首页 > 最新文献

Journal of Vacuum Science & Technology A最新文献

英文 中文
Enhancing minority carrier lifetime in Ge: Insights from HF and HCl cleaning procedures 提高 Ge 中少数载流子的寿命:高频和盐酸清洗程序的启示
Pub Date : 2024-01-01 DOI: 10.1116/6.0003236
Alexandre Chapotot, Jérémie Chrétien, O. Fesiienko, E. Pargon, Jinyoun Cho, Kristof Dessein, A. Boucherif, G. Hamon, Maxime Darnon
Efficiently passivating germanium (Ge) surfaces is crucial to reduce the unwanted recombination current in high-performance devices. Chemical surface cleaning is critical to remove surface contaminants and Ge oxides, ensuring effective surface passivation after dielectric deposition. However, Ge oxides can rapidly regrow upon air exposure. To understand the surface evolution after wet cleaning, we present a comprehensive study comparing HF and HCl deoxidation steps on p-type Ge surfaces and monitor the surface as a function of air exposure time. Distinct oxide regrowth dynamics are observed: HF-treated samples exhibit swift regrowth of all Ge oxide states, whereas HCl-treated Ge surfaces exhibit a lower concentration of low degrees of oxidation and slower or no regrowth of high oxide states even after 110 min of air exposure. In addition, the presence of Ge–Cl bonds induces different oxidation dynamics compared to the Ge–OH bonds resulting from HF cleaning. This leads to varying surface electronic band structures, with HF-treated Ge exhibiting a strong positive band bending (+0.20 eV). Conversely, HCl-treated samples display a lower band curvature (+0.07 eV), mostly due to the presence of Ge–Cl bonds on the Ge surface. During air exposure, the increased GeOx coverage significantly reduces the band bending after HF, while a constant band bending is observed after HCl. Finally, these factors induce a reduction in the surface recombination velocity after wet etching. Combining both chemical and field-induced passivation, HF-treated Ge without rinsing exceeds 800 μs.
有效钝化锗(Ge)表面对于减少高性能器件中不必要的重组电流至关重要。化学表面清洁对于去除表面污染物和锗氧化物至关重要,可确保介电沉积后表面的有效钝化。然而,Ge 氧化物在暴露于空气后会迅速再生。为了了解湿法清洁后的表面演变,我们对 p 型 Ge 表面的 HF 和 HCl 脱氧步骤进行了全面的研究比较,并监测了表面与空气暴露时间的函数关系。我们观察到了不同的氧化物再生动态:经过高频处理的样品显示出所有 Ge 氧化物状态的快速再生,而经过盐酸处理的 Ge 表面则显示出较低的低度氧化物浓度和较慢的高氧化物状态再生,甚至在暴露于空气中 110 分钟后仍没有再生。此外,与高频清洗产生的 Ge-OH 键相比,Ge-Cl 键的存在引起了不同的氧化动力学。这导致了不同的表面电子能带结构,HF 处理过的 Ge 具有很强的正带弯曲(+0.20 eV)。相反,盐酸处理过的样品显示出较低的带弯曲度(+0.07 eV),这主要是由于 Ge 表面存在 Ge-Cl 键。在暴露于空气中期间,GeOx 覆盖率的增加显著降低了高频后的带弯曲,而盐酸后则观察到恒定的带弯曲。最后,这些因素导致湿法蚀刻后表面重组速度降低。结合化学钝化和场诱导钝化,经过高频处理的 Ge 在不冲洗的情况下,其表面钝化速度超过 800 μs。
{"title":"Enhancing minority carrier lifetime in Ge: Insights from HF and HCl cleaning procedures","authors":"Alexandre Chapotot, Jérémie Chrétien, O. Fesiienko, E. Pargon, Jinyoun Cho, Kristof Dessein, A. Boucherif, G. Hamon, Maxime Darnon","doi":"10.1116/6.0003236","DOIUrl":"https://doi.org/10.1116/6.0003236","url":null,"abstract":"Efficiently passivating germanium (Ge) surfaces is crucial to reduce the unwanted recombination current in high-performance devices. Chemical surface cleaning is critical to remove surface contaminants and Ge oxides, ensuring effective surface passivation after dielectric deposition. However, Ge oxides can rapidly regrow upon air exposure. To understand the surface evolution after wet cleaning, we present a comprehensive study comparing HF and HCl deoxidation steps on p-type Ge surfaces and monitor the surface as a function of air exposure time. Distinct oxide regrowth dynamics are observed: HF-treated samples exhibit swift regrowth of all Ge oxide states, whereas HCl-treated Ge surfaces exhibit a lower concentration of low degrees of oxidation and slower or no regrowth of high oxide states even after 110 min of air exposure. In addition, the presence of Ge–Cl bonds induces different oxidation dynamics compared to the Ge–OH bonds resulting from HF cleaning. This leads to varying surface electronic band structures, with HF-treated Ge exhibiting a strong positive