Pub Date : 2023-01-01DOI: 10.1007/978-3-031-38215-4_7
You Sung Nam, Paul Hong
The ear serves two vital functions of hearing and maintaining balance. It achieves these roles within three major compartments: the outer, the middle, and the inner ear. Embryological development of the ear and its associated structures have been studied in some animal models. Yet, the role of skeletal muscle in ear development and its related structures is largely unknown. Research suggests the outer ear and parts of the inner ear may require skeletal muscle for normal embryogenesis. Here, we describe the role of skeletal muscle in the development of the ear and its associated structures. Moreover, we report the possible consequences of defect in the skeletal muscle of the ear and the clinical correlates of such consequences.
{"title":"Angular and Linear Accelerations, Ear, and the Skeletal Muscle.","authors":"You Sung Nam, Paul Hong","doi":"10.1007/978-3-031-38215-4_7","DOIUrl":"10.1007/978-3-031-38215-4_7","url":null,"abstract":"<p><p>The ear serves two vital functions of hearing and maintaining balance. It achieves these roles within three major compartments: the outer, the middle, and the inner ear. Embryological development of the ear and its associated structures have been studied in some animal models. Yet, the role of skeletal muscle in ear development and its related structures is largely unknown. Research suggests the outer ear and parts of the inner ear may require skeletal muscle for normal embryogenesis. Here, we describe the role of skeletal muscle in the development of the ear and its associated structures. Moreover, we report the possible consequences of defect in the skeletal muscle of the ear and the clinical correlates of such consequences.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"236 ","pages":"151-155"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/978-3-031-38215-4_4
Paula Murphy, Rebecca A Rolfe
The skeletal musculature and the cartilage, bone and other connective tissues of the skeleton are intimately co-ordinated. The shape, size and structure of each bone in the body is sculpted through dynamic physical stimuli generated by muscle contraction, from early development, with onset of the first embryo movements, and through repair and remodelling in later life. The importance of muscle movement during development is shown by congenital abnormalities where infants that experience reduced movement in the uterus present a sequence of skeletal issues including temporary brittle bones and joint dysplasia. A variety of animal models, utilising different immobilisation scenarios, have demonstrated the precise timing and events that are dependent on mechanical stimulation from movement. This chapter lays out the evidence for skeletal system dependence on muscle movement, gleaned largely from mouse and chick immobilised embryos, showing the many aspects of skeletal development affected. Effects are seen in joint development, ossification, the size and shape of skeletal rudiments and tendons, including compromised mechanical function. The enormous plasticity of the skeletal system in response to muscle contraction is a key factor in building a responsive, functional system. Insights from this work have implications for our understanding of morphological evolution, particularly the challenging concept of emergence of new structures. It is also providing insight for the potential of physical therapy for infants suffering the effects of reduced uterine movement and is enhancing our understanding of the cellular and molecular mechanisms involved in skeletal tissue differentiation, with potential for informing regenerative therapies.
