Pub Date : 2024-03-29DOI: 10.1177/09544070241238040
Xueliang Li, Yanrong Wang, Xinlei Liu, Zengxiong Peng, Shujun Yang
For heavy-duty truck, multi-mode power split hybrid transmission scheme (MPSHTS) has good adaptability. However, the moment of inertia at both ends of the clutch is large. If there is a large speed difference in the clutch engagement process, it will increase clutch wear, engine stall and other problems. This paper proposed a new design method of multi-mode power split hybrid powertrain, which was different from the proof by exhaustion aiming at mode switching without speed difference. It included: the conditions for achieving mode connection without speed difference was obtained based on the lever method for dynamic characteristic analysis. Evaluation index for power split mechanisms that comprehensively considered power source and transmission system was established. Combining the mode connection conditions and the optimized basic configuration, the characteristic of no speed difference could be ensured by adjusting the power coupling mechanism. A multi-mode scheme based on optimized configuration and work mode requirements could be obtained. Finally, parameter matching and simulation verification on the designed scheme was carried out. It suggested that the designed system improved fuel economy by 4.14% compared with the original scheme.
{"title":"Analysis and design of multi-mode power split hybrid transmission scheme considering mode connection","authors":"Xueliang Li, Yanrong Wang, Xinlei Liu, Zengxiong Peng, Shujun Yang","doi":"10.1177/09544070241238040","DOIUrl":"https://doi.org/10.1177/09544070241238040","url":null,"abstract":"For heavy-duty truck, multi-mode power split hybrid transmission scheme (MPSHTS) has good adaptability. However, the moment of inertia at both ends of the clutch is large. If there is a large speed difference in the clutch engagement process, it will increase clutch wear, engine stall and other problems. This paper proposed a new design method of multi-mode power split hybrid powertrain, which was different from the proof by exhaustion aiming at mode switching without speed difference. It included: the conditions for achieving mode connection without speed difference was obtained based on the lever method for dynamic characteristic analysis. Evaluation index for power split mechanisms that comprehensively considered power source and transmission system was established. Combining the mode connection conditions and the optimized basic configuration, the characteristic of no speed difference could be ensured by adjusting the power coupling mechanism. A multi-mode scheme based on optimized configuration and work mode requirements could be obtained. Finally, parameter matching and simulation verification on the designed scheme was carried out. It suggested that the designed system improved fuel economy by 4.14% compared with the original scheme.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":"2 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140365729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-29DOI: 10.1177/09544070241239760
Zeyu Chen, Yu Du, Anni Jiang, Siqi Miao
On-ramp merge is a complex traffic scenario in autonomous driving. Because of the uncertainty of the driving environment, most rule-based models cannot solve such a problem. This paper designs a ramp merging decision model based on deep deterministic policy gradient algorithm (DDPG) to solve the vehicle merging problem. To address the problems of slow algorithm merging and poor robustness of previous deep reinforcement learning algorithms in the field of intelligent vehicle ramp merging leading to the low success rate of intelligent vehicle merging, first, we introduce a simple recurrent unit (SRU) for extracting intelligent vehicle states and environment features and use the DDPG algorithm for intelligent vehicle decision making. Second, the experience playback pool of DDPG algorithm is improved by using priority sampling instead of uniform sampling. Finally, a multi-objective reward function is set up during training, considering factors such as safety and efficiency. The simulation experiments show that the improved algorithm improves the merging speed of the model, reduces the collision rate, and enables the vehicle to make more reasonable decisions. In addition, the superiority of the method is demonstrated by comparing with the advanced method.
