首页 > 最新文献

Advances in Anatomy Embryology and Cell Biology最新文献

英文 中文
Stem Cell Niche in the Mammalian Carotid Body. 哺乳动物颈动脉体中的干细胞生态位。
4区 生物学 Q3 Medicine Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-44757-0_9
Nikolai E Lazarov, Dimitrinka Y Atanasova

Accumulating evidence suggests that the mammalian carotid body (CB) constitutes a neurogenic center that contains a functionally active germinal niche. A variety of transcription factors is required for the generation of a precursor cell pool in the developing CB. Most of them are later silenced in their progeny, thus allowing for the maturation of the differentiated neurons. In the adult CB, neurotransmitters and vascular cytokines released by glomus cells upon exposure to chronic hypoxia act as paracrine signals that induce proliferation and differentiation of pluripotent stem cells, neuronal and vascular progenitors. Key proliferation markers such as Ki-67 and BrdU are widely used to evaluate the proliferative status of the CB parenchymal cells in the initial phase of this neurogenesis. During hypoxia sustentacular cells which are dormant cells in normoxic conditions can proliferate and differentiate into new glomus cells. However, more recent data have revealed that the majority of the newly formed glomus cells is derived from the glomus cell lineage itself. The mature glomus cells express numerous trophic and growth factors, and their corresponding receptors, which act on CB cell populations in autocrine or paracrine ways. Some of them initially serve as target-derived survival factors and then as signaling molecules in developing vascular targets. Morphofunctional insights into the cellular interactions in the CB stem cell microenvironment can be helpful in further understanding the therapeutic potential of the CB cell niche.

越来越多的证据表明,哺乳动物颈动脉体(CB)构成了一个神经源性中心,包含一个功能活跃的生发生态位。在发育中的CB中产生前体细胞库需要多种转录因子。它们中的大多数后来在后代中沉默,从而使分化的神经元成熟。在成年CB中,肾小球细胞在暴露于慢性缺氧时释放的神经递质和血管细胞因子作为旁分泌信号,诱导多能干细胞、神经元和血管祖细胞的增殖和分化。关键的增殖标记物如Ki-67和BrdU被广泛用于评估CB实质细胞在这种神经发生的初始阶段的增殖状态。在缺氧期间,在正常氧气条件下处于休眠状态的支持细胞可以增殖并分化为新的肾小球细胞。然而,最近的数据显示,大多数新形成的肾小球细胞来源于肾小球细胞谱系本身。成熟的肾小球细胞表达大量的营养和生长因子及其相应的受体,这些因子以自分泌或旁分泌的方式作用于CB细胞群。其中一些最初作为靶向衍生的生存因子,然后作为血管靶向发育中的信号分子。对CB干细胞微环境中细胞相互作用的形态功能见解有助于进一步了解CB细胞小生境的治疗潜力。
{"title":"Stem Cell Niche in the Mammalian Carotid Body.","authors":"Nikolai E Lazarov, Dimitrinka Y Atanasova","doi":"10.1007/978-3-031-44757-0_9","DOIUrl":"10.1007/978-3-031-44757-0_9","url":null,"abstract":"<p><p>Accumulating evidence suggests that the mammalian carotid body (CB) constitutes a neurogenic center that contains a functionally active germinal niche. A variety of transcription factors is required for the generation of a precursor cell pool in the developing CB. Most of them are later silenced in their progeny, thus allowing for the maturation of the differentiated neurons. In the adult CB, neurotransmitters and vascular cytokines released by glomus cells upon exposure to chronic hypoxia act as paracrine signals that induce proliferation and differentiation of pluripotent stem cells, neuronal and vascular progenitors. Key proliferation markers such as Ki-67 and BrdU are widely used to evaluate the proliferative status of the CB parenchymal cells in the initial phase of this neurogenesis. During hypoxia sustentacular cells which are dormant cells in normoxic conditions can proliferate and differentiate into new glomus cells. However, more recent data have revealed that the majority of the newly formed glomus cells is derived from the glomus cell lineage itself. The mature glomus cells express numerous trophic and growth factors, and their corresponding receptors, which act on CB cell populations in autocrine or paracrine ways. Some of them initially serve as target-derived survival factors and then as signaling molecules in developing vascular targets. Morphofunctional insights into the cellular interactions in the CB stem cell microenvironment can be helpful in further understanding the therapeutic potential of the CB cell niche.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"237 ","pages":"139-153"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skeletal Muscle's Role in Prenatal Inter-organ Communication: A Phenogenomic Study with Qualitative Citation Analysis. 骨骼肌在产前器官间交流中的作用:一项带有定性引用分析的表型研究。
4区 生物学 Q3 Medicine Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-38215-4_1
Boris Kablar

