Pub Date : 2023-05-22DOI: https://dl.acm.org/doi/10.1145/3580509
Li Sun, Yang Du, Shuai Gao, Junda Ye, Feiyang Wang, Fuxin Ren, Mingchen Liang, Yue Wang, Shuhai Wang
Social network alignment, which aims to uncover the correspondence across different social networks, shows fundamental importance in a wide spectrum of applications such as cross-domain recommendation and information propagation. In the literature, the vast majority of the existing studies focus on the social network alignment at user level. In practice, the user-level alignment usually relies on abundant personal information and high-quality supervision, which is expensive and even impossible in the real-world scenario. Alternatively, we propose to study the problem of social group alignment across different social networks, focusing on the interests of social groups rather than personal information. However, social group alignment is non-trivial and faces significant challenges in both (i) feature inconsistency across different social networks and (ii) group discovery within a social network. To bridge this gap, we present a novel GroupAligner, a deep reinforcement learning with domain adaptation for social group alignment. In GroupAligner, to address the first issue, we propose the cycle domain adaptation approach with the Wasserstein distance to transfer the knowledge from the source social network, aligning the feature space of social networks in the distribution level. To address the second issue, we model the group discovery as a sequential decision process with reinforcement learning in which the policy is parameterized by a proposed proximity-enhanced Graph Neural Network (pGNN) and a GNN-based discriminator to score the reward. Finally, we utilize pre-training and teacher forcing to stabilize the learning process of GroupAligner. Extensive experiments on several real-world datasets are conducted to evaluate GroupAligner, and experimental results show that GroupAligner outperforms the alternative methods for social group alignment.
{"title":"GroupAligner: A Deep Reinforcement Learning with Domain Adaptation for Social Group Alignment","authors":"Li Sun, Yang Du, Shuai Gao, Junda Ye, Feiyang Wang, Fuxin Ren, Mingchen Liang, Yue Wang, Shuhai Wang","doi":"https://dl.acm.org/doi/10.1145/3580509","DOIUrl":"https://doi.org/https://dl.acm.org/doi/10.1145/3580509","url":null,"abstract":"<p>Social network alignment, which aims to uncover the correspondence across different social networks, shows fundamental importance in a wide spectrum of applications such as cross-domain recommendation and information propagation. In the literature, the vast majority of the existing studies focus on the social network alignment at user level. In practice, the user-level alignment usually relies on abundant personal information and high-quality supervision, which is expensive and even impossible in the real-world scenario. Alternatively, we propose to study the problem of social group alignment across different social networks, focusing on the interests of social groups rather than personal information. However, social group alignment is non-trivial and faces significant challenges in both (i) feature inconsistency across different social networks and (ii) group discovery within a social network. To bridge this gap, we present a novel <span>GroupAligner</span>, a deep reinforcement learning with domain adaptation for social group alignment. In <span>GroupAligner</span>, to address the first issue, we propose the cycle domain adaptation approach with the Wasserstein distance to transfer the knowledge from the source social network, aligning the feature space of social networks in the distribution level. To address the second issue, we model the group discovery as a sequential decision process with reinforcement learning in which the policy is parameterized by a proposed <b><underline>p</underline>roximity-enhanced <underline>G</underline>raph <underline>N</underline>eural <underline>N</underline>etwork (pGNN)</b> and a GNN-based discriminator to score the reward. Finally, we utilize pre-training and teacher forcing to stabilize the learning process of <span>GroupAligner</span>. Extensive experiments on several real-world datasets are conducted to evaluate <span>GroupAligner</span>, and experimental results show that <span>GroupAligner</span> outperforms the alternative methods for social group alignment.</p><p></p>","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":"43 17","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-22DOI: https://dl.acm.org/doi/10.1145/3586073
Haohua Du, Yue Wang, Xiaoya Xu, Mingsheng Liu
Device-level security has become a major concern in smart home systems. Detecting problems in smart home sytems strives to increase accuracy in near real time without hampering the regular tasks of the smart home. The current state of the art in detecting anomalies in smart home devices is mainly focused on the app level, which provides a basic level of security by assuming that the devices are functioning correctly. However, this approach is insufficient for ensuring the overall security of the system, as it overlooks the possibility of anomalies occurring at the lower layers such as the devices. In this article, we propose a novel notion, correlated graph, and with the aid of that, we develop our system to detect misbehaving devices without modifying the existing system. Our correlated graphs explicitly represent the contextual correlations among smart devices with little knowledge about the system. We further propose a linkage path model and a sensitivity ranking method to assist in detecting the abnormalities. We implement a semi-automatic prototype of our approach, evaluate it in real-world settings, and demonstrate its efficiency, which achieves an accuracy of around 90% in near real time.
