Inflammasomes contribute to colorectal cancer signaling by primarily inducing inflammation in the surrounding tumor microenvironment. Its role in inflammation is receiving increasing attention, as inflammation has a protumor effect in addition to inducing tissue damage. The inflammasome’s function is complex and controlled by several layers of regulation. Epigenetic processes impact the functioning or manifestation of genes that are involved in the control of inflammasomes or the subsequent signaling cascades. Researchers have intensively studied the significance of epigenetic mechanisms in regulation, as they encompass several potential therapeutic targets. The regulatory interactions between the inflammasome and autophagy are intricate, exhibiting both advantageous and harmful consequences. The regulatory aspects between the two entities also encompass several therapeutic targets. The relationship between the activation of the inflammasome, autophagy, and epigenetic alterations in CRC is complex and involves several interrelated pathways. This article provides a brief summary of the newest studies on how epigenetics and autophagy control the inflammasome, with a special focus on their role in colorectal cancer. Based on the latest findings, we also provide an overview of the latest therapeutic ideas for this complex network.
{"title":"Inflammasomes Are Influenced by Epigenetic and Autophagy Mechanisms in Colorectal Cancer Signaling","authors":"G. Műzes, F. Sipos","doi":"10.3390/ijms25116167","DOIUrl":"https://doi.org/10.3390/ijms25116167","url":null,"abstract":"Inflammasomes contribute to colorectal cancer signaling by primarily inducing inflammation in the surrounding tumor microenvironment. Its role in inflammation is receiving increasing attention, as inflammation has a protumor effect in addition to inducing tissue damage. The inflammasome’s function is complex and controlled by several layers of regulation. Epigenetic processes impact the functioning or manifestation of genes that are involved in the control of inflammasomes or the subsequent signaling cascades. Researchers have intensively studied the significance of epigenetic mechanisms in regulation, as they encompass several potential therapeutic targets. The regulatory interactions between the inflammasome and autophagy are intricate, exhibiting both advantageous and harmful consequences. The regulatory aspects between the two entities also encompass several therapeutic targets. The relationship between the activation of the inflammasome, autophagy, and epigenetic alterations in CRC is complex and involves several interrelated pathways. This article provides a brief summary of the newest studies on how epigenetics and autophagy control the inflammasome, with a special focus on their role in colorectal cancer. Based on the latest findings, we also provide an overview of the latest therapeutic ideas for this complex network.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"103 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giuseppe Sberna, Cosmina Mija, E. Lalle, Gabriella Rozera, Giulia Matusali, F. Carletti, E. Girardi, Fabrizio Maggi
SARS-CoV-2 is a highly infectious virus responsible for the COVID-19 pandemic. Therefore, it is important to assess the risk of SARS-CoV-2 infection, especially in persistently positive patients. Rapid discrimination between infectious and non-infectious viruses aids in determining whether prevention, control, and treatment measures are necessary. For this purpose, a method was developed and utilized involving a pre-treatment with 50 µM of propidium monoazide (PMAxx, a DNA intercalant) combined with a digital droplet PCR (ddPCR). The ddPCR method was performed on 40 nasopharyngeal swabs (NPSs) both before and after treatment with PMAxx, revealing a reduction in the viral load at a mean of 0.9 Log copies/mL (SD ± 0.6 Log copies/mL). Furthermore, six samples were stratified based on the Ct values of SARS-CoV-2 RNA (Ct < 20, 20 < Ct < 30, Ct > 30) and analyzed to compare the results obtained via a ddPCR with viral isolation and a negative-chain PCR. Of the five samples found positive via a ddPCR after the PMAxx treatment, two of the samples showed the highest post-treatment SARS-CoV-2 loads. The virus was isolated in vitro from both samples and the negative strand chains were detected. In three NPS samples, SARS CoV-2 was present post-treatment at a low level; it was not isolated in vitro, and, when detected, the strand was negative. Our results indicate that the established method is useful for determining whether the SARS-CoV-2 within positive NPS samples is intact and capable of causing infection.