Gene targeting in mice allows for a complete elimination of skeletal (striated or voluntary) musculature in the body, from the beginning of its development, resulting in our ability to study the consequences of this ablation on other organs. Here I focus on the relationship between the muscle and lung, motor neurons, skeleton, and special senses. Since the inception of my independent laboratory, in 2000, with my team, we published more than 30 papers (and a book chapter), nearly 400 pages of data, on these specific relationships. Here I trace, using Web of Science, nearly 600 citations of this work, to understand its impact. The current report contains a summary of our work and its impact, NCBI's Gene Expression Omnibus accession numbers of all our microarray data, and three clear future directions doable by anyone using our publicly available data. Together, this effort furthers our understanding of inter-organ communication during prenatal development.

在小鼠中,基因靶向可以从骨骼(横纹肌或随意肌)发育的开始就完全消除它,从而使我们能够研究这种消融对其他器官的影响。在这里,我将重点介绍肌肉与肺、运动神经元、骨骼和特殊感官之间的关系。自2000年我的独立实验室成立以来,我和我的团队就这些特定关系发表了30多篇论文(和一本书的章节),近400页的数据。在这里,我使用Web of Science追踪了这项工作的近600次引用,以了解其影响。目前的报告包含了我们的工作及其影响的总结,NCBI的基因表达综合数据库对我们所有的微阵列数据的接入号码,以及三个明确的未来方向,任何人都可以使用我们公开可用的数据。总之,这一努力进一步加深了我们对产前发育过程中器官间交流的理解。
{"title":"Skeletal Muscle's Role in Prenatal Inter-organ Communication: A Phenogenomic Study with Qualitative Citation Analysis.","authors":"Boris Kablar","doi":"10.1007/978-3-031-38215-4_1","DOIUrl":"10.1007/978-3-031-38215-4_1","url":null,"abstract":"<p><p>Gene targeting in mice allows for a complete elimination of skeletal (striated or voluntary) musculature in the body, from the beginning of its development, resulting in our ability to study the consequences of this ablation on other organs. Here I focus on the relationship between the muscle and lung, motor neurons, skeleton, and special senses. Since the inception of my independent laboratory, in 2000, with my team, we published more than 30 papers (and a book chapter), nearly 400 pages of data, on these specific relationships. Here I trace, using Web of Science, nearly 600 citations of this work, to understand its impact. The current report contains a summary of our work and its impact, NCBI's Gene Expression Omnibus accession numbers of all our microarray data, and three clear future directions doable by anyone using our publicly available data. Together, this effort furthers our understanding of inter-organ communication during prenatal development.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"236 ","pages":"1-19"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carotid Body and Cell Therapy. 颈动脉体与细胞治疗。
4区 生物学 Q3 Medicine Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-44757-0_10
Nikolai E Lazarov, Dimitrinka Y Atanasova

During the past decade, the carotid body (CB) has been considered an innovative therapeutic target for the treatment of certain cardiorespiratory and metabolic diseases most of which are sympathetically mediated. It has recently been revealed that CB stem cells provide new target sites for the development of promising cell-based therapies. Specifically, generation of CB progenitors in vitro which can differentiate into functionally active glomus cells may be a useful procedure to produce the cell mass required for replacement cell therapy. Due to their dopaminergic nature, adult glomus cells can be used for an intrastriatal grafting in neurodegenerative brain disorders including Parkinson's disease. The beneficial effect of throphic factors such as glial cell-derived neurotrophic factor synergistically released by the transplanted cells then enables the transplant to survive. Likewise, intracerebral administration of CB cell aggregates or dispersed cells has been tested for the treatment of an experimental model of stroke. The systematic clinical applicability of CB autotransplants following glomectomy in humans is under investigation. In such autotransplantation studies, cell aggregates from unilaterally resected CB might be used as autografts. In addition, stem cells could offer an opportunity for tissue expansion and might settle the issue of small number of glomus cells available for transplantation.