{"title":"Building a Co-ordinated Musculoskeletal System: The Plasticity of the Developing Skeleton in Response to Muscle Contractions.","authors":"Paula Murphy, Rebecca A Rolfe","doi":"10.1007/978-3-031-38215-4_4","DOIUrl":"10.1007/978-3-031-38215-4_4","url":null,"abstract":"<p><p>The skeletal musculature and the cartilage, bone and other connective tissues of the skeleton are intimately co-ordinated. The shape, size and structure of each bone in the body is sculpted through dynamic physical stimuli generated by muscle contraction, from early development, with onset of the first embryo movements, and through repair and remodelling in later life. The importance of muscle movement during development is shown by congenital abnormalities where infants that experience reduced movement in the uterus present a sequence of skeletal issues including temporary brittle bones and joint dysplasia. A variety of animal models, utilising different immobilisation scenarios, have demonstrated the precise timing and events that are dependent on mechanical stimulation from movement. This chapter lays out the evidence for skeletal system dependence on muscle movement, gleaned largely from mouse and chick immobilised embryos, showing the many aspects of skeletal development affected. Effects are seen in joint development, ossification, the size and shape of skeletal rudiments and tendons, including compromised mechanical function. The enormous plasticity of the skeletal system in response to muscle contraction is a key factor in building a responsive, functional system. Insights from this work have implications for our understanding of morphological evolution, particularly the challenging concept of emergence of new structures. It is also providing insight for the potential of physical therapy for infants suffering the effects of reduced uterine movement and is enhancing our understanding of the cellular and molecular mechanisms involved in skeletal tissue differentiation, with potential for informing regenerative therapies.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"236 ","pages":"81-110"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-01DOI: 10.1007/978-3-031-38215-4_6
Mark Baguma-Nibasheka, Boris Kablar
We summarize how skeletal muscle and lung developmental biology fields have been bridged to benefit from mouse genetic engineering technologies and to explore the role of fetal breathing-like movements (FBMs) in lung development, by using skeletal muscle-specific mutant mice. It has been known for a long time that FBMs are essential for the lung to develop properly. However, the cellular and molecular mechanisms transducing the mechanical forces of muscular activity into specific genetic programs that propel lung morphogenesis (development of the shape, form and size of the lung, its airways, and gas exchange surface) as well as its differentiation (acquisition of specialized cell structural and functional features from their progenitor cells) are only starting to be revealed. This chapter is a brief synopsis of the cumulative findings from that ongoing quest. An update on and the rationale for our recent International Mouse Phenotyping Consortium (IMPC) search is also provided.
{"title":"Mechanics of Lung Development.","authors":"Mark Baguma-Nibasheka, Boris Kablar","doi":"10.1007/978-3-031-38215-4_6","DOIUrl":"10.1007/978-3-031-38215-4_6","url":null,"abstract":"<p><p>We summarize how skeletal muscle and lung developmental biology fields have been bridged to benefit from mouse genetic engineering technologies and to explore the role of fetal breathing-like movements (FBMs) in lung development, by using skeletal muscle-specific mutant mice. It has been known for a long time that FBMs are essential for the lung to develop properly. However, the cellular and molecular mechanisms transducing the mechanical forces of muscular activity into specific genetic programs that propel lung morphogenesis (development of the shape, form and size of the lung, its airways, and gas exchange surface) as well as its differentiation (acquisition of specialized cell structural and functional features from their progenitor cells) are only starting to be revealed. This chapter is a brief synopsis of the cumulative findings from that ongoing quest. An update on and the rationale for our recent International Mouse Phenotyping Consortium (IMPC) search is also provided.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"236 ","pages":"131-150"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89720355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-20848-5_8
Heide Schatten
The effects of ionizing radiation on centrosomes have been well documented and reviewed by Saladino et al. (2012) and are only briefly addressed here. These results showed that exposure of tumor cells to ionizing radiation causes centrosome overduplication and the formation of multipolar mitotic spindles, resulting in nuclear fragmentation and subsequent cell death (Sato et al. 2000). By using a variety of cell lines derived from different types of human solid tumors, it was shown that exposure to 10 Gy γ-radiation resulted in a substantial increase in cells containing an abnormally high number of aberrant centrosomes that formed multipolar spindles, resulting in imbalanced chromosome separation followed by mitotic cell death and formation of multi- or micronucleated cells.