{"title":"Rapid Determination of SARS-CoV-2 Integrity and Infectivity by Using Propidium Monoazide Coupled with Digital Droplet PCR","authors":"Giuseppe Sberna, Cosmina Mija, E. Lalle, Gabriella Rozera, Giulia Matusali, F. Carletti, E. Girardi, Fabrizio Maggi","doi":"10.3390/ijms25116156","DOIUrl":"https://doi.org/10.3390/ijms25116156","url":null,"abstract":"SARS-CoV-2 is a highly infectious virus responsible for the COVID-19 pandemic. Therefore, it is important to assess the risk of SARS-CoV-2 infection, especially in persistently positive patients. Rapid discrimination between infectious and non-infectious viruses aids in determining whether prevention, control, and treatment measures are necessary. For this purpose, a method was developed and utilized involving a pre-treatment with 50 µM of propidium monoazide (PMAxx, a DNA intercalant) combined with a digital droplet PCR (ddPCR). The ddPCR method was performed on 40 nasopharyngeal swabs (NPSs) both before and after treatment with PMAxx, revealing a reduction in the viral load at a mean of 0.9 Log copies/mL (SD ± 0.6 Log copies/mL). Furthermore, six samples were stratified based on the Ct values of SARS-CoV-2 RNA (Ct < 20, 20 < Ct < 30, Ct > 30) and analyzed to compare the results obtained via a ddPCR with viral isolation and a negative-chain PCR. Of the five samples found positive via a ddPCR after the PMAxx treatment, two of the samples showed the highest post-treatment SARS-CoV-2 loads. The virus was isolated in vitro from both samples and the negative strand chains were detected. In three NPS samples, SARS CoV-2 was present post-treatment at a low level; it was not isolated in vitro, and, when detected, the strand was negative. Our results indicate that the established method is useful for determining whether the SARS-CoV-2 within positive NPS samples is intact and capable of causing infection.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"57 41","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141269313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Pêgo, I. Lima, A. Martins, Inês Sá-Pereira, G. Martins, R. Gozzelino
Severe malarial anemia (SMA) increases the morbidity and mortality of Plasmodium, the causative agent of malaria. SMA is mainly developed by children and pregnant women in response to the infection. It is characterized by ineffective erythropoiesis caused by impaired erythropoietin (EPO) signaling. To gain new insights into the pathogenesis of SMA, we investigated the relationship between the immune system and erythropoiesis, conducting comparative analyses in a mouse model of malaria. Red blood cell (RBC) production was evaluated in infected and reinfected animals to mimic endemic occurrences. Higher levels of circulating EPO were observed in response to (re)infection. Despite no major differences in bone marrow erythropoiesis, compensatory mechanisms of splenic RBC production were significantly reduced in reinfected mice. Concomitantly, a pronounced immune response activation was observed in erythropoietic organs of reinfected animals in relation to single-infected mice. Aged mice were also used to mimic the occurrence of malaria in the elderly. The increase in symptom severity was correlated with the enhanced activation of the immune system, which significantly impaired erythropoiesis. Immunocompromised mice further support the existence of an immune-shaping regulation of RBC production. Overall, our data reveal the strict correlation between erythropoiesis and immune cells, which ultimately dictates the severity of SMA.
严重疟疾性贫血(SMA)会增加疟疾病原体疟原虫的发病率和死亡率。SMA 主要发生在儿童和孕妇身上,是对感染的一种反应。其特点是由于促红细胞生成素(EPO)信号传导受损而导致红细胞生成功能低下。为了获得有关 SMA 发病机制的新见解,我们研究了免疫系统与红细胞生成之间的关系,并在疟疾小鼠模型中进行了比较分析。我们评估了感染和再感染动物的红细胞(RBC)生成情况,以模拟地方流行病的发生。在(再)感染的情况下,观察到循环 EPO 水平较高。尽管骨髓红细胞生成没有重大差异,但再感染小鼠脾脏红细胞生成的代偿机制明显降低。与此同时,在再感染动物的红细胞生成器官中观察到了明显的免疫反应激活,而单一感染的小鼠则没有这种反应。老年小鼠也被用来模拟疟疾在老年人中的发生。症状严重程度的增加与免疫系统活化的增强有关,免疫系统活化的增强会显著损害红细胞生成。免疫功能低下的小鼠进一步证实了红细胞生成受免疫调节的影响。总之,我们的数据揭示了红细胞生成与免疫细胞之间的严格相关性,这最终决定了 SMA 的严重程度。
{"title":"Infection vs. Reinfection: The Immunomodulation of Erythropoiesis","authors":"A. Pêgo, I. Lima, A. Martins, Inês Sá-Pereira, G. Martins, R. Gozzelino","doi":"10.3390/ijms25116153","DOIUrl":"https://doi.org/10.3390/ijms25116153","url":null,"abstract":"Severe malarial anemia (SMA) increases the morbidity and mortality of Plasmodium, the causative agent of malaria. SMA is mainly developed by children and pregnant women in response to the infection. It is characterized by ineffective erythropoiesis caused by impaired erythropoietin (EPO) signaling. To gain new insights into the pathogenesis of SMA, we investigated the relationship between the immune system and erythropoiesis, conducting comparative analyses in a mouse model of malaria. Red blood cell (RBC) production was evaluated in infected and reinfected animals to mimic endemic occurrences. Higher levels of circulating EPO were observed in response to (re)infection. Despite no major differences in bone marrow erythropoiesis, compensatory mechanisms of splenic RBC production were significantly reduced in reinfected mice. Concomitantly, a pronounced immune response activation was observed in erythropoietic organs of reinfected animals in relation to single-infected mice. Aged mice were also used to mimic the occurrence of malaria in the elderly. The increase in symptom severity was correlated with the enhanced activation of the immune system, which significantly impaired erythropoiesis. Immunocompromised mice further support the existence of an immune-shaping regulation of RBC production. Overall, our data reveal the strict correlation between erythropoiesis and immune cells, which ultimately dictates the severity of SMA.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"29 21","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141270764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stephen Sazinsky, Mohammad Zafari, Boris Klebanov, Jessica Ritter, Phuong A Nguyen, R. Phennicie, Joseph Wahle, Kevin Kauffman, Maja Razlog, Denise Manfra, Igor Feldman, Tatiana Novobrantseva