在过去的十年里,颈动脉体(CB)被认为是治疗某些心肺和代谢疾病的创新治疗靶点,其中大多数是交感神经介导的。最近有研究表明,CB干细胞为开发有前景的细胞疗法提供了新的靶位点。具体而言,在体外产生能够分化为功能活性肾小球球细胞的CB祖细胞可能是产生替代细胞治疗所需的细胞团的有用程序。由于其多巴胺能性质,成年肾小球细胞可用于包括帕金森病在内的神经退行性脑疾病的三段内移植。通过移植细胞协同释放的诸如神经胶质细胞衍生的神经营养因子的血栓因子的有益作用使移植能够存活。同样,脑内给予CB细胞聚集体或分散细胞已被测试用于治疗中风的实验模型。目前正在研究人类肾小球切除术后CB自体移植的系统临床适用性。在这种自体移植研究中,单侧切除CB的细胞聚集体可以用作自体移植物。此外,干细胞可以提供组织扩张的机会,并可能解决可供移植的肾小球细胞数量少的问题。
{"title":"Carotid Body and Cell Therapy.","authors":"Nikolai E Lazarov, Dimitrinka Y Atanasova","doi":"10.1007/978-3-031-44757-0_10","DOIUrl":"10.1007/978-3-031-44757-0_10","url":null,"abstract":"<p><p>During the past decade, the carotid body (CB) has been considered an innovative therapeutic target for the treatment of certain cardiorespiratory and metabolic diseases most of which are sympathetically mediated. It has recently been revealed that CB stem cells provide new target sites for the development of promising cell-based therapies. Specifically, generation of CB progenitors in vitro which can differentiate into functionally active glomus cells may be a useful procedure to produce the cell mass required for replacement cell therapy. Due to their dopaminergic nature, adult glomus cells can be used for an intrastriatal grafting in neurodegenerative brain disorders including Parkinson's disease. The beneficial effect of throphic factors such as glial cell-derived neurotrophic factor synergistically released by the transplanted cells then enables the transplant to survive. Likewise, intracerebral administration of CB cell aggregates or dispersed cells has been tested for the treatment of an experimental model of stroke. The systematic clinical applicability of CB autotransplants following glomectomy in humans is under investigation. In such autotransplantation studies, cell aggregates from unilaterally resected CB might be used as autografts. In addition, stem cells could offer an opportunity for tissue expansion and might settle the issue of small number of glomus cells available for transplantation.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"237 ","pages":"155-159"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carotid Body: The Primary Peripheral Arterial Chemoreceptor. 颈动脉体:主要的外周动脉化学受体。
4区 生物学 Q3 Medicine Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-44757-0_1
Nikolai E Lazarov, Dimitrinka Y Atanasova

The carotid body (CB) is a polymodal chemosensory organ that plays an essential role in initiating respiratory and cardiovascular adjustments to maintain blood gas homeostasis. Much of the available evidence suggests that chronic hypoxia induces marked morphological and neurochemical changes within the CB, but the detailed molecular mechanisms by which these affect the hypoxic chemosensitivity still remain to be elucidated. Dysregulation of the CB function and altered oxygen saturation are implicated in various physiological and pathophysiological conditions. Knowledge of the morphological and functional aspects of the CB would improve our current understanding of respiratory and cardiovascular homeostasis in health and disease.

颈动脉体(CB)是一个多模式化学感觉器官,在启动呼吸和心血管调节以维持血气稳态方面发挥着重要作用。许多现有证据表明,慢性缺氧会在CB内诱导显著的形态学和神经化学变化,但这些变化影响缺氧化学敏感性的详细分子机制仍有待阐明。CB功能的失调和氧饱和度的改变与各种生理和病理生理条件有关。了解CB的形态和功能方面将提高我们目前对健康和疾病中呼吸和心血管稳态的理解。
{"title":"Carotid Body: The Primary Peripheral Arterial Chemoreceptor.","authors":"Nikolai E Lazarov, Dimitrinka Y Atanasova","doi":"10.1007/978-3-031-44757-0_1","DOIUrl":"10.1007/978-3-031-44757-0_1","url":null,"abstract":"<p><p>The carotid body (CB) is a polymodal chemosensory organ that plays an essential role in initiating respiratory and cardiovascular adjustments to maintain blood gas homeostasis. Much of the available evidence suggests that chronic hypoxia induces marked morphological and neurochemical changes within the CB, but the detailed molecular mechanisms by which these affect the hypoxic chemosensitivity still remain to be elucidated. Dysregulation of the CB function and altered oxygen saturation are implicated in various physiological and pathophysiological conditions. Knowledge of the morphological and functional aspects of the CB would improve our current understanding of respiratory and cardiovascular homeostasis in health and disease.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"237 ","pages":"1-3"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of Skeletal Muscle in Development: A Bioinformatics and Systems Biology Overview. 骨骼肌在发育中的作用:生物信息学和系统生物学综述。
4区 生物学 Q3 Medicine Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-38215-4_2
Jean-Sebastien Milanese, Richard Marcotte, Willard J Costain, Boris Kablar, Simon Drouin