band bending (+0.20 eV). Conversely, HCl-treated samples display a lower band curvature (+0.07 eV), mostly due to the presence of Ge–Cl bonds on the Ge surface. During air exposure, the increased GeOx coverage significantly reduces the band bending after HF, while a constant band bending is observed after HCl. Finally, these factors induce a reduction in the surface recombination velocity after wet etching. Combining both chemical and field-induced passivation, HF-treated Ge without rinsing exceeds 800 μs.","PeriodicalId":509398,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139393073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppression of phase segregations in Ge–Fe–Co–Ni–Mn films by high-entropy effect 利用高熵效应抑制 Ge-Fe-Co-Ni-Mn 薄膜中的相位偏析
Pub Date : 2024-01-01 DOI: 10.1116/6.0003164
Sen Sun, Wenyu Jiang, Qinxin Liu, Yueyong Jiang, Tianyi Zhu, Jie Hu, Honglian Song, Zheng Yang, Xinfeng Hui, Yuanxia Lao
Fe–Co–Ni–Mn films doped with different concentrations of Ge were prepared on the Si substrates by using radio frequency magnetron sputtering. Transmission electron microscopy (with an energy dispersive x-ray spectrometer) and an x-ray diffractometer were used to systematically study the microstructure evolution of the Fe–Co–Ni–Mn–Ge films. The results indicate that the Fe–Co–Ni–Mn films doped with a large amount of Ge show significant element segregation after rapid high-temperature annealing. However, with the decrease in the doping amount of Ge to approximately equal molar ratio with magnetic elements, Ge and magnetic elements achieve perfect mutual dissolution at the same annealing conditions, forming single-phase solid solution. Electrical transport tests suggest that its electrical property is close to semiconductors. The mechanism of enhanced mutual solubility between semiconductor elements and magnetic elements is discussed in detail.
利用射频磁控溅射技术在硅基底上制备了掺杂不同浓度 Ge 的铁-铜-镍-锰薄膜。使用透射电子显微镜(带能量色散 X 射线光谱仪)和 X 射线衍射仪系统地研究了铁-铜-镍-锰-锗薄膜的微观结构演变。结果表明,掺杂了大量 Ge 的铁-铜-镍-锰薄膜在快速高温退火后出现了明显的元素偏析。然而,随着 Ge 掺杂量减少到与磁性元素的摩尔比大致相等,在相同的退火条件下,Ge 和磁性元素实现了完美的相互溶解,形成了单相固溶体。电输运测试表明,其电性能接近半导体。本文详细讨论了半导体元素与磁性元素之间互溶性增强的机理。
{"title":"Suppression of phase segregations in Ge–Fe–Co–Ni–Mn films by high-entropy effect","authors":"Sen Sun, Wenyu Jiang, Qinxin Liu, Yueyong Jiang, Tianyi Zhu, Jie Hu, Honglian Song, Zheng Yang, Xinfeng Hui, Yuanxia Lao","doi":"10.1116/6.0003164","DOIUrl":"https://doi.org/10.1116/6.0003164","url":null,"abstract":"Fe–Co–Ni–Mn films doped with different concentrations of Ge were prepared on the Si substrates by using radio frequency magnetron sputtering. Transmission electron microscopy (with an energy dispersive x-ray spectrometer) and an x-ray diffractometer were used to systematically study the microstructure evolution of the Fe–Co–Ni–Mn–Ge films. The results indicate that the Fe–Co–Ni–Mn films doped with a large amount of Ge show significant element segregation after rapid high-temperature annealing. However, with the decrease in the doping amount of Ge to approximately equal molar ratio with magnetic elements, Ge and magnetic elements achieve perfect mutual dissolution at the same annealing conditions, forming single-phase solid solution. Electrical transport tests suggest that its electrical property is close to semiconductors. The mechanism of enhanced mutual solubility between semiconductor elements and magnetic elements is discussed in detail.","PeriodicalId":509398,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139394145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoemission study of plutonium oxycarbide 碳化氧钚的光发射研究
Pub Date : 2024-01-01 DOI: 10.1116/6.0003238
Paul Roussel