V-set immunoglobulin domain-containing 4 (VSIG4) is a B7 family protein with known roles as a C3 fragment complement receptor involved in pathogen clearance and a negative regulator of T cell activation by an undetermined mechanism. VSIG4 expression is specific for tumor-associated and select tissue-resident macrophages. Increased expression of VSIG4 has been associated with worse survival in multiple cancer indications. Based upon computational analysis of transcript data across thousands of tumor and normal tissue samples, we hypothesized that VSIG4 has an important role in promoting M2-like immune suppressive macrophages and that targeting VSIG4 could relieve VSIG4-mediated macrophage suppression by repolarizing tumor-associated macrophages (TAMs) to an inflammatory phenotype. We have also observed a cancer-specific pattern of VSIG4 isoform distribution, implying a change in the functional regulation in cancer. Through a series of in vitro, in vivo, and ex vivo assays we demonstrate that anti-VSIG4 antibodies repolarize M2 macrophages and induce an immune response culminating in T cell activation. Anti-VSIG4 antibodies induce pro-inflammatory cytokines in M-CSF plus IL-10-driven human monocyte-derived M2c macrophages. Across patient-derived tumor samples from multiple tumor types, anti-VSIG4 treatment resulted in the upregulation of cytokines associated with TAM repolarization and T cell activation and chemokines involved in immune cell recruitment. VSIG4 blockade is also efficacious in a syngeneic mouse model as monotherapy as it enhances efficacy in combination with anti-PD-1, and the effect is dependent on the systemic availability of CD8+ T cells. Thus, VSIG4 represents a promising new target capable of triggering an anti-cancer response via multiple key immune mechanisms.
{"title":"Antibodies Targeting Human or Mouse VSIG4 Repolarize Tumor-Associated Macrophages Providing the Potential of Potent and Specific Clinical Anti-Tumor Response Induced across Multiple Cancer Types","authors":"Stephen Sazinsky, Mohammad Zafari, Boris Klebanov, Jessica Ritter, Phuong A Nguyen, R. Phennicie, Joseph Wahle, Kevin Kauffman, Maja Razlog, Denise Manfra, Igor Feldman, Tatiana Novobrantseva","doi":"10.3390/ijms25116160","DOIUrl":"https://doi.org/10.3390/ijms25116160","url":null,"abstract":"V-set immunoglobulin domain-containing 4 (VSIG4) is a B7 family protein with known roles as a C3 fragment complement receptor involved in pathogen clearance and a negative regulator of T cell activation by an undetermined mechanism. VSIG4 expression is specific for tumor-associated and select tissue-resident macrophages. Increased expression of VSIG4 has been associated with worse survival in multiple cancer indications. Based upon computational analysis of transcript data across thousands of tumor and normal tissue samples, we hypothesized that VSIG4 has an important role in promoting M2-like immune suppressive macrophages and that targeting VSIG4 could relieve VSIG4-mediated macrophage suppression by repolarizing tumor-associated macrophages (TAMs) to an inflammatory phenotype. We have also observed a cancer-specific pattern of VSIG4 isoform distribution, implying a change in the functional regulation in cancer. Through a series of in vitro, in vivo, and ex vivo assays we demonstrate that anti-VSIG4 antibodies repolarize M2 macrophages and induce an immune response culminating in T cell activation. Anti-VSIG4 antibodies induce pro-inflammatory cytokines in M-CSF plus IL-10-driven human monocyte-derived M2c macrophages. Across patient-derived tumor samples from multiple tumor types, anti-VSIG4 treatment resulted in the upregulation of cytokines associated with TAM repolarization and T cell activation and chemokines involved in immune cell recruitment. VSIG4 blockade is also efficacious in a syngeneic mouse model as monotherapy as it enhances efficacy in combination with anti-PD-1, and the effect is dependent on the systemic availability of CD8+ T cells. Thus, VSIG4 represents a promising new target capable of triggering an anti-cancer response via multiple key immune mechanisms.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141269814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hiléia K. S. de Souza, Marta Guimarães, N. Mateus, V. de Freitas, L. Cruz
Anthocyanins are amazing plant-derived colorants with highly valuable properties; however, their chemical and color instability issues limit their wide application in different food industry-related products such as active and intelligent packaging. In a previous study, it was demonstrated that anthocyanins could be stabilized into green plasticizers namely deep eutectic solvents (DESs). In this work, the fabrication of edible films by integrating anthocyanins along with DESs into biocompatible chitosan (CHT)-based formulations enriched with polyvinyl alcohol (PVA) and PVA nanoparticles was investigated. CHT/PVA-DES films’ physical properties were characterized by scanning electron microscopy, water vapor permeability, swelling index, moisture sorption isotherm, and thermogravimetry analysis. Innovative red-to-blue formulation films were achieved for CHT/PVA nanoparticles (for 5 min of sonication) at a molar ratio 1:1, and with 10% of ternary DES (TDES)-containing malvidin-3-glucoside (0.1%) where the physical properties of films were enhanced. After immersion in solutions at different pH values, films submitted to pHs 5–8 were revealed to be more color stable and resistant with time than at acidic pH values.