电离辐射对中心体的影响已经被Saladino等人(2012)很好地记录和回顾了,这里只是简单地讨论一下。这些结果表明,肿瘤细胞暴露于电离辐射会导致中心体过度复制和多极有丝分裂纺锤体的形成,从而导致核碎裂和随后的细胞死亡(Sato et al. 2000)。通过使用来自不同类型人类实体肿瘤的多种细胞系,研究表明,暴露于10 Gy γ-辐射导致含有异常数量的异常中心体的细胞大量增加,形成多极纺锤体,导致染色体分离不平衡,随后有丝分裂细胞死亡,形成多核或微核细胞。
{"title":"External and Environmental Effects on Centrosomes.","authors":"Heide Schatten","doi":"10.1007/978-3-031-20848-5_8","DOIUrl":"https://doi.org/10.1007/978-3-031-20848-5_8","url":null,"abstract":"<p><p>The effects of ionizing radiation on centrosomes have been well documented and reviewed by Saladino et al. (2012) and are only briefly addressed here. These results showed that exposure of tumor cells to ionizing radiation causes centrosome overduplication and the formation of multipolar mitotic spindles, resulting in nuclear fragmentation and subsequent cell death (Sato et al. 2000). By using a variety of cell lines derived from different types of human solid tumors, it was shown that exposure to 10 Gy γ-radiation resulted in a substantial increase in cells containing an abnormally high number of aberrant centrosomes that formed multipolar spindles, resulting in imbalanced chromosome separation followed by mitotic cell death and formation of multi- or micronucleated cells.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"235 ","pages":"81-83"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10734193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-20848-5
H. Schatten
{"title":"The Centrosome and its Functions and Dysfunctions","authors":"H. Schatten","doi":"10.1007/978-3-031-20848-5","DOIUrl":"https://doi.org/10.1007/978-3-031-20848-5","url":null,"abstract":"","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"56 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50987247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-20848-5_2
Heide Schatten
The synchronized distribution of centrosomal and genetic materials to the dividing daughter cells is critically important and depends on precisely orchestrated processes on structural and molecular levels. Structural and functional relationships between the nucleus and centrosomes facilitate cellular communication and coordination of cell cycle control and progression which becomes especially important during the transition from interphase to mitosis when synchrony between centrosomes and nuclear events is critical.
{"title":"The Centrosome Cycle within the Cell Cycle.","authors":"Heide Schatten","doi":"10.1007/978-3-031-20848-5_2","DOIUrl":"https://doi.org/10.1007/978-3-031-20848-5_2","url":null,"abstract":"<p><p>The synchronized distribution of centrosomal and genetic materials to the dividing daughter cells is critically important and depends on precisely orchestrated processes on structural and molecular levels. Structural and functional relationships between the nucleus and centrosomes facilitate cellular communication and coordination of cell cycle control and progression which becomes especially important during the transition from interphase to mitosis when synchrony between centrosomes and nuclear events is critical.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"235 ","pages":"17-35"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10445420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-20848-5_6
Heide Schatten
Centrosome functions are vitally important for all aspects of reproduction with essential functions during meiosis, fertilization, cell division, centrosome remodeling during cellular polarization for tissue formation, and all stages of subsequent embryo development. Any defects in centrosome organization and dynamics can result in meiotic spindle formation errors, meiotic division errors, infertility, subfertility, arrested or failed development, and predisposition to various diseases including cancer. These aspects of reproduction will be addressed in more detail in the following sections.
{"title":"Centrosomes in Reproduction.","authors":"Heide Schatten","doi":"10.1007/978-3-031-20848-5_6","DOIUrl":"https://doi.org/10.1007/978-3-031-20848-5_6","url":null,"abstract":"<p><p>Centrosome functions are vitally important for all aspects of reproduction with essential functions during meiosis, fertilization, cell division, centrosome remodeling during cellular polarization for tissue formation, and all stages of subsequent embryo development. Any defects in centrosome organization and dynamics can result in meiotic spindle formation errors, meiotic division errors, infertility, subfertility, arrested or failed development, and predisposition to various diseases including cancer. These aspects of reproduction will be addressed in more detail in the following sections.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"235 ","pages":"55-73"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10445422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-20848-5_4
Heide Schatten
As major accomplishments and breakthroughs in centrosome research had been achieved by Theodor Boveri in reproductive cells with the invertebrate sea urchin being an ideal model system for such studies on fertilization, cell division, and embryo development, these studies also gave rise to Boveri's brilliant concept regarding cancer cells. He discovered that eggs fertilized with two sperm resulted in tripolar mitosis and abnormal cell division, similar to cells observed in cancer tissue.
