Pub Date : 2024-04-17DOI: 10.3389/fnins.2024.1408921
Manish Kumar, Rati Sharma
{"title":"Editorial: Role of acquired brain injury in brain-aging: new insight and evidence","authors":"Manish Kumar, Rati Sharma","doi":"10.3389/fnins.2024.1408921","DOIUrl":"https://doi.org/10.3389/fnins.2024.1408921","url":null,"abstract":"","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":" 27","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140692289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-15DOI: 10.3389/fnins.2024.1380039
Rim Hassouna, Lukas Van Oudenhove, Boris Le Nevé, Ann‐Sophie Barwich
{"title":"Editorial: The organs of sensibility: multimodal sensing within the microbiota-gut-brain axis and how it drives physiology, behavior and perception","authors":"Rim Hassouna, Lukas Van Oudenhove, Boris Le Nevé, Ann‐Sophie Barwich","doi":"10.3389/fnins.2024.1380039","DOIUrl":"https://doi.org/10.3389/fnins.2024.1380039","url":null,"abstract":"","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"1 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140702068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-12DOI: 10.3389/fnins.2024.1237245
A. Areces-Gonzalez, D. Paz-Linares, Usama Riaz, Ying Wang, Min Li, F. A. Razzaq, Jorge Bosch-Bayard, E. González-Moreira, M. Ontivero-Ortega, L. Galán-García, E. Martínez-Montes, Ludovico Minati, Mitchell Valdés-Sosa, M. Bringas-Vega, P. Valdés-Sosa
We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.
{"title":"CiftiStorm pipeline: facilitating reproducible EEG/MEG source connectomics","authors":"A. Areces-Gonzalez, D. Paz-Linares, Usama Riaz, Ying Wang, Min Li, F. A. Razzaq, Jorge Bosch-Bayard, E. González-Moreira, M. Ontivero-Ortega, L. Galán-García, E. Martínez-Montes, Ludovico Minati, Mitchell Valdés-Sosa, M. Bringas-Vega, P. Valdés-Sosa","doi":"10.3389/fnins.2024.1237245","DOIUrl":"https://doi.org/10.3389/fnins.2024.1237245","url":null,"abstract":"We present CiftiStorm, an electrophysiological source imaging (ESI) pipeline incorporating recently developed methods to improve forward and inverse solutions. The CiftiStorm pipeline produces Human Connectome Project (HCP) and megconnectome-compliant outputs from dataset inputs with varying degrees of spatial resolution. The input data can range from low-sensor-density electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings without structural magnetic resonance imaging (sMRI) to high-density EEG/MEG recordings with an HCP multimodal sMRI compliant protocol. CiftiStorm introduces a numerical quality control of the lead field and geometrical corrections to the head and source models for forward modeling. For the inverse modeling, we present a Bayesian estimation of the cross-spectrum of sources based on multiple priors. We facilitate ESI in the T1w/FSAverage32k high-resolution space obtained from individual sMRI. We validate this feature by comparing CiftiStorm outputs for EEG and MRI data from the Cuban Human Brain Mapping Project (CHBMP) acquired with technologies a decade before the HCP MEG and MRI standardized dataset.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"9 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140710724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.3389/fnins.2024.1381189
Ethel Ciampi, Filipe Palavra
{"title":"Editorial: Pediatric multiple sclerosis - from bench to bedside","authors":"Ethel Ciampi, Filipe Palavra","doi":"10.3389/fnins.2024.1381189","DOIUrl":"https://doi.org/10.3389/fnins.2024.1381189","url":null,"abstract":"","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"60 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140723723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-09DOI: 10.3389/fnins.2024.1403015
Anja Kovanda, Sabina Vatovec, V. Rački
role
作用
{"title":"Editorial: Developing personalized treatment in neurodegenerative disorders: role of genomics and novel technologies in identifying actionable targets and developing interventions in rare-diseases","authors":"Anja Kovanda, Sabina Vatovec, V. Rački","doi":"10.3389/fnins.2024.1403015","DOIUrl":"https://doi.org/10.3389/fnins.2024.1403015","url":null,"abstract":"role","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"6 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140722378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-08DOI: 10.3389/fnins.2024.1393767
Joy Grifoni, Valeria Crispiatico, A. Castagna, Angelo Quartarone, R. Converti, M. Ramella, Giuseppe Granata, Riccardo Di Iorio, Alfredo Brancucci, Gabriela Bevacqua, Marco Pagani, Teresa L'Abbate, Karolina Armonaite, L. Paulon, Franca Tecchio
