表观遗传学上是不同的,端粒长度和染色质包装也不同。我们讨论了这些不对称性如何在最早的胚胎细胞周期中促进端粒调控的模型,并提出了未来的研究方向。
{"title":"Telomere Elongation During Pre-Implantation Embryo Development.","authors":"Hyuk-Joon Jeon, Mia T Levine, Michael A Lampson","doi":"10.1007/978-3-031-55163-5_6","DOIUrl":"10.1007/978-3-031-55163-5_6","url":null,"abstract":"<p><p>The primary mechanism of telomere elongation in mammals is reverse transcription by telomerase. An alternative (ALT) pathway elongates telomeres by homologous recombination in some cancer cells and during pre-implantation embryo development, when telomere length increases rapidly within a few cell cycles. The maternal and paternal telomeres in the zygote are genetically and epigenetically distinct, with differences in telomere length and in chromatin packaging. We discuss models for how these asymmetries may contribute to telomere regulation during the earliest embryonic cell cycles and suggest directions for future research.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"238 ","pages":"121-129"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Cell Regeneration Is Driven by Pancreatic Plasticity. 胰腺可塑性驱动β细胞再生
4区 生物学 Q3 Medicine Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62232-8_4
Adrián Holguín-Horcajo, Rocio Sancho, Meritxell Rovira

The pancreas has been considered a non-regenerative organ. β cells lost in diabetes are not replaced due to the inability of the pancreas to regenerate. However, ample evidence generated in the last few decades using murine models has demonstrated that the pancreas has a remarkable plasticity wherein differentiated cells can change cell fate toward a β-like cell phenotype. Although this process is observed after using rather artificial stimuli and the conversion efficiency is very limited, these findings have shed some light on novel pathways for β-cell regeneration. In this chapter, we will summarize the different cellular interconversion processes described to date, the experimental details and molecular regulation of such interconversions, and the genomic technologies that have allowed the identification of potential new ways to generate β cells.

胰腺一直被认为是一个不可再生的器官。由于胰腺无法再生,糖尿病患者丢失的β细胞无法得到替代。然而,过去几十年中利用小鼠模型产生的大量证据表明,胰腺具有显著的可塑性,分化的细胞可以改变细胞命运,形成类似β细胞的表型。虽然这一过程是在使用相当人工的刺激后观察到的,而且转化效率非常有限,但这些发现为β细胞再生的新途径提供了一些启示。在本章中,我们将总结迄今为止所描述的不同细胞相互转化过程、实验细节和此类相互转化的分子调控,以及基因组学技术,这些技术有助于确定生成β细胞的潜在新途径。
{"title":"β-Cell Regeneration Is Driven by Pancreatic Plasticity.","authors":"Adrián Holguín-Horcajo, Rocio Sancho, Meritxell Rovira","doi":"10.1007/978-3-031-62232-8_4","DOIUrl":"https://doi.org/10.1007/978-3-031-62232-8_4","url":null,"abstract":"<p><p>The pancreas has been considered a non-regenerative organ. β cells lost in diabetes are not replaced due to the inability of the pancreas to regenerate. However, ample evidence generated in the last few decades using murine models has demonstrated that the pancreas has a remarkable plasticity wherein differentiated cells can change cell fate toward a β-like cell phenotype. Although this process is observed after using rather artificial stimuli and the conversion efficiency is very limited, these findings have shed some light on novel pathways for β-cell regeneration. In this chapter, we will summarize the different cellular interconversion processes described to date, the experimental details and molecular regulation of such interconversions, and the genomic technologies that have allowed the identification of potential new ways to generate β cells.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"239 ","pages":"91-115"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic Regulation of Pancreas Development and Function. 胰腺发育和功能的表观遗传调控
4区 生物学 Q3 Medicine Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62232-8_1
Tanya Hans Pierre, Eliana Toren, Jessica Kepple, Chad S Hunter

The field of epigenetics broadly seeks to define heritable phenotypic modifications that occur within cells without changes to the underlying DNA sequence. These modifications allow for precise control and specificity of function between cell types-ultimately creating complex organ systems that all contain the same DNA but only have access to the genes and sequences necessary for their cell-type-specific functions. The pancreas is an organ that contains varied cellular compartments with functions ranging from highly regulated glucose-stimulated insulin secretion in the β-cell to the pancreatic ductal cells that form a tight epithelial lining for the delivery of digestive enzymes. With diabetes cases on the rise worldwide, understanding the epigenetic mechanisms driving β-cell identity, function, and even disease is particularly valuable. In this chapter, we will discuss the known epigenetic modifications in pancreatic islet cells, how they are deposited, and the environmental and metabolic contributions to epigenetic mechanisms. We will also explore how a deeper understanding of epigenetic effectors can be used as a tool for diabetes therapeutic strategies.