{"title":"Chitosan/Polyvinyl Alcohol-Based Biofilms Using Ternary Deep Eutectic Solvents towards Innovative Color-Stabilizing Systems for Anthocyanins","authors":"Hiléia K. S. de Souza, Marta Guimarães, N. Mateus, V. de Freitas, L. Cruz","doi":"10.3390/ijms25116154","DOIUrl":"https://doi.org/10.3390/ijms25116154","url":null,"abstract":"Anthocyanins are amazing plant-derived colorants with highly valuable properties; however, their chemical and color instability issues limit their wide application in different food industry-related products such as active and intelligent packaging. In a previous study, it was demonstrated that anthocyanins could be stabilized into green plasticizers namely deep eutectic solvents (DESs). In this work, the fabrication of edible films by integrating anthocyanins along with DESs into biocompatible chitosan (CHT)-based formulations enriched with polyvinyl alcohol (PVA) and PVA nanoparticles was investigated. CHT/PVA-DES films’ physical properties were characterized by scanning electron microscopy, water vapor permeability, swelling index, moisture sorption isotherm, and thermogravimetry analysis. Innovative red-to-blue formulation films were achieved for CHT/PVA nanoparticles (for 5 min of sonication) at a molar ratio 1:1, and with 10% of ternary DES (TDES)-containing malvidin-3-glucoside (0.1%) where the physical properties of films were enhanced. After immersion in solutions at different pH values, films submitted to pHs 5–8 were revealed to be more color stable and resistant with time than at acidic pH values.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"113 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lan Mou, Lang Zhang, Yujie Qiu, Mingchen Liu, Lijuan Wu, Xu Mo, Ji Chen, Fan Liu, Rui Li, Chen Liu, Mengliang Tian
Pinellia ternata is a medicinal plant that has important pharmacological value, and the bulbils serve as the primary reproductive organ; however, the mechanisms underlying bulbil initiation remain unclear. Here, we characterized bulbil development via histological, transcriptomic, and targeted metabolomic analyses to unearth the intricate relationship between hormones, genes, and bulbil development. The results show that the bulbils initiate growth from the leaf axillary meristem (AM). In this stage, jasmonic acid (JA), abscisic acid (ABA), isopentenyl adenosine (IPA), and salicylic acid (SA) were highly enriched, while indole-3-acetic acid (IAA), zeatin, methyl jasmonate (MeJA), and 5-dexoxystrigol (5-DS) were notably decreased. Through OPLS-DA analysis, SA has emerged as the most crucial factor in initiating and positively regulating bulbil formation. Furthermore, a strong association between IPA and SA was observed during bulbil initiation. The transcriptional changes in IPT (Isopentenyltransferase), CRE1 (Cytokinin Response 1), A-ARR (Type-A Arabidopsis Response Regulator), B-ARR (Type-B Arabidopsis Response Regulator), AUX1 (Auxin Resistant 1), ARF (Auxin Response Factor), AUX/IAA (Auxin/Indole-3-acetic acid), GH3 (Gretchen Hagen 3), SAUR (Small Auxin Up RNA), GA2ox (Gibberellin 2-oxidase), GA20ox (Gibberellin 20-oxidase), AOS (Allene oxide synthase), AOC (Allene oxide cyclase), OPR (Oxophytodienoate Reductase), JMT (JA carboxy l Methyltransferase), COI1 (Coronatine Insensitive 1), JAZ (Jasmonate ZIM-domain), MYC2 (Myelocytomatosis 2), D27 (DWARF27), SMAX (Suppressor of MAX2), PAL (Phenylalanine Ammonia-Lyase), ICS (Isochorismate Synthase), NPR1 (Non-expressor of Pathogenesis-related Genes1), TGA (TGACG Sequence-specific Binding), PR-1 (Pathogenesis-related), MCSU (Molybdenium Cofactor Sulfurase), PP2C (Protein Phosphatase 2C), and SnRK (Sucrose Non-fermenting-related Protein Kinase 2) were highly correlated with hormone concentrations, indicating that bulbil initiation is coordinately controlled by multiple phytohormones. Notably, eight TFs (transcription factors) that regulate AM initiation have been identified as pivotal regulators of bulbil formation. Among these, WUS (WUSCHEL), CLV (CLAVATA), ATH1 (Arabidopsis Thaliana Homeobox Gene 1), and RAX (Regulator of Axillary meristems) have been observed to exhibit elevated expression levels. Conversely, LEAFY demonstrated contrasting expression patterns. The intricate expression profiles of these TFs are closely associated with the upregulated expression of KNOX(KNOTTED-like homeobox), suggesting a intricate regulatory network underlying the complex process of bulbil initiation. This study offers a profound understanding of the bulbil initiation process and could potentially aid in refining molecular breeding techniques specific to P. ternata.