{"title":"Deep reinforcement learning algorithm based ramp merging decision model","authors":"Zeyu Chen, Yu Du, Anni Jiang, Siqi Miao","doi":"10.1177/09544070241239760","DOIUrl":"https://doi.org/10.1177/09544070241239760","url":null,"abstract":"On-ramp merge is a complex traffic scenario in autonomous driving. Because of the uncertainty of the driving environment, most rule-based models cannot solve such a problem. This paper designs a ramp merging decision model based on deep deterministic policy gradient algorithm (DDPG) to solve the vehicle merging problem. To address the problems of slow algorithm merging and poor robustness of previous deep reinforcement learning algorithms in the field of intelligent vehicle ramp merging leading to the low success rate of intelligent vehicle merging, first, we introduce a simple recurrent unit (SRU) for extracting intelligent vehicle states and environment features and use the DDPG algorithm for intelligent vehicle decision making. Second, the experience playback pool of DDPG algorithm is improved by using priority sampling instead of uniform sampling. Finally, a multi-objective reward function is set up during training, considering factors such as safety and efficiency. The simulation experiments show that the improved algorithm improves the merging speed of the model, reduces the collision rate, and enables the vehicle to make more reasonable decisions. In addition, the superiority of the method is demonstrated by comparing with the advanced method.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":"32 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140368156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.1177/09544070241228781
H. Ashouri
Due to the complex geometry and thermo-mechanical loading, cylinder heads is the most challenging parts among all parts engines. It must endure cyclic thermo-mechanical stresses throughout their lifetime. In this paper, the low cycle fatigue (LCF) life analysis of the cylinder heads considering the stress gradient and local yielding, is performed using the finite element method and ANSYS software to predict the temperature and stresses, and then, LCF life using Morrow theory and nCode Design Life software. Elastic and plastic properties of cylinder heads obtained by LCF tests at different temperatures. The results of finite element analysis (FEA) showed that the maximum temperature and stress values in the cylinder heads are 220.29°C and 89.868 MPa and the position is at the valve bridge between exhaust valves. The numerical results showed that bridge between exhaust valves and valve seats are areas susceptible to fatigue cracks. The LCF life results showed that 1073 cycles is the minimum fatigue life and occurs between exhaust valves. 400-h durability test showed no rupture in different parts of the cylinder heads.
{"title":"Low cycle fatigue prediction for cylinder heads considering stress gradient and local yielding","authors":"H. Ashouri","doi":"10.1177/09544070241228781","DOIUrl":"https://doi.org/10.1177/09544070241228781","url":null,"abstract":"Due to the complex geometry and thermo-mechanical loading, cylinder heads is the most challenging parts among all parts engines. It must endure cyclic thermo-mechanical stresses throughout their lifetime. In this paper, the low cycle fatigue (LCF) life analysis of the cylinder heads considering the stress gradient and local yielding, is performed using the finite element method and ANSYS software to predict the temperature and stresses, and then, LCF life using Morrow theory and nCode Design Life software. Elastic and plastic properties of cylinder heads obtained by LCF tests at different temperatures. The results of finite element analysis (FEA) showed that the maximum temperature and stress values in the cylinder heads are 220.29°C and 89.868 MPa and the position is at the valve bridge between exhaust valves. The numerical results showed that bridge between exhaust valves and valve seats are areas susceptible to fatigue cracks. The LCF life results showed that 1073 cycles is the minimum fatigue life and occurs between exhaust valves. 400-h durability test showed no rupture in different parts of the cylinder heads.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139781374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.1177/09544070241228120
Zhihua Niu, Shaoxun Liu, Boyuan Li, Zheng Pan, Rongrong Wang
The suspension system is vital to vehicle performance because it undertakes most of the interactions between wheels and the vehicle body. Due to the significant geometric nonlinearity, there is still a gap of suitable suspension models that are both accurate and computationally efficient. To solve the problem, this paper proposes an explicit solution to the nonlinear geometry of double wishbone suspension by decoupling steering and wheel jumping degrees of freedom (DOF). By discarding the small displacement assumption in the derivation process, the new model gets rid of repeated numerical iterations, resulting in substantial enhancement in computational efficiency. Furthermore, it is noticed in the comparative study that the proposed model can achieve the same level of accuracy as Adams. Benefiting from high computational efficiency and accuracy, the decoupling model presented is successfully used in the optimal design of a double wishbone suspension for smaller variation ranges of wheel alignment parameters. It is anticipated that the research will make significant contribution to fast dimension design of suspension geometry and real-time control of active variable geometry suspensions.