The ability to assess various cellular events consequent to perturbations, such as genetic mutations, disease states and therapies, has been recently revolutionized by technological advances in multiple "omics" fields. The resulting deluge of information has enabled and necessitated the development of tools required to both process and interpret the data. While of tremendous value to basic researchers, the amount and complexity of the data has made it extremely difficult to manually draw inference and identify factors key to the study objectives. The challenges of data reduction and interpretation are being met by the development of increasingly complex tools that integrate disparate knowledge bases and synthesize coherent models based on current biological understanding. This chapter presents an example of how genomics data can be integrated with biological network analyses to gain further insight into the developmental consequences of genetic perturbations. State of the art methods for conducting similar studies are discussed along with modern methods used to analyze and interpret the data.

最近,多个“组学”领域的技术进步彻底改变了评估扰动导致的各种细胞事件(如基因突变、疾病状态和治疗)的能力。由此产生的信息洪流使得开发处理和解释数据所需的工具成为可能并成为必要。虽然对基础研究人员具有巨大的价值,但数据的数量和复杂性使得人工推断和识别对研究目标至关重要的因素变得极其困难。数据简化和解释的挑战正在通过开发越来越复杂的工具来满足,这些工具集成了不同的知识库,并基于当前的生物学理解合成了连贯的模型。本章介绍了基因组学数据如何与生物网络分析相结合的一个例子,以进一步深入了解遗传扰动的发育后果。进行类似研究的最新方法与用于分析和解释数据的现代方法一起进行了讨论。
{"title":"Roles of Skeletal Muscle in Development: A Bioinformatics and Systems Biology Overview.","authors":"Jean-Sebastien Milanese, Richard Marcotte, Willard J Costain, Boris Kablar, Simon Drouin","doi":"10.1007/978-3-031-38215-4_2","DOIUrl":"10.1007/978-3-031-38215-4_2","url":null,"abstract":"<p><p>The ability to assess various cellular events consequent to perturbations, such as genetic mutations, disease states and therapies, has been recently revolutionized by technological advances in multiple \"omics\" fields. The resulting deluge of information has enabled and necessitated the development of tools required to both process and interpret the data. While of tremendous value to basic researchers, the amount and complexity of the data has made it extremely difficult to manually draw inference and identify factors key to the study objectives. The challenges of data reduction and interpretation are being met by the development of increasingly complex tools that integrate disparate knowledge bases and synthesize coherent models based on current biological understanding. This chapter presents an example of how genomics data can be integrated with biological network analyses to gain further insight into the developmental consequences of genetic perturbations. State of the art methods for conducting similar studies are discussed along with modern methods used to analyze and interpret the data.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"236 ","pages":"21-55"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overview of Head Muscles with Special Emphasis on Extraocular Muscle Development. 头部肌肉概述,特别强调眼外肌的发育。
4区 生物学 Q3 Medicine Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-38215-4_3
Janine M Ziermann

The head is often considered the most complex part of the vertebrate body as many different cell types contribute to a huge variation of structures in a very limited space. Most of these cell types also interact with each other to ensure the proper development of skull, brain, muscles, nerves, connective tissue, and blood vessels. While there are general mechanisms that are true for muscle development all over the body, the head and postcranial muscle development differ from each other. In the head, specific gene regulatory networks underlie the differentiation in subgroups, which include extraocular muscles, muscles of mastication, muscles of facial expression, laryngeal and pharyngeal muscles, as well as cranial nerve innervated neck muscles. Here, I provide an overview of the difference between head and trunk muscle development. This is followed by a short excursion to the cardiopharyngeal field which gives rise to heart and head musculature and a summary of pharyngeal arch muscle development, including interactions between neural crest cells, mesodermal cells, and endodermal signals. Lastly, a more detailed description of the eye development, tissue interactions, and involved genes is provided.