{"title":"Musician's dystonia: an opinion on novel treatment strategies","authors":"Joy Grifoni, Valeria Crispiatico, A. Castagna, Angelo Quartarone, R. Converti, M. Ramella, Giuseppe Granata, Riccardo Di Iorio, Alfredo Brancucci, Gabriela Bevacqua, Marco Pagani, Teresa L'Abbate, Karolina Armonaite, L. Paulon, Franca Tecchio","doi":"10.3389/fnins.2024.1393767","DOIUrl":"https://doi.org/10.3389/fnins.2024.1393767","url":null,"abstract":"","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"19 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140728708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.3389/fnins.2024.1384993
G. Pfurtscheller, Beate Rassler, Gerhard Schwarz, Wolfgang Klimesch
MRI-related anxiety in healthy participants is often characterized by a dominant breathing frequency at around 0.32 Hz (19 breaths per minute, bpm) at the beginning but in a few cases also at the end of scanning. Breathing waves at 19 bpm are also observed in patients with anxiety independently of the scanned body part. In patients with medically intractable epilepsy and intracranial electroencephalography (iEEG), spontaneous breathing through the nose varied between 0.24 and 0.37 Hz (~19 bpm). Remarkable is the similarity of the observed breathing rates at around 0.32 Hz during different types of anxiety states (e.g., epilepsy, cancer, claustrophobia) with the preferred breathing frequency of 0.32 Hz (19 bpm), which is predicted by the binary hierarchy model of Klimesch. This elevated breathing frequency most likely reflects an emotional processing state, in which energy demands are minimized due to a harmonic coupling ratio with other brain–body oscillations.
{"title":"Scan-associated anxiety (scanxiety): the enigma of emotional breathing oscillations at 0.32 Hz (19 bpm)","authors":"G. Pfurtscheller, Beate Rassler, Gerhard Schwarz, Wolfgang Klimesch","doi":"10.3389/fnins.2024.1384993","DOIUrl":"https://doi.org/10.3389/fnins.2024.1384993","url":null,"abstract":"MRI-related anxiety in healthy participants is often characterized by a dominant breathing frequency at around 0.32 Hz (19 breaths per minute, bpm) at the beginning but in a few cases also at the end of scanning. Breathing waves at 19 bpm are also observed in patients with anxiety independently of the scanned body part. In patients with medically intractable epilepsy and intracranial electroencephalography (iEEG), spontaneous breathing through the nose varied between 0.24 and 0.37 Hz (~19 bpm). Remarkable is the similarity of the observed breathing rates at around 0.32 Hz during different types of anxiety states (e.g., epilepsy, cancer, claustrophobia) with the preferred breathing frequency of 0.32 Hz (19 bpm), which is predicted by the binary hierarchy model of Klimesch. This elevated breathing frequency most likely reflects an emotional processing state, in which energy demands are minimized due to a harmonic coupling ratio with other brain–body oscillations.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"9 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140745354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-04DOI: 10.3389/fnins.2024.1359594
Steven P. Weiniger, Nathan D. Schilaty
Interoception, sometimes referred to as the ‘hidden sense,’ communicates the state of internal conditions for autonomic energy regulation and is important for human motor control as well as self-awareness. The insula, the cortex of interoception, integrates internal senses such as hunger, thirst and emotions. With input from the cerebellum and proprioceptive inputs, it creates a vast sensorimotor network essential for static posture and dynamic movement. With humans being bipedal to allow for improved mobility and energy utilization, greater neuromotor control is required to effectively stabilize and control the four postural zones of mass (i.e., head, torso, pelvis, and lower extremities) over the base of support. In a dynamic state, this neuromotor control that maintains verticality is critical, challenging energy management for somatic motor control as well as visceral and autonomic functions. In this perspective article, the authors promote a simple series of posture photographs to allow one to integrate more accurate alignment of their postural zones of mass with respect to the gravity line by correlating cortical interoception with cognitive feedback. Doing this focuses one on their body perception in space compared to the objective images. Strengthening interoceptive postural awareness can shift the net result of each zone of postural mass during day-to-day movement towards stronger posture biomechanics and can serve as an individualized strategy to optimize function, longevity, and rehabilitation.