半夏(Pinellia ternata)是一种具有重要药用价值的药用植物,球茎是其主要的生殖器官;然而,球茎的发生机制仍不清楚。在这里,我们通过组织学、转录组学和靶向代谢组学分析来描述球茎的发育特征,从而揭示激素、基因和球茎发育之间错综复杂的关系。结果表明,球茎从叶腋分生组织(AM)开始生长。在这一阶段,茉莉酸(JA)、脱落酸(ABA)、异戊烯基腺苷(IPA)和水杨酸(SA)高度富集,而吲哚-3-乙酸(IAA)、玉米素、茉莉酸甲酯(MeJA)和 5-脱氧斯的明(5-DS)则明显减少。通过 OPLS-DA 分析,发现 SA 是启动和正向调节球茎形成的最关键因素。此外,在球茎形成过程中还观察到了 IPA 和 SA 之间的密切联系。IPT(异戊烯基转移酶)、CRE1(细胞分裂素反应 1)、A-ARR(A 型拟南芥反应调节因子)、B-ARR(B 型拟南芥反应调节因子)、AUX1(抗叶黄素 1)、ARF(叶黄素反应因子)、AUX/IAA(叶黄素/吲哚-3-乙酸)的转录发生了变化、GH3(Gretchen Hagen 3)、SAUR(Small Auxin Up RNA)、GA2ox(Gibberellin 2-oxidase)、GA20ox(Gibberellin 20-oxidase)、AOS(Allene oxide synthase)、AOC(Allene oxide cyclase)、OPR(Oxophytodienoate Reductase)、JMT(JA carboxy l Methyltransferase)、COI1(Coronatine Insensitive 1)、JAZ(Jasmonate ZIM-domain)、MYC2(骨髓细胞瘤病 2)、D27(DWARF27)、SMAX(Suppressor of MAX2)、PAL(苯丙氨酸氨解酶)、ICS(Isochorismate Synthase)、NPR1(Non-expressor of Pathogenesis-related Genes1)、TGA(TGACG 序列特异性结合)、PR-1(Pathogenesis-related)、MCSU(钼辅助因子硫化酶)、PP2C(蛋白磷酸酶 2C)和 SnRK(蔗糖不发酵相关蛋白激酶 2)与激素浓度高度相关,表明球茎的萌发受多种植物激素的协调控制。值得注意的是,有 8 个调控 AM 启动的 TF(转录因子)被确定为球茎形成的关键调控因子。其中,WUS(WUSCHEL)、CLV(CLAVATA)、ATH1(拟南芥同源基因 1)和 RAX(腋生分生组织调节因子)的表达水平都有所提高。相反,LEAFY 则表现出截然不同的表达模式。这些 TFs 错综复杂的表达谱与 KNOX(KNOTTED-like homeobox)的表达上调密切相关,表明在复杂的球茎萌发过程中存在着一个错综复杂的调控网络。这项研究有助于深入了解球茎的萌发过程,并有可能帮助完善特异于 P. ternata 的分子育种技术。
{"title":"Endogenous Hormone Levels and Transcriptomic Analysis Reveal the Mechanisms of Bulbil Initiation in Pinellia ternata","authors":"Lan Mou, Lang Zhang, Yujie Qiu, Mingchen Liu, Lijuan Wu, Xu Mo, Ji Chen, Fan Liu, Rui Li, Chen Liu, Mengliang Tian","doi":"10.3390/ijms25116149","DOIUrl":"https://doi.org/10.3390/ijms25116149","url":null,"abstract":"Pinellia ternata is a medicinal plant that has important pharmacological value, and the bulbils serve as the primary reproductive organ; however, the mechanisms underlying bulbil initiation remain unclear. Here, we characterized bulbil development via histological, transcriptomic, and targeted metabolomic analyses to unearth the intricate relationship between hormones, genes, and bulbil development. The results show that the bulbils initiate growth from the leaf axillary meristem (AM). In this stage, jasmonic acid (JA), abscisic acid (ABA), isopentenyl adenosine (IPA), and salicylic acid (SA) were highly enriched, while indole-3-acetic acid (IAA), zeatin, methyl jasmonate (MeJA), and 5-dexoxystrigol (5-DS) were notably decreased. Through OPLS-DA analysis, SA has emerged as the most crucial factor in initiating and positively regulating bulbil formation. Furthermore, a strong association between IPA and SA was observed during bulbil initiation. The transcriptional changes in IPT (Isopentenyltransferase), CRE1 (Cytokinin Response 1), A-ARR (Type-A Arabidopsis Response Regulator), B-ARR (Type-B Arabidopsis Response Regulator), AUX1 (Auxin Resistant 1), ARF (Auxin Response Factor), AUX/IAA (Auxin/Indole-3-acetic acid), GH3 (Gretchen Hagen 3), SAUR (Small Auxin Up RNA), GA2ox (Gibberellin 2-oxidase), GA20ox (Gibberellin 20-oxidase), AOS (Allene oxide synthase), AOC (Allene oxide cyclase), OPR (Oxophytodienoate Reductase), JMT (JA carboxy l Methyltransferase), COI1 (Coronatine Insensitive 1), JAZ (Jasmonate ZIM-domain), MYC2 (Myelocytomatosis 2), D27 (DWARF27), SMAX (Suppressor of MAX2), PAL (Phenylalanine Ammonia-Lyase), ICS (Isochorismate Synthase), NPR1 (Non-expressor of Pathogenesis-related Genes1), TGA (TGACG Sequence-specific Binding), PR-1 (Pathogenesis-related), MCSU (Molybdenium Cofactor Sulfurase), PP2C (Protein Phosphatase 2C), and SnRK (Sucrose Non-fermenting-related Protein Kinase 2) were highly correlated with hormone concentrations, indicating that bulbil initiation is coordinately controlled by multiple phytohormones. Notably, eight TFs (transcription factors) that regulate AM initiation have been