{"title":"Explicit solution to the nonlinear geometry of double wishbone suspension by decoupling steering and wheel jumping DOF","authors":"Zhihua Niu, Shaoxun Liu, Boyuan Li, Zheng Pan, Rongrong Wang","doi":"10.1177/09544070241228120","DOIUrl":"https://doi.org/10.1177/09544070241228120","url":null,"abstract":"The suspension system is vital to vehicle performance because it undertakes most of the interactions between wheels and the vehicle body. Due to the significant geometric nonlinearity, there is still a gap of suitable suspension models that are both accurate and computationally efficient. To solve the problem, this paper proposes an explicit solution to the nonlinear geometry of double wishbone suspension by decoupling steering and wheel jumping degrees of freedom (DOF). By discarding the small displacement assumption in the derivation process, the new model gets rid of repeated numerical iterations, resulting in substantial enhancement in computational efficiency. Furthermore, it is noticed in the comparative study that the proposed model can achieve the same level of accuracy as Adams. Benefiting from high computational efficiency and accuracy, the decoupling model presented is successfully used in the optimal design of a double wishbone suspension for smaller variation ranges of wheel alignment parameters. It is anticipated that the research will make significant contribution to fast dimension design of suspension geometry and real-time control of active variable geometry suspensions.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":"8 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139779777","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.1177/09544070241228781
H. Ashouri
Due to the complex geometry and thermo-mechanical loading, cylinder heads is the most challenging parts among all parts engines. It must endure cyclic thermo-mechanical stresses throughout their lifetime. In this paper, the low cycle fatigue (LCF) life analysis of the cylinder heads considering the stress gradient and local yielding, is performed using the finite element method and ANSYS software to predict the temperature and stresses, and then, LCF life using Morrow theory and nCode Design Life software. Elastic and plastic properties of cylinder heads obtained by LCF tests at different temperatures. The results of finite element analysis (FEA) showed that the maximum temperature and stress values in the cylinder heads are 220.29°C and 89.868 MPa and the position is at the valve bridge between exhaust valves. The numerical results showed that bridge between exhaust valves and valve seats are areas susceptible to fatigue cracks. The LCF life results showed that 1073 cycles is the minimum fatigue life and occurs between exhaust valves. 400-h durability test showed no rupture in different parts of the cylinder heads.
{"title":"Low cycle fatigue prediction for cylinder heads considering stress gradient and local yielding","authors":"H. Ashouri","doi":"10.1177/09544070241228781","DOIUrl":"https://doi.org/10.1177/09544070241228781","url":null,"abstract":"Due to the complex geometry and thermo-mechanical loading, cylinder heads is the most challenging parts among all parts engines. It must endure cyclic thermo-mechanical stresses throughout their lifetime. In this paper, the low cycle fatigue (LCF) life analysis of the cylinder heads considering the stress gradient and local yielding, is performed using the finite element method and ANSYS software to predict the temperature and stresses, and then, LCF life using Morrow theory and nCode Design Life software. Elastic and plastic properties of cylinder heads obtained by LCF tests at different temperatures. The results of finite element analysis (FEA) showed that the maximum temperature and stress values in the cylinder heads are 220.29°C and 89.868 MPa and the position is at the valve bridge between exhaust valves. The numerical results showed that bridge between exhaust valves and valve seats are areas susceptible to fatigue cracks. The LCF life results showed that 1073 cycles is the minimum fatigue life and occurs between exhaust valves. 400-h durability test showed no rupture in different parts of the cylinder heads.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":"61 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139841304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-13DOI: 10.1177/09544070241228120
Zhihua Niu, Shaoxun Liu, Boyuan Li, Zheng Pan, Rongrong Wang
The suspension system is vital to vehicle performance because it undertakes most of the interactions between wheels and the vehicle body. Due to the significant geometric nonlinearity, there is still a gap of suitable suspension models that are both accurate and computationally efficient. To solve the problem, this paper proposes an explicit solution to the nonlinear geometry of double wishbone suspension by decoupling steering and wheel jumping degrees of freedom (DOF). By discarding the small displacement assumption in the derivation process, the new model gets rid of repeated numerical iterations, resulting in substantial enhancement in computational efficiency. Furthermore, it is noticed in the comparative study that the proposed model can achieve the same level of accuracy as Adams. Benefiting from high computational efficiency and accuracy, the decoupling model presented is successfully used in the optimal design of a double wishbone suspension for smaller variation ranges of wheel alignment parameters. It is anticipated that the research will make significant contribution to fast dimension design of suspension geometry and real-time control of active variable geometry suspensions.