{"title":"Interoceptive posture awareness and accuracy: a novel photographic strategy towards making posture actionable","authors":"Steven P. Weiniger, Nathan D. Schilaty","doi":"10.3389/fnins.2024.1359594","DOIUrl":"https://doi.org/10.3389/fnins.2024.1359594","url":null,"abstract":"Interoception, sometimes referred to as the ‘hidden sense,’ communicates the state of internal conditions for autonomic energy regulation and is important for human motor control as well as self-awareness. The insula, the cortex of interoception, integrates internal senses such as hunger, thirst and emotions. With input from the cerebellum and proprioceptive inputs, it creates a vast sensorimotor network essential for static posture and dynamic movement. With humans being bipedal to allow for improved mobility and energy utilization, greater neuromotor control is required to effectively stabilize and control the four postural zones of mass (i.e., head, torso, pelvis, and lower extremities) over the base of support. In a dynamic state, this neuromotor control that maintains verticality is critical, challenging energy management for somatic motor control as well as visceral and autonomic functions. In this perspective article, the authors promote a simple series of posture photographs to allow one to integrate more accurate alignment of their postural zones of mass with respect to the gravity line by correlating cortical interoception with cognitive feedback. Doing this focuses one on their body perception in space compared to the objective images. Strengthening interoceptive postural awareness can shift the net result of each zone of postural mass during day-to-day movement towards stronger posture biomechanics and can serve as an individualized strategy to optimize function, longevity, and rehabilitation.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140745915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Introduction Many studies have shown that the functional adaptation of immigrants to high-altitude is closely related to oxygen transport, inflammatory response and autonomic nervous system. However, it remains unclear how human attention changes in response to hypoxia-induced neurophysiological activity during high-altitude exposure. Methods In the present study, we analyzed the relationship between hypoxic-induced neurophysiological responses and attention networks in 116 immigrants (3,680 m) using an attention network test to simultaneously record electroencephalogram and electrocardiogram in combination with specific routine blood markers. Results Our analysis revealed that red blood cells exert an indirect influence on the three attention networks, mediated through inflammatory processes and heart rate variability. Discussion The present study provides experimental evidence for the role of a neuroimmune pathway in determining human attention performance at high- altitude. Our findings have implications for understanding the complex interactions between physiological and neurocognitive processes in immigrants adapting to hypoxic environments.
{"title":"The neuroimmune pathway of high-altitude adaptation: influence of erythrocytes on attention networks through inflammation and the autonomic nervous system","authors":"Nian-nian Wang, Si-fang Yu, Peng Dang, Rui Su, Hao Li, Hailin Ma, Mingli Liu, De-Long Zhang","doi":"10.3389/fnins.2024.1373136","DOIUrl":"https://doi.org/10.3389/fnins.2024.1373136","url":null,"abstract":"Introduction Many studies have shown that the functional adaptation of immigrants to high-altitude is closely related to oxygen transport, inflammatory response and autonomic nervous system. However, it remains unclear how human attention changes in response to hypoxia-induced neurophysiological activity during high-altitude exposure. Methods In the present study, we analyzed the relationship between hypoxic-induced neurophysiological responses and attention networks in 116 immigrants (3,680 m) using an attention network test to simultaneously record electroencephalogram and electrocardiogram in combination with specific routine blood markers. Results Our analysis revealed that red blood cells exert an indirect influence on the three attention networks, mediated through inflammatory processes and heart rate variability. Discussion The present study provides experimental evidence for the role of a neuroimmune pathway in determining human attention performance at high- altitude. Our findings have implications for understanding the complex interactions between physiological and neurocognitive processes in immigrants adapting to hypoxic environments.","PeriodicalId":509131,"journal":{"name":"Frontiers in Neuroscience","volume":"36 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140743677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}