Surface films of plutonium oxycarbide have shown oxidation retardation properties. The plutonium oxycarbide film analyzed in this study has a stoichiometry of PuC0.5O0.3 and is homogenous within the depth probed by x-ray photoelectron spectroscopy. The electronic structure of this plutonium oxycarbide surface film has been investigated using core level x-ray photoelectron spectroscopy and valence band ultraviolet photoelectron spectroscopy. The conduction band has been probed with inverse photoemission spectroscopy. The core level Pu 4f7/2 spectrum consists of two components occurring from the poor and well-screened final states. The valence band spectra display peaks attributable to occupied ligand states and both localized and itinerant Pu 5f electron behavior.
碳化氧钚表面薄膜具有延缓氧化的特性。本研究分析的碳化氧钚薄膜的化学计量为 PuC0.5O0.3,在 X 射线光电子能谱探测的深度内是均匀的。利用核级 X 射线光电子能谱和价带紫外线光电子能谱研究了这种碳化钚表面薄膜的电子结构。导带则通过反向光发射光谱进行了探测。核心级 Pu 4f7/2 光谱由两部分组成,分别来自贫终态和良好屏蔽终态。价带光谱显示的峰值可归因于被占据的配体态以及局部和巡回的 Pu 5f 电子行为。
{"title":"Photoemission study of plutonium oxycarbide","authors":"Paul Roussel","doi":"10.1116/6.0003238","DOIUrl":"https://doi.org/10.1116/6.0003238","url":null,"abstract":"Surface films of plutonium oxycarbide have shown oxidation retardation properties. The plutonium oxycarbide film analyzed in this study has a stoichiometry of PuC0.5O0.3 and is homogenous within the depth probed by x-ray photoelectron spectroscopy. The electronic structure of this plutonium oxycarbide surface film has been investigated using core level x-ray photoelectron spectroscopy and valence band ultraviolet photoelectron spectroscopy. The conduction band has been probed with inverse photoemission spectroscopy. The core level Pu 4f7/2 spectrum consists of two components occurring from the poor and well-screened final states. The valence band spectra display peaks attributable to occupied ligand states and both localized and itinerant Pu 5f electron behavior.","PeriodicalId":509398,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139394036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of the growth parameters on the surface quality of InN films 生长参数对氮化铟薄膜表面质量的影响
Pub Date : 2024-01-01 DOI: 10.1116/6.0003205
Peng Su, Junhong Pei, Jinping Luo, Guangyu Zheng, Yukang Sun, Lijun Liu
On the basis of the improved Stillinger–Weber potential model, the growth process of an indium nitride (InN) film on a gallium nitride (GaN) substrate has been simulated by molecular dynamics. The effects of growth conditions, including the incident energy, polarity of the surface of the GaN substrate, substrate temperature, and deposited N:In atomic ratio, on the surface quality of the InN film have been investigated. We find that atoms with high incident energy have high mobility, which significantly improves the structures of the protrusions and pits on the surface of the film, thereby enhancing the surface quality. However, too high incident energy enhances the sputtering effect of the deposited particles on the surface atoms of the substrate and the destruction of the film, thereby reducing the density. On the basis of the optimal incident energy, the difference in the growth mode of InN films on the Ga-termination polarity surface and N-termination polarity surface is analyzed. At low temperatures, a three-dimensional island growth mode is present on the N-termination polarity surface and a two-dimensional layer growth mode is present on the Ga-termination polarity surface. It is easier to produce InN films with excellent surface quality on the Ga-termination polarity at low temperatures. Furthermore, according to the results obtained under different substrate temperatures and atomic deposition ratios, in an In-enriched environment, excessive In atoms are prone to form agglomerated island structures on the film surface, and the low-temperature substrate is more prone to produce an InN film with high surface quality. In an N-enriched environment, excessive N atoms combine with In atoms on the film surface to form a stepped island structure, and they are more prone to grow into an InN film with high surface quality on a high-temperature substrate.