identified as pivotal regulators of bulbil formation. Among these, WUS (WUSCHEL), CLV (CLAVATA), ATH1 (Arabidopsis Thaliana Homeobox Gene 1), and RAX (Regulator of Axillary meristems) have been observed to exhibit elevated expression levels. Conversely, LEAFY demonstrated contrasting expression patterns. The intricate expression profiles of these TFs are closely associated with the upregulated expression of KNOX(KNOTTED-like homeobox), suggesting a intricate regulatory network underlying the complex process of bulbil initiation. This study offers a profound understanding of the bulbil initiation process and could potentially aid in refining molecular breeding techniques specific to P. ternata.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141268998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parkinson’s disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson’s have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes, including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson’s disease. We will also discuss the limitations of current epigenetic research in PD and the advantages of simultaneously studying genetics and epigenetics and putative novel epigenetic therapies.
帕金森病是一种以运动系统为主的进行性神经退行性疾病。虽然帕金森病的一些遗传成分和细胞机制已经被确定,但仍有许多未知因素。近年来,新出现的证据表明,非 DNA 序列变异(尤其是表观遗传机制)很可能在疾病的发生和发展过程中起着至关重要的作用。在此,我们将对帕金森病患者大脑中的表观遗传过程进行最新概述,包括 DNA 甲基化、DNA 羟甲基化、组蛋白修饰和非编码 RNA。我们还将讨论当前帕金森病表观遗传学研究的局限性、同时研究遗传学和表观遗传学的优势以及潜在的新型表观遗传学疗法。
{"title":"An Overview of Epigenetic Changes in the Parkinson’s Disease Brain","authors":"Anthony Klokkaris, Anna Migdalska-Richards","doi":"10.3390/ijms25116168","DOIUrl":"https://doi.org/10.3390/ijms25116168","url":null,"abstract":"Parkinson’s disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson’s have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes, including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson’s disease. We will also discuss the limitations of current epigenetic research in PD and the advantages of simultaneously studying genetics and epigenetics and putative novel epigenetic therapies.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"29 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141271089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gerard Badia-Bringué, M. Canive, P. Vázquez, J. Garrido, A. Fernández, Ramón A. Juste, José Antonio Jiménez, O. González-Recio, M. Alonso-Hearn
Mycobacterium bovis (Mb) is the causative agent of bovine tuberculosis (bTb). Genetic selection aiming to identify less susceptible animals has been proposed as a complementary measure in ongoing programs toward controlling Mb infection. However, individual animal phenotypes for bTb based on interferon-gamma (IFNɣ) and its use in bovine selective breeding programs have not been explored. In the current study, IFNɣ production was measured using a specific IFNɣ ELISA kit in bovine purified protein derivative (bPPD)-stimulated blood samples collected from Holstein cattle. DNA isolated from the peripheral blood samples collected from the animals included in the study was genotyped with the EuroG Medium Density bead Chip, and the genotypes were imputed to whole-genome sequences. A genome-wide association analysis (GWAS) revealed that the IFNɣ in response to bPPD was associated with a specific genetic profile (heritability = 0.23) and allowed the identification of 163 SNPs, 72 quantitative trait loci (QTLs), 197 candidate genes, and 8 microRNAs (miRNAs) associated with this phenotype. No negative correlations between this phenotype and other phenotypes and traits included in the Spanish breeding program were observed. Taken together, our results define a heritable and distinct immunogenetic profile associated with strong production of IFNɣ in response to Mb.