{"title":"Explicit solution to the nonlinear geometry of double wishbone suspension by decoupling steering and wheel jumping DOF","authors":"Zhihua Niu, Shaoxun Liu, Boyuan Li, Zheng Pan, Rongrong Wang","doi":"10.1177/09544070241228120","DOIUrl":"https://doi.org/10.1177/09544070241228120","url":null,"abstract":"The suspension system is vital to vehicle performance because it undertakes most of the interactions between wheels and the vehicle body. Due to the significant geometric nonlinearity, there is still a gap of suitable suspension models that are both accurate and computationally efficient. To solve the problem, this paper proposes an explicit solution to the nonlinear geometry of double wishbone suspension by decoupling steering and wheel jumping degrees of freedom (DOF). By discarding the small displacement assumption in the derivation process, the new model gets rid of repeated numerical iterations, resulting in substantial enhancement in computational efficiency. Furthermore, it is noticed in the comparative study that the proposed model can achieve the same level of accuracy as Adams. Benefiting from high computational efficiency and accuracy, the decoupling model presented is successfully used in the optimal design of a double wishbone suspension for smaller variation ranges of wheel alignment parameters. It is anticipated that the research will make significant contribution to fast dimension design of suspension geometry and real-time control of active variable geometry suspensions.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":"55 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139839793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to solve the problem of motor performance degradation caused by torque ripple and large cogging torque of in-wheel permanent magnet synchronous motor for electric vehicles, Taguchi is used to optimize the magnetic pole of built-in Permanent magnet synchronous motor, and the orthogonal optimization matrix of magnetic pole parameters is established. Through the parameter optimization matrix, the workload of pole optimization is reduced and the optimization speed is improved. The optimization results show that the orthogonal matrix optimization can not only improve the output torque of permanent magnet synchronous motor, but also further control its torque ripple and cogging. The orthogonal matrix optimization method used in this paper for V-I type built-in permanent magnet synchronous motor has a certain positive significance, and provides a certain reference value for the subsequent motor performance optimization.
{"title":"Multi-objective optimization design of electric vehicle in-wheel motor based on Taguchi method","authors":"Qiping Chen, Shilong Min, Z. Xu, Zhiyi Zheng, Chengping Zhong, Daoliang You, Zhiqiang Jiang","doi":"10.1177/09544070241229775","DOIUrl":"https://doi.org/10.1177/09544070241229775","url":null,"abstract":"In order to solve the problem of motor performance degradation caused by torque ripple and large cogging torque of in-wheel permanent magnet synchronous motor for electric vehicles, Taguchi is used to optimize the magnetic pole of built-in Permanent magnet synchronous motor, and the orthogonal optimization matrix of magnetic pole parameters is established. Through the parameter optimization matrix, the workload of pole optimization is reduced and the optimization speed is improved. The optimization results show that the orthogonal matrix optimization can not only improve the output torque of permanent magnet synchronous motor, but also further control its torque ripple and cogging. The orthogonal matrix optimization method used in this paper for V-I type built-in permanent magnet synchronous motor has a certain positive significance, and provides a certain reference value for the subsequent motor performance optimization.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":"68 18","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139844104","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to solve the problem of motor performance degradation caused by torque ripple and large cogging torque of in-wheel permanent magnet synchronous motor for electric vehicles, Taguchi is used to optimize the magnetic pole of built-in Permanent magnet synchronous motor, and the orthogonal optimization matrix of magnetic pole parameters is established. Through the parameter optimization matrix, the workload of pole optimization is reduced and the optimization speed is improved. The optimization results show that the orthogonal matrix optimization can not only improve the output torque of permanent magnet synchronous motor, but also further control its torque ripple and cogging. The orthogonal matrix optimization method used in this paper for V-I type built-in permanent magnet synchronous motor has a certain positive significance, and provides a certain reference value for the subsequent motor performance optimization.
{"title":"Multi-objective optimization design of electric vehicle in-wheel motor based on Taguchi method","authors":"Qiping Chen, Shilong Min, Z. Xu, Zhiyi Zheng, Chengping Zhong