头部通常被认为是脊椎动物身体中最复杂的部分,因为许多不同类型的细胞在非常有限的空间内形成了巨大的结构变化。这些细胞类型中的大多数还相互作用,以确保头骨、大脑、肌肉、神经、结缔组织和血管的正常发育。虽然全身肌肉发育都有通用的机制,但头部和颅后肌肉的发育却各不相同。在头部,特定的基因调控网络是亚群分化的基础,这些亚群包括眼外肌、咀嚼肌、面部表情肌、喉部和咽部肌肉以及颅神经支配的颈部肌肉。在这里,我概述了头部和躯干肌肉发育的区别。接下来,我们将简短地介绍心咽野,这是心脏和头部肌肉组织的形成,并简要介绍咽弓肌的发育,包括神经嵴细胞、中胚层细胞和内胚层信号之间的相互作用。最后,对眼睛发育、组织相互作用和相关基因进行了更详细的描述。
{"title":"Overview of Head Muscles with Special Emphasis on Extraocular Muscle Development.","authors":"Janine M Ziermann","doi":"10.1007/978-3-031-38215-4_3","DOIUrl":"10.1007/978-3-031-38215-4_3","url":null,"abstract":"<p><p>The head is often considered the most complex part of the vertebrate body as many different cell types contribute to a huge variation of structures in a very limited space. Most of these cell types also interact with each other to ensure the proper development of skull, brain, muscles, nerves, connective tissue, and blood vessels. While there are general mechanisms that are true for muscle development all over the body, the head and postcranial muscle development differ from each other. In the head, specific gene regulatory networks underlie the differentiation in subgroups, which include extraocular muscles, muscles of mastication, muscles of facial expression, laryngeal and pharyngeal muscles, as well as cranial nerve innervated neck muscles. Here, I provide an overview of the difference between head and trunk muscle development. This is followed by a short excursion to the cardiopharyngeal field which gives rise to heart and head musculature and a summary of pharyngeal arch muscle development, including interactions between neural crest cells, mesodermal cells, and endodermal signals. Lastly, a more detailed description of the eye development, tissue interactions, and involved genes is provided.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"236 ","pages":"57-80"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
General Morphology of the Mammalian Carotid Body. 哺乳动物颈动脉体的一般形态学。
4区 生物学 Q3 Medicine Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-44757-0_3
Nikolai E Lazarov, Dimitrinka Y Atanasova

The carotid body (CB) is the main peripheral arterial chemoreceptor that registers the levels of pO2, pCO2 and pH in the blood and responds to their changes by regulating breathing. It is strategically located in the bifurcation of each common carotid artery. The organ consists of "glomera" composed of two cell types, glomus and sustentacular cells, interspersed by blood vessels and nerve bundles and separated by connective tissue. The neuron-like glomus or type I cells are considered as the chemosensory cells of the CB. They contain numerous cytoplasmic organelles and dense-cored vesicles that store and release neurotransmitters. They also form both conventional chemical and electrical synapses between each other and are contacted by peripheral nerve endings of petrosal ganglion neurons. The glomus cells are dually innervated by both sensory nerve fibers through the carotid sinus nerve and autonomic fibers of sympathetic origin via the ganglioglomerular nerve. The parasympathetic efferent innervation is relayed by vasomotor fibers of ganglion cells located around or inside the CB. The glial-like sustentacular or type II cells are regarded to be supporting cells although they sustain physiologic neurogenesis in the adult CB and are thus supposed to be progenitor cells as well. The CB is a highly vascularized organ and its intraorgan hemodynamics possibly plays a role in the process of chemoreception.

颈动脉体(CB)是主要的外周动脉化学受体,记录血液中pO2、pCO2和pH的水平,并通过调节呼吸对其变化做出反应。它位于每个颈总动脉的分叉处。该器官由“肾小球”组成,由两种细胞类型组成,肾小球和支持细胞,由血管和神经束穿插,并由结缔组织分隔。神经元样肾小球或I型细胞被认为是CB的化学感受细胞。它们含有大量的细胞质细胞器和密集的核囊泡,储存和释放神经递质。它们也在彼此之间形成传统的化学突触和电突触,并与岩神经节神经元的外周神经末梢接触。肾小球球细胞由通过颈动脉窦神经的感觉神经纤维和通过神经节-肾小球神经的交感神经自主纤维双重支配。副交感神经传出神经支配由位于CB周围或内部的神经节细胞的血管运动纤维传递。神经胶质样支持细胞或II型细胞被认为是支持细胞,尽管它们在成年CB中维持生理神经发生,因此也被认为是祖细胞。CB是一个高度血管化的器官,其口内血流动力学可能在化疗过程中发挥作用。
{"title":"General Morphology of the Mammalian Carotid Body.","authors":"Nikolai E Lazarov, Dimitrinka Y Atanasova","doi":"10.1007/978-3-031-44757-0_3","DOIUrl":"10.1007/978-3-031-44757-0_3","url":null,"abstract":"<p><p>The carotid body (CB) is the main peripheral arterial chemoreceptor that registers the levels of pO<sub>2</sub>, pCO<sub>2</sub> and pH in the blood and responds to their changes by regulating breathing. It is strategically located in the bifurcation of each common carotid artery. The organ consists of \"glomera\" composed of two cell types, glomus and sustentacular cells, interspersed by blood vessels and nerve bundles and separated by connective tissue. The neuron-like glomus or type I cells are considered as the chemosensory cells of the CB. They contain numerous cytoplasmic organelles and dense-cored vesicles that store and release neurotransmitters. They also form both conventional chemical and electrical synapses between each other and are contacted by peripheral nerve endings of petrosal ganglion neurons. The glomus cells are dually innervated by both sensory nerve fibers through the carotid sinus nerve and autonomic fibers of sympathetic origin via the ganglioglomerular nerve. The parasympathetic efferent innervation is relayed by vasomotor fibers of ganglion cells located around or inside the CB. The glial-like sustentacular or type II cells are regarded to be supporting cells although they sustain physiologic neurogenesis in the adult CB and are thus supposed to be progenitor cells as well. The CB is a highly vascularized organ and its intraorgan hemodynamics possibly plays a role in the process of chemoreception.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"237 ","pages":"13-35"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurochemical Plasticity of the Carotid Body. 颈动脉体的神经化学可塑性。
4区 生物学 Q3 Medicine Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-44757-0_7
Nikolai E Lazarov, Dimitrinka Y Atanasova

A striking feature of the carotid body (CB) is its remarkable degree of plasticity in a variety of neurotransmitter/modulator systems in response to environmental stimuli, particularly following hypoxic exposure of animals and during ascent to high altitude. Current evidence suggests that acetylcholine and adenosine triphosphate are two major excitatory neurotransmitter candidates in the hypoxic CB, and they may also be involved as co-transmitters in hypoxic signaling. Conversely, dopamine, histamine and nitric oxide have recently been considered inhibitory transmitters/modulators of hypoxic chemosensitivity. It has also been revealed that interactions between excitatory and inhibitory messenger molecules occur during hypoxia. On the other hand, alterations in purinergic neurotransmitter mechanisms have been implicated in ventilatory acclimatization to hypoxia. Chronic hypoxia also induces profound changes in other neurochemical systems within the CB such as the catecholaminergic, peptidergic and nitrergic, which in turn may contribute to increased ventilatory and chemoreceptor responsiveness to hypoxia at high altitude. Taken together, current data suggest that complex interactions among transmitters markedly influence hypoxia-induced transmitter release from the CB. In addition, the expression of a wide variety of growth factors, proinflammatory cytokines and their receptors have been identified in CB parenchymal cells in response to hypoxia and their upregulated expression could mediate the local inflammation and functional alteration of the CB under hypoxic conditions.

颈动脉体(CB)的一个显著特征是其在各种神经递质/调节系统中对环境刺激的反应具有显著的可塑性,特别是在动物缺氧暴露后和上升到高海拔期间。目前的证据表明,乙酰胆碱和三磷酸腺苷是缺氧CB中两种主要的兴奋性神经递质候选者,它们也可能作为共同递质参与缺氧信号传导。相反,多巴胺、组胺和一氧化氮最近被认为是低氧化学敏感性的抑制性递质/调节剂。研究还表明,兴奋性和抑制性信使分子之间的相互作用发生在缺氧期间。另一方面,嘌呤能神经递质机制的改变与通气适应缺氧有关。慢性缺氧还会引起CB内其他神经化学系统的深刻变化,如儿茶酚胺能、肽能和硝能,这反过来可能有助于增加通气和化学受体对高海拔缺氧的反应性。总之,目前的数据表明,递质之间的复杂相互作用显著影响缺氧诱导的CB递质释放。此外,在CB实质细胞中已鉴定出多种生长因子、促炎细胞因子及其受体在缺氧反应中的表达,它们的上调表达可能介导CB在缺氧条件下的局部炎症和功能改变。
{"title":"Neurochemical Plasticity of the Carotid Body.","authors":"Nikolai E Lazarov, Dimitrinka Y Atanasova","doi":"10.1007/978-3-031-44757-0_7","DOIUrl":"10.1007/978-3-031-44757-0_7","url":null,"abstract":"<p><p>A striking feature of the carotid body (CB) is its remarkable degree of plasticity in a variety of neurotransmitter/modulator systems in response to environmental stimuli, particularly following hypoxic exposure of animals and during ascent to high altitude. Current evidence suggests that acetylcholine and adenosine triphosphate are two major excitatory neurotransmitter candidates in the hypoxic CB, and they may also be involved as co-transmitters in hypoxic signaling. Conversely, dopamine, histamine and nitric oxide have recently been considered inhibitory transmitters/modulators of hypoxic chemosensitivity. It has also been revealed that interactions between excitatory and inhibitory messenger molecules occur during hypoxia. On the other hand, alterations in purinergic neurotransmitter mechanisms have been implicated in ventilatory acclimatization to hypoxia. Chronic hypoxia also induces profound changes in other neurochemical systems within the CB such as the catecholaminergic, peptidergic and nitrergic, which in turn may contribute to increased ventilatory and chemoreceptor responsiveness to hypoxia at high altitude. Taken together, current data suggest that complex interactions among transmitters markedly influence hypoxia-induced transmitter release from the CB. In addition, the expression of a wide variety of growth factors, proinflammatory cytokines and their receptors have been identified in CB parenchymal cells in response to hypoxia and their upregulated expression could mediate the local inflammation and functional alteration of the CB under hypoxic conditions.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"237 ","pages":"105-122"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mechanisms of Chemosensory Transduction in the Carotid Body. 颈动脉体化学感觉转导机制。
4区 生物学 Q3 Medicine Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-44757-0_5
Nikolai E Lazarov, Dimitrinka Y Atanasova

The mammalian carotid body (CB) is a polymodal chemoreceptor, which is activated by blood-borne stimuli, most notably hypoxia, hypercapnia and acidosis, thus ensuring an appropriate cellular response to changes in physical and chemical parameters of the blood. The glomus cells are considered the CB chemosensory cells and the initial site of chemoreceptor transduction. However, the molecular mechanisms by which they detect changes in blood chemical levels and how these changes lead to transmitter release are not yet well understood. Chemotransduction mechanisms are by far best described for oxygen and acid/carbon dioxide sensing. A few testable hypotheses have been postulated including a direct interaction of oxygen with ion channels in the glomus cells (membrane hypothesis), an indirect interface by a reversible ligand like a heme (metabolic hypothesis), or even a functional interaction between putative oxygen sensors (chemosome hypothesis) or the interaction of lactate with a highly expressed in the CB atypical olfactory receptor, Olfr78, (endocrine model). It is also suggested that sensory transduction in the CB is uniquely dependent on the actions and interactions of gaseous transmitters. Apparently, oxygen sensing does not utilize a single mechanism, and later observations have given strong support to a unified membrane model of chemotransduction.

哺乳动物颈动脉体(CB)是一种多模式化学受体,它被血液刺激激活,最显著的是缺氧、高碳酸血症和酸中毒,从而确保细胞对血液物理和化学参数的变化做出适当的反应。肾小球细胞被认为是CB化学感受细胞和化学受体转导的起始位点。然而,他们检测血液化学水平变化的分子机制,以及这些变化如何导致递质释放,尚不清楚。到目前为止,对氧气和酸/二氧化碳传感的化学转导机制描述得最好。已经假设了一些可测试的假设,包括氧与肾小球细胞中离子通道的直接相互作用(膜假设)、由可逆配体如血红素的间接界面(代谢假设),甚至是假定的氧传感器之间的功能相互作用(化学小体假说),或乳酸盐与CB非典型嗅觉受体Olfr78中高度表达的相互作用(内分泌模型)。还表明CB中的感觉转导独特地依赖于气体递质的作用和相互作用。显然,氧传感并没有利用单一的机制,后来的观察结果有力地支持了化学转导的统一膜模型。
{"title":"Mechanisms of Chemosensory Transduction in the Carotid Body.","authors":"Nikolai E Lazarov, Dimitrinka Y Atanasova","doi":"10.1007/978-3-031-44757-0_5","DOIUrl":"10.1007/978-3-031-44757-0_5","url":null,"abstract":"<p><p>The mammalian carotid body (CB) is a polymodal chemoreceptor, which is activated by blood-borne stimuli, most notably hypoxia, hypercapnia and acidosis, thus ensuring an appropriate cellular response to changes in physical and chemical parameters of the blood. The glomus cells are considered the CB chemosensory cells and the initial site of chemoreceptor transduction. However, the molecular mechanisms by which they detect changes in blood chemical levels and how these changes lead to transmitter release are not yet well understood. Chemotransduction mechanisms are by far best described for oxygen and acid/carbon dioxide sensing. A few testable hypotheses have been postulated including a direct interaction of oxygen with ion channels in the glomus cells (membrane hypothesis), an indirect interface by a reversible ligand like a heme (metabolic hypothesis), or even a functional interaction between putative oxygen sensors (chemosome hypothesis) or the interaction of lactate with a highly expressed in the CB atypical olfactory receptor, Olfr78, (endocrine model). It is also suggested that sensory transduction in the CB is uniquely dependent on the actions and interactions of gaseous transmitters. Apparently, oxygen sensing does not utilize a single mechanism, and later observations have given strong support to a unified membrane model of chemotransduction.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"237 ","pages":"49-62"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurochemical Anatomy of the Mammalian Carotid Body. 哺乳动物颈动脉体的神经化学解剖学。
4区 生物学 Q3 Medicine Pub Date : 2023-01-01 DOI: 10.1007/978-3-031-44757-0_6
Nikolai E Lazarov, Dimitrinka Y Atanasova

Carotid body (CB) glomus cells in most mammals, including humans, contain a broad diversity of classical neurotransmitters, neuropeptides and gaseous signaling molecules as well as their cognate receptors. Among them, acetylcholine, adenosine triphosphate and dopamine have been proposed to be the main excitatory transmitters in the mammalian CB, although subsequently dopamine has been considered an inhibitory neuromodulator in almost all mammalian species except the rabbit. In addition, co-existence of biogenic amines and neuropeptides has been reported in the glomus cells, thus suggesting that they store and release more than one transmitter in response to natural stimuli. Furthermore, certain metabolic and transmitter-degrading enzymes are involved in the chemotransduction and chemotransmission in various mammals. However, the presence of the corresponding biosynthetic enzyme for some transmitter candidates has not been confirmed, and neuroactive substances like serotonin, gamma-aminobutyric acid and adenosine, neuropeptides including opioids, substance P and endothelin, and gaseous molecules such as nitric oxide have been shown to modulate the chemosensory process through direct actions on glomus cells and/or by producing tonic effects on CB blood vessels. It is likely that the fine balance between excitatory and inhibitory transmitters and their complex interactions might play a more important than suggested role in CB plasticity.

包括人类在内的大多数哺乳动物的颈动脉体(CB)球细胞含有广泛多样的经典神经递质、神经肽和气体信号分子及其同源受体。其中,乙酰胆碱、三磷酸腺苷和多巴胺被认为是哺乳动物CB中的主要兴奋性递质,尽管随后多巴胺在除兔子外的几乎所有哺乳动物物种中都被认为是抑制性神经调节剂。此外,据报道,生物胺和神经肽在肾小球细胞中共存,因此表明它们储存和释放不止一种递质以响应自然刺激。此外,某些代谢和递质降解酶参与各种哺乳动物的化学转导和化学传递。然而,一些候选递质的相应生物合成酶的存在尚未得到证实,神经活性物质如血清素、γ-氨基丁酸和腺苷、神经肽包括阿片类药物、P物质和内皮素,并且诸如一氧化氮的气体分子已经显示出通过对肾小球球细胞的直接作用和/或通过对CB血管产生补益作用来调节化学感觉过程。兴奋性和抑制性递质之间的精细平衡及其复杂的相互作用可能在CB可塑性中发挥比预期更重要的作用。
{"title":"Neurochemical Anatomy of the Mammalian Carotid Body.","authors":"Nikolai E Lazarov, Dimitrinka Y Atanasova","doi":"10.1007/978-3-031-44757-0_6","DOIUrl":"10.1007/978-3-031-44757-0_6","url":null,"abstract":"<p><p>Carotid body (CB) glomus cells in most mammals, including humans, contain a broad diversity of classical neurotransmitters, neuropeptides and gaseous signaling molecules as well as their cognate receptors. Among them, acetylcholine, adenosine triphosphate and dopamine have been proposed to be the main excitatory transmitters in the mammalian CB, although subsequently dopamine has been considered an inhibitory neuromodulator in almost all mammalian species except the rabbit. In addition, co-existence of biogenic amines and neuropeptides has been reported in the glomus cells, thus suggesting that they store and release more than one transmitter in response to natural stimuli. Furthermore, certain metabolic and transmitter-degrading enzymes are involved in the chemotransduction and chemotransmission in various mammals. However, the presence of the corresponding biosynthetic enzyme for some transmitter candidates has not been confirmed, and neuroactive substances like serotonin, gamma-aminobutyric acid and adenosine, neuropeptides including opioids, substance P and endothelin, and gaseous molecules such as nitric oxide have been shown to modulate the chemosensory process through direct actions on glomus cells and/or by producing tonic effects on CB blood vessels. It is likely that the fine balance between excitatory and inhibitory transmitters and their complex interactions might play a more important than suggested role in CB plasticity.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"237 ","pages":"63-103"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72015987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in Anatomy Embryology and Cell Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1