{"title":"Genome-Wide Association Study Reveals Quantitative Trait Loci and Candidate Genes Associated with High Interferon-gamma Production in Holstein Cattle Naturally Infected with Mycobacterium Bovis","authors":"Gerard Badia-Bringué, M. Canive, P. Vázquez, J. Garrido, A. Fernández, Ramón A. Juste, José Antonio Jiménez, O. González-Recio, M. Alonso-Hearn","doi":"10.3390/ijms25116165","DOIUrl":"https://doi.org/10.3390/ijms25116165","url":null,"abstract":"Mycobacterium bovis (Mb) is the causative agent of bovine tuberculosis (bTb). Genetic selection aiming to identify less susceptible animals has been proposed as a complementary measure in ongoing programs toward controlling Mb infection. However, individual animal phenotypes for bTb based on interferon-gamma (IFNɣ) and its use in bovine selective breeding programs have not been explored. In the current study, IFNɣ production was measured using a specific IFNɣ ELISA kit in bovine purified protein derivative (bPPD)-stimulated blood samples collected from Holstein cattle. DNA isolated from the peripheral blood samples collected from the animals included in the study was genotyped with the EuroG Medium Density bead Chip, and the genotypes were imputed to whole-genome sequences. A genome-wide association analysis (GWAS) revealed that the IFNɣ in response to bPPD was associated with a specific genetic profile (heritability = 0.23) and allowed the identification of 163 SNPs, 72 quantitative trait loci (QTLs), 197 candidate genes, and 8 microRNAs (miRNAs) associated with this phenotype. No negative correlations between this phenotype and other phenotypes and traits included in the Spanish breeding program were observed. Taken together, our results define a heritable and distinct immunogenetic profile associated with strong production of IFNɣ in response to Mb.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"61 14","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141269015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xue Qi, Zelong Zhuang, Xiangzhuo Ji, Jianwen Bian, Yunling Peng
The elongation of the mesocotyl plays an important role in the emergence of maize deep-sowing seeds. This study was designed to explore the function of exogenous salicylic acid (SA) and 6-benzylaminopurine (6-BA) in the growth of the maize mesocotyl and to examine its regulatory network. The results showed that the addition of 0.25 mmol/L exogenous SA promoted the elongation of maize mesocotyls under both 3 cm and 15 cm deep-sowing conditions. Conversely, the addition of 10 mg/L exogenous 6-BA inhibited the elongation of maize mesocotyls. Interestingly, the combined treatment of exogenous SA–6-BA also inhibited the elongation of maize mesocotyls. The longitudinal elongation of mesocotyl cells was the main reason affecting the elongation of maize mesocotyls. Transcriptome analysis showed that exogenous SA and 6-BA may interact in the hormone signaling regulatory network of mesocotyl elongation. The differential expression of genes related to auxin (IAA), jasmonic acid (JA), brassinosteroid (BR), cytokinin (CTK) and SA signaling pathways may be related to the regulation of exogenous SA and 6-BA on the growth of mesocotyls. In addition, five candidate genes that may regulate the length of mesocotyls were screened by Weighted Gene Co-Expression Network Analysis (WGCNA). These genes may be involved in the growth of maize mesocotyls through auxin-activated signaling pathways, transmembrane transport, methylation and redox processes. The results enhance our understanding of the plant hormone regulation of mesocotyl growth, which will help to further explore and identify the key genes affecting mesocotyl growth in plant hormone signaling regulatory networks.