{"title":"Niffler: Real-time Device-level Anomalies Detection in Smart Home","authors":"Haohua Du, Yue Wang, Xiaoya Xu, Mingsheng Liu","doi":"https://dl.acm.org/doi/10.1145/3586073","DOIUrl":"https://doi.org/https://dl.acm.org/doi/10.1145/3586073","url":null,"abstract":"<p>Device-level security has become a major concern in smart home systems. Detecting problems in smart home sytems strives to increase accuracy in near real time without hampering the regular tasks of the smart home. The current state of the art in detecting anomalies in smart home devices is mainly focused on the app level, which provides a basic level of security by assuming that the devices are functioning correctly. However, this approach is insufficient for ensuring the overall security of the system, as it overlooks the possibility of anomalies occurring at the lower layers such as the devices. In this article, we propose a novel notion, <i>correlated graph</i>, and with the aid of that, we develop our system to detect misbehaving devices without modifying the existing system. Our correlated graphs explicitly represent the contextual correlations among smart devices with little knowledge about the system. We further propose a linkage path model and a sensitivity ranking method to assist in detecting the abnormalities. We implement a semi-automatic prototype of our approach, evaluate it in real-world settings, and demonstrate its efficiency, which achieves an accuracy of around 90% in near real time.</p>","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":"43 16","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138495144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arpit Rana, S. Sanner, Mohamed Reda Bouadjenek, Ron Dicarlantonio, Gary Farmaner
Critiquing — where users propose directional preferences to attribute values — has historically been a highly popular method for conversational recommendation. However, with the growing size of catalogs and item attributes, it becomes increasingly difficult and time-consuming to express all of one’s constraints and preferences in the form of critiquing. It is found to be even more confusing in case of critiquing failures: when the system returns no matching items in response to user critiques. To this end, it would seem important to combine a critiquing-based conversational system with a personalized recommendation component to capture implicit user preferences and thus reduce the user’s burden of providing explicit critiques. To examine the impact of such personalization on critiquing, this paper reports on a user study with 228 participants to understand user critiquing behavior for two different recommendation algorithms: (i) non-personalized, that recommends any item consistent with the user critiques; and (ii) personalized, which leverages a user’s past preferences on top of user critiques. In the study, we ask users to find a restaurant that they think is the most suitable to a given scenario by critiquing the recommended restaurants at each round of the conversation on the dimensions of price, cuisine, category, and distance. We observe that the non-personalized recommender leads to more critiquing interactions, more severe critiquing failures, overall more time for users to express their preferences, and longer dialogs to find their item of interest. We also observe that non-personalized users were less satisfied with the system’s performance. They find its recommendations less relevant, more unexpected, and somewhat equally diverse and surprising than those of personalized ones. The results of our user study highlight an imperative for further research on the integration of the two complementary components of personalization and critiquing to achieve the best overall user experience in future critiquing-based conversational recommender systems.
{"title":"User Experience and The Role of Personalization in Critiquing-Based Conversational Recommendation","authors":"Arpit Rana, S. Sanner, Mohamed Reda Bouadjenek, Ron Dicarlantonio, Gary Farmaner","doi":"10.1145/3597499","DOIUrl":"https://doi.org/10.1145/3597499","url":null,"abstract":"Critiquing — where users propose directional preferences to attribute values — has historically been a highly popular method for conversational recommendation. However, with the growing size of catalogs and item attributes, it becomes increasingly difficult and time-consuming to express all of one’s constraints and preferences in the form of critiquing. It is found to be even more confusing in case of critiquing failures: when the system returns no matching items in response to user critiques. To this end, it would seem important to combine a critiquing-based conversational system with a personalized recommendation component to capture implicit user preferences and thus reduce the user’s burden of providing explicit critiques. To examine the impact of such personalization on critiquing, this paper reports on a user study with 228 participants to understand user critiquing behavior for two different recommendation algorithms: (i) non-personalized, that recommends any item consistent with the user critiques; and (ii) personalized, which leverages a user’s past preferences on top of user critiques. In the study, we ask users to find a restaurant that they think is the most suitable to a given scenario by critiquing the recommended restaurants at each round of the conversation on the dimensions of price, cuisine, category, and distance. We observe that the non-personalized recommender leads to more critiquing interactions, more severe critiquing failures, overall more time for users to express their preferences, and longer dialogs to find their item of interest. We also observe that non-personalized users were less satisfied with the system’s performance. They find its recommendations less relevant, more unexpected, and somewhat equally diverse and surprising than those of personalized ones. The results of our user study highlight an imperative for further research on the integration of the two complementary components of personalization and critiquing to achieve the best overall user experience in future critiquing-based conversational recommender systems.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46891871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-10DOI: https://dl.acm.org/doi/10.1145/3593314
Chunjing Xiao, Wanlin Ji, Yuxiang Zhang, Shenkai Lv
Modelling the dynamic interactions between users and items on knowledge graphs is very crucial for improving the accuracy of recommendation. Although existing methods have made great progress in modelling the dynamic knowledge graphs for recommendation, they usually only consider the mutual influence between users and items involved in the interactions, and ignore the influence propagation from the interacting nodes (i.e., users and items) on dynamic knowledge graphs. In this paper, we propose an influence propagation-enhanced deep coevolutionary method for recommendation, which can capture not only the direct mutual influence between interacting users and items but also influence propagation from multiple interacting nodes to their high-order neighbors at the same time on the dynamic knowledge graph. Specifically, the proposed model consists of two main components: direct mutual influence component and influence propagation component.