在改进的 Stillinger-Weber 电位模型的基础上,利用分子动力学模拟了氮化铟(InN)薄膜在氮化镓(GaN)衬底上的生长过程。研究了生长条件对 InN 薄膜表面质量的影响,包括入射能量、氮化镓衬底表面的极性、衬底温度和沉积的 N:In 原子比。我们发现,入射能量高的原子具有高迁移率,能显著改善薄膜表面的突起和凹坑结构,从而提高表面质量。然而,过高的入射能量会增强沉积粒子对基底表面原子的溅射效应,破坏薄膜,从而降低密度。在最佳入射能量的基础上,分析了在 Ga 端极性表面和 N 端极性表面上 InN 薄膜生长模式的差异。在低温条件下,N 端极性表面呈现三维岛状生长模式,而 Ga 端极性表面呈现二维层状生长模式。在低温条件下,更容易在 Ga 端极性表面制备出表面质量优异的 InN 薄膜。此外,根据在不同衬底温度和原子沉积比下得到的结果,在富 In 环境中,过量的 In 原子容易在薄膜表面形成团聚岛状结构,低温衬底更容易生成表面质量高的 InN 薄膜。在富含 N 的环境中,过量的 N 原子与薄膜表面的 In 原子结合形成阶梯状的岛状结构,它们更容易在高温衬底上生长成表面质量高的 InN 薄膜。
{"title":"Effects of the growth parameters on the surface quality of InN films","authors":"Peng Su, Junhong Pei, Jinping Luo, Guangyu Zheng, Yukang Sun, Lijun Liu","doi":"10.1116/6.0003205","DOIUrl":"https://doi.org/10.1116/6.0003205","url":null,"abstract":"On the basis of the improved Stillinger–Weber potential model, the growth process of an indium nitride (InN) film on a gallium nitride (GaN) substrate has been simulated by molecular dynamics. The effects of growth conditions, including the incident energy, polarity of the surface of the GaN substrate, substrate temperature, and deposited N:In atomic ratio, on the surface quality of the InN film have been investigated. We find that atoms with high incident energy have high mobility, which significantly improves the structures of the protrusions and pits on the surface of the film, thereby enhancing the surface quality. However, too high incident energy enhances the sputtering effect of the deposited particles on the surface atoms of the substrate and the destruction of the film, thereby reducing the density. On the basis of the optimal incident energy, the difference in the growth mode of InN films on the Ga-termination polarity surface and N-termination polarity surface is analyzed. At low temperatures, a three-dimensional island growth mode is present on the N-termination polarity surface and a two-dimensional layer growth mode is present on the Ga-termination polarity surface. It is easier to produce InN films with excellent surface quality on the Ga-termination polarity at low temperatures. Furthermore, according to the results obtained under different substrate temperatures and atomic deposition ratios, in an In-enriched environment, excessive In atoms are prone to form agglomerated island structures on the film surface, and the low-temperature substrate is more prone to produce an InN film with high surface quality. In an N-enriched environment, excessive N atoms combine with In atoms on the film surface to form a stepped island structure, and they are more prone to grow into an InN film with high surface quality on a high-temperature substrate.","PeriodicalId":509398,"journal":{"name":"Journal of Vacuum Science & Technology A","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139395589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Vacuum Science & Technology A
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1