{"title":"The Mechanism of Exogenous Salicylic Acid and 6-Benzylaminopurine Regulating the Elongation of Maize Mesocotyl","authors":"Xue Qi, Zelong Zhuang, Xiangzhuo Ji, Jianwen Bian, Yunling Peng","doi":"10.3390/ijms25116150","DOIUrl":"https://doi.org/10.3390/ijms25116150","url":null,"abstract":"The elongation of the mesocotyl plays an important role in the emergence of maize deep-sowing seeds. This study was designed to explore the function of exogenous salicylic acid (SA) and 6-benzylaminopurine (6-BA) in the growth of the maize mesocotyl and to examine its regulatory network. The results showed that the addition of 0.25 mmol/L exogenous SA promoted the elongation of maize mesocotyls under both 3 cm and 15 cm deep-sowing conditions. Conversely, the addition of 10 mg/L exogenous 6-BA inhibited the elongation of maize mesocotyls. Interestingly, the combined treatment of exogenous SA–6-BA also inhibited the elongation of maize mesocotyls. The longitudinal elongation of mesocotyl cells was the main reason affecting the elongation of maize mesocotyls. Transcriptome analysis showed that exogenous SA and 6-BA may interact in the hormone signaling regulatory network of mesocotyl elongation. The differential expression of genes related to auxin (IAA), jasmonic acid (JA), brassinosteroid (BR), cytokinin (CTK) and SA signaling pathways may be related to the regulation of exogenous SA and 6-BA on the growth of mesocotyls. In addition, five candidate genes that may regulate the length of mesocotyls were screened by Weighted Gene Co-Expression Network Analysis (WGCNA). These genes may be involved in the growth of maize mesocotyls through auxin-activated signaling pathways, transmembrane transport, methylation and redox processes. The results enhance our understanding of the plant hormone regulation of mesocotyl growth, which will help to further explore and identify the key genes affecting mesocotyl growth in plant hormone signaling regulatory networks.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"10 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141269386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Laura Lorente-Herraiz, Angel M. Cuesta, Lucía Recio-Poveda, L. Botella, Virginia Albiñana
Pulmonary arteriovenous malformations (PAVMs) are vascular anomalies resulting in abnormal connections between pulmonary arteries and veins. In 80% of cases, PAVMs are present from birth, but clinical manifestations are rarely seen in childhood. These congenital malformations are typically associated with Hereditary Hemorrhagic Telangiectasia (HHT), a rare disease that affects 1 in 5000/8000 individuals. HHT disease is frequently caused by mutations in genes involved in the TGF-β pathway. However, approximately 15% of patients do not have a genetic diagnosis and, among the genetically diagnosed, more than 33% do not meet the Curaçao criteria. This makes clinical diagnosis even more challenging in the pediatric age group. Here, we introduce an 8-year- old patient bearing a severe phenotype of multiple diffuse PAVMs caused by an unknown mutation which ended in lung transplantation. Phenotypically, the case under study follows a molecular pattern which is HHT-like. Therefore, molecular- biological and cellular-functional analyses have been performed in primary endothelial cells (ECs) isolated from the explanted lung. The findings revealed a loss of functionality in lung endothelial tissue and a stimulation of endothelial-to-mesenchymal transition. Understanding the molecular basis of this transition could potentially offer new therapeutic strategies to delay lung transplantation in severe cases.
{"title":"Endothelial-to-Mesenchymal Transition in an Hereditary Hemorrhagic Telangiectasia-like Pediatric Case of Multiple Pulmonary Arteriovenous Malformations","authors":"Laura Lorente-Herraiz, Angel M. Cuesta, Lucía Recio-Poveda, L. Botella, Virginia Albiñana","doi":"10.3390/ijms25116163","DOIUrl":"https://doi.org/10.3390/ijms25116163","url":null,"abstract":"Pulmonary arteriovenous malformations (PAVMs) are vascular anomalies resulting in abnormal connections between pulmonary arteries and veins. In 80% of cases, PAVMs are present from birth, but clinical manifestations are rarely seen in childhood. These congenital malformations are typically associated with Hereditary Hemorrhagic Telangiectasia (HHT), a rare disease that affects 1 in 5000/8000 individuals. HHT disease is frequently caused by mutations in genes involved in the TGF-β pathway. However, approximately 15% of patients do not have a genetic diagnosis and, among the genetically diagnosed, more than 33% do not meet the Curaçao criteria. This makes clinical diagnosis even more challenging in the pediatric age group. Here, we introduce an 8-year- old patient bearing a severe phenotype of multiple diffuse PAVMs caused by an unknown mutation which ended in lung transplantation. Phenotypically, the case under study follows a molecular pattern which is HHT-like. Therefore, molecular- biological and cellular-functional analyses have been performed in primary endothelial cells (ECs) isolated from the explanted lung. The findings revealed a loss of functionality in lung endothelial tissue and a stimulation of endothelial-to-mesenchymal transition. Understanding the molecular basis of this transition could potentially offer new therapeutic strategies to delay lung transplantation in severe cases.","PeriodicalId":509625,"journal":{"name":"International Journal of Molecular Sciences","volume":"29 4","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141272957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}