表观遗传学领域广泛寻求定义细胞内发生的遗传表型修饰,而不改变基本的 DNA 序列。这些修饰可以精确控制细胞类型之间的功能并使其具有特异性--最终形成复杂的器官系统,这些系统都含有相同的 DNA,但只能获得其细胞类型特异性功能所需的基因和序列。胰腺是一个包含不同细胞区的器官,其功能从高度调节的葡萄糖刺激β细胞分泌胰岛素,到胰腺导管细胞形成紧密的上皮衬里输送消化酶。随着全球糖尿病病例的增加,了解驱动β细胞特性、功能甚至疾病的表观遗传机制尤为重要。在本章中,我们将讨论胰岛细胞中已知的表观遗传修饰、它们是如何沉积的,以及环境和新陈代谢对表观遗传机制的贡献。我们还将探讨如何将对表观遗传效应因子的深入了解用作糖尿病治疗策略的工具。
{"title":"Epigenetic Regulation of Pancreas Development and Function.","authors":"Tanya Hans Pierre, Eliana Toren, Jessica Kepple, Chad S Hunter","doi":"10.1007/978-3-031-62232-8_1","DOIUrl":"10.1007/978-3-031-62232-8_1","url":null,"abstract":"<p><p>The field of epigenetics broadly seeks to define heritable phenotypic modifications that occur within cells without changes to the underlying DNA sequence. These modifications allow for precise control and specificity of function between cell types-ultimately creating complex organ systems that all contain the same DNA but only have access to the genes and sequences necessary for their cell-type-specific functions. The pancreas is an organ that contains varied cellular compartments with functions ranging from highly regulated glucose-stimulated insulin secretion in the β-cell to the pancreatic ductal cells that form a tight epithelial lining for the delivery of digestive enzymes. With diabetes cases on the rise worldwide, understanding the epigenetic mechanisms driving β-cell identity, function, and even disease is particularly valuable. In this chapter, we will discuss the known epigenetic modifications in pancreatic islet cells, how they are deposited, and the environmental and metabolic contributions to epigenetic mechanisms. We will also explore how a deeper understanding of epigenetic effectors can be used as a tool for diabetes therapeutic strategies.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"239 ","pages":"1-30"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic and Molecular Amplification of Insulin Secretion. 胰岛素分泌的代谢和分子放大。
4区 生物学 Q3 Medicine Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-62232-8_5
Mourad Ferdaoussi

The pancreatic β cells are at the hub of myriad signals to regulate the secretion of an adequate amount of insulin needed to re-establish postprandial euglycemia. The β cell possesses sophisticated metabolic enzymes and a variety of extracellular receptors and channels that amplify insulin secretion in response to autocrine, paracrine, and neurohormonal signals. Considerable research has been undertaken to decipher the mechanisms regulating insulin secretion. While the triggering pathway induced by glucose is needed to initiate the exocytosis process, multiple other stimuli modulate the insulin secretion response. This chapter will discuss the recent advances in understanding the role of the diverse glucose- and fatty acid-metabolic coupling factors in amplifying insulin secretion. It will also highlight the intracellular events linking the extracellular receptors and channels to insulin secretion amplification. Understanding these mechanisms provides new insights into learning more about the etiology of β-cell failure and paves the way for developing new therapeutic strategies for type 2 diabetes.

胰岛β细胞是无数信号的枢纽,这些信号可调节胰岛素的分泌,以重新建立餐后优格血症。β 细胞具有复杂的代谢酶和各种细胞外受体和通道,可根据自分泌、旁分泌和神经激素信号放大胰岛素分泌。为了破译胰岛素分泌的调节机制,人们进行了大量研究。虽然葡萄糖诱导的触发途径是启动外泌过程所必需的,但其他多种刺激也会调节胰岛素分泌反应。本章将讨论最近在理解各种葡萄糖和脂肪酸代谢偶联因子在扩大胰岛素分泌中的作用方面取得的进展。本章还将重点介绍将细胞外受体和通道与胰岛素分泌放大联系起来的细胞内事件。对这些机制的了解为进一步了解β细胞衰竭的病因提供了新的视角,并为开发治疗2型糖尿病的新策略铺平了道路。
{"title":"Metabolic and Molecular Amplification of Insulin Secretion.","authors":"Mourad Ferdaoussi","doi":"10.1007/978-3-031-62232-8_5","DOIUrl":"10.1007/978-3-031-62232-8_5","url":null,"abstract":"<p><p>The pancreatic β cells are at the hub of myriad signals to regulate the secretion of an adequate amount of insulin needed to re-establish postprandial euglycemia. The β cell possesses sophisticated metabolic enzymes and a variety of extracellular receptors and channels that amplify insulin secretion in response to autocrine, paracrine, and neurohormonal signals. Considerable research has been undertaken to decipher the mechanisms regulating insulin secretion. While the triggering pathway induced by glucose is needed to initiate the exocytosis process, multiple other stimuli modulate the insulin secretion response. This chapter will discuss the recent advances in understanding the role of the diverse glucose- and fatty acid-metabolic coupling factors in amplifying insulin secretion. It will also highlight the intracellular events linking the extracellular receptors and channels to insulin secretion amplification. Understanding these mechanisms provides new insights into learning more about the etiology of β-cell failure and paves the way for developing new therapeutic strategies for type 2 diabetes.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"239 ","pages":"117-139"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Predicting Infertility: How Genetic Variants in Oocyte Spindle Genes Affect Egg Quality. 预测不孕症:卵母细胞纺锤体基因的遗传变异如何影响卵子质量。
4区 生物学 Q3 Medicine Pub Date : 2024-01-01 DOI: 10.1007/978-3-031-55163-5_1
Leelabati Biswas, Karen Schindler