{"title":"Centrosome Dysfunctions in Cancer.","authors":"Heide Schatten","doi":"10.1007/978-3-031-20848-5_4","DOIUrl":"https://doi.org/10.1007/978-3-031-20848-5_4","url":null,"abstract":"<p><p>As major accomplishments and breakthroughs in centrosome research had been achieved by Theodor Boveri in reproductive cells with the invertebrate sea urchin being an ideal model system for such studies on fertilization, cell division, and embryo development, these studies also gave rise to Boveri's brilliant concept regarding cancer cells. He discovered that eggs fertilized with two sperm resulted in tripolar mitosis and abnormal cell division, similar to cells observed in cancer tissue.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"235 ","pages":"43-50"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10445419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-20848-5_7
Heide Schatten
Cellular polarization involves significant remodeling and decentralization of the nucleus-associated centrosome to focal points at the apical and basolateral surfaces which is associated with major remodeling of the microtubule system in which individual microtubules become nucleated and organized from the polarizing cell surfaces, as studied in polarizing epithelial cells (reviewed in Müsch 2004; Muroyama and Lechler 2017). These changes are associated with cellular asymmetry in preparation for cellular differentiation of previously non-committed cells. During this process, the previously nucleus-associated centrosome becomes deconstructed into specific centrosomal components which are now referred to as "non-centrosomal." At the present time we still only have limited information about this process and to understanding the mechanisms underlying the centrosome decentralization process. Gaining detailed insights is further complicated by the fact that there is considerable diversity in the molecular mechanisms of centrosome and microtubule reorganization.
细胞极化涉及细胞核相关中心体向顶端和基底侧表面的焦点的显著重塑和分散,这与微管系统的主要重塑有关,其中单个微管从极化细胞表面变成有核和组织,正如在极化上皮细胞中研究的那样(综述于m sch 2004;murroyama and Lechler 2017)。这些变化与细胞不对称有关,为以前未分化的细胞分化做准备。在这个过程中,先前与核相关的中心体被分解成特定的中心体成分,现在被称为“非中心体”。目前,我们对这一过程的信息和对中心体去中心化过程的机制的理解仍然有限。中心体和微管重组的分子机制存在相当大的多样性,这使得获得详细的见解变得更加复杂。
{"title":"Transitions from Centrosomal to Non-centrosomal Microtubule Organization During Cellular Polarization.","authors":"Heide Schatten","doi":"10.1007/978-3-031-20848-5_7","DOIUrl":"https://doi.org/10.1007/978-3-031-20848-5_7","url":null,"abstract":"<p><p>Cellular polarization involves significant remodeling and decentralization of the nucleus-associated centrosome to focal points at the apical and basolateral surfaces which is associated with major remodeling of the microtubule system in which individual microtubules become nucleated and organized from the polarizing cell surfaces, as studied in polarizing epithelial cells (reviewed in Müsch 2004; Muroyama and Lechler 2017). These changes are associated with cellular asymmetry in preparation for cellular differentiation of previously non-committed cells. During this process, the previously nucleus-associated centrosome becomes deconstructed into specific centrosomal components which are now referred to as \"non-centrosomal.\" At the present time we still only have limited information about this process and to understanding the mechanisms underlying the centrosome decentralization process. Gaining detailed insights is further complicated by the fact that there is considerable diversity in the molecular mechanisms of centrosome and microtubule reorganization.</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"235 ","pages":"75-79"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10734190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-01-01DOI: 10.1007/978-3-031-20848-5_3
Heide Schatten
Among the multiple and intriguing roles of centrosomes in cellular functions is the ubiquitin-proteasome-mediated protein degradation. It has been shown that proteasomes are concentrated at the mammalian centrosome which led to further studies to view the centrosome as a proteolytic center (Wojcik et al. 1996; Wigley et al. 1999; reviewed in Badano et al. 2005). Proteasomal components that are concentrated around the centrosome include ubiquitin, the 20S and 19S subunits of the proteasome, as well as the E3 enzyme parkin. These proteasomal components colocalize with the centrosomal marker γ-tubulin and co-purify with γ-tubulin in the centrosomal fractions after sucrose-gradient ultracentrifugation (Wigley et al. 1999). The localization, accumulation, and concentration of proteasomal components around centrosomes appear to be microtubule independent which has been shown experimentally by inhibiting microtubule functions. When intracellular levels of misfolded proteins were experimentally increased by either proteasome inhibition with drugs such as lactacystin, or by overexpression of misfolded mutant proteins, the centrosome-associated proteasome network became expanded and proteolytic components were recruited from the cytosol without involvement of microtubules. These studies revealed a critical role of centrosomes in the organization and subcellular localization of proteasomes (Wigley et al. 1999; Fabunmi et al. 2000).
中心体在细胞功能中的多重和有趣的作用是泛素蛋白酶体介导的蛋白质降解。研究表明,蛋白酶体集中在哺乳动物的中心体上,这导致进一步的研究将中心体视为蛋白质水解中心(Wojcik等人,1996;Wigley et al. 1999;Badano et al. 2005)。集中在中心体周围的蛋白酶体成分包括泛素、蛋白酶体的20S和19S亚基以及E3酶parkin。这些蛋白酶体成分与中心体标记γ-微管蛋白共定位,并在蔗糖梯度超离心后与中心体中γ-微管蛋白共纯化(Wigley et al. 1999)。中心体周围蛋白酶体成分的定位、积累和浓度似乎与微管无关,这已通过抑制微管功能的实验证明。当细胞内错误折叠蛋白的水平通过药物(如乳酸蛋白酶)抑制或错误折叠突变蛋白的过度表达而增加时,中心体相关的蛋白酶体网络变得扩大,蛋白水解成分从细胞质中招募而不涉及微管。这些研究揭示了中心体在蛋白酶体的组织和亚细胞定位中的关键作用(Wigley et al. 1999;Fabunmi et al. 2000)。
{"title":"Centrosome as Center for Proteolytic Activity and Dysfunctions Associated with Pathogenesis of Human Disease.","authors":"Heide Schatten","doi":"10.1007/978-3-031-20848-5_3","DOIUrl":"https://doi.org/10.1007/978-3-031-20848-5_3","url":null,"abstract":"<p><p>Among the multiple and intriguing roles of centrosomes in cellular functions is the ubiquitin-proteasome-mediated protein degradation. It has been shown that proteasomes are concentrated at the mammalian centrosome which led to further studies to view the centrosome as a proteolytic center (Wojcik et al. 1996; Wigley et al. 1999; reviewed in Badano et al. 2005). Proteasomal components that are concentrated around the centrosome include ubiquitin, the 20S and 19S subunits of the proteasome, as well as the E3 enzyme parkin. These proteasomal components colocalize with the centrosomal marker γ-tubulin and co-purify with γ-tubulin in the centrosomal fractions after sucrose-gradient ultracentrifugation (Wigley et al. 1999). The localization, accumulation, and concentration of proteasomal components around centrosomes appear to be microtubule independent which has been shown experimentally by inhibiting microtubule functions. When intracellular levels of misfolded proteins were experimentally increased by either proteasome inhibition with drugs such as lactacystin, or by overexpression of misfolded mutant proteins, the centrosome-associated proteasome network became expanded and proteolytic components were recruited from the cytosol without involvement of microtubules. These studies revealed a critical role of centrosomes in the organization and subcellular localization of proteasomes (Wigley et al. 1999; Fabunmi et al. 2000).</p>","PeriodicalId":50879,"journal":{"name":"Advances in Anatomy Embryology and Cell Biology","volume":"235 ","pages":"37-42"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10445421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}