Successful reproduction relies on the union of a single chromosomally normal egg and sperm. Chromosomally normal eggs develop from precursor cells, called oocytes, that have undergone accurate chromosome segregation. The process of chromosome segregation is governed by the oocyte spindle, a unique cytoskeletal machine that splits chromatin content of the meiotically dividing oocyte. The oocyte spindle develops and functions in an idiosyncratic process, which is vulnerable to genetic variation in spindle-associated proteins. Human genetic variants in several spindle-associated proteins are associated with poor clinical fertility outcomes, suggesting that heritable etiologies for oocyte dysfunction leading to infertility exist and that the spindle is a crux for female fertility. This chapter examines the mammalian oocyte spindle through the lens of human genetic variation, covering the genes TUBB8, TACC3, CEP120, AURKA, AURKC, AURKB, BUB1B, and CDC20. Specifically, it explores how patient-identified variants perturb spindle development and function, and it links these molecular changes in the oocyte to their cognate clinical consequences, such as oocyte maturation arrest, elevated egg aneuploidy, primary ovarian insufficiency, and recurrent pregnancy loss. This discussion demonstrates that small genetic errors in oocyte meiosis can result in remarkably far-ranging embryonic consequences, and thus reveals the importance of the oocyte's fine machinery in sustaining life.

成功的生殖依赖于单个染色体正常的卵子和精子的结合。染色体正常的卵子由经过准确染色体分离的前体细胞(称为卵细胞)发育而成。染色体的分离过程由卵母细胞纺锤体控制,它是一种独特的细胞骨架机器,负责分割减数分裂卵母细胞中的染色质。卵母细胞纺锤体的发育和功能是一个独特的过程,很容易受到纺锤体相关蛋白基因变异的影响。人类几种纺锤体相关蛋白的遗传变异与不良的临床生育结果有关,这表明卵母细胞功能障碍导致不孕的遗传病因是存在的,而纺锤体是女性生育的关键。本章从人类遗传变异的角度研究哺乳动物卵母细胞纺锤体,涉及基因 TUBB8、TACC3、CEP120、AURKA、AURKC、AURKB、BUB1B 和 CDC20。具体来说,它探讨了患者识别出的变体如何扰乱纺锤体的发育和功能,并将卵母细胞中的这些分子变化与其相关的临床后果联系起来,如卵母细胞成熟停滞、卵子非整倍体率升高、原发性卵巢功能不全和复发性妊娠失败。这一论述表明,卵母细胞减数分裂过程中的微小遗传错误会导致范围极为广泛的胚胎后果,从而揭示了卵母细胞精密机械在维持生命方面的重要性。
{"title":"Predicting Infertility: How Genetic Variants in Oocyte Spindle Genes Affect Egg Quality.","authors":"Leelabati Biswas, Karen Schindler","doi":"10.1007/978-3-031-55163-5_1","DOIUrl":"10.1007/978-3-031-55163-5_1","url":null,"abstract":"<p><p>Successful reproduction relies on the union of a single chromosomally normal egg and sperm. Chromosomally normal eggs develop from precursor cells, called oocytes, that have undergone accurate chromosome segregation. The process of chromosome segregation is governed by the oocyte spindle, a unique cytoskeletal machine that splits chromatin content of the meiotically dividing oocyte. The oocyte spindle develops and functions in an idiosyncratic process, which is vulnerable to genetic variation in spindle-associated proteins. Human genetic variants in several spindle-associated proteins are associated with poor clinical fertility outcomes, suggesting that heritable etiologies for oocyte dysfunction leading to infertility exist and that the spindle is a crux for female fertility. This chapter examines the mammalian oocyte spindle through the lens of human genetic variation, covering the genes TUBB8, TACC3, CEP120, AURKA, AURKC, AURKB, BUB1B, and CDC20. Specifically, it explores how patient-identified variants perturb spindle development and function, and it links these molecular changes in the oocyte to their cognate clinical consequences, such as oocyte maturation arrest, elevated egg aneuploidy, primary ovarian insufficiency, and recurrent pregnancy loss. This discussion demonstrates that small genetic errors in oocyte meiosis can result in remarkably far-ranging embryonic consequences, and thus reveals the importance of the oocyte's fine machinery in sustaining life.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"238 ","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Anatomy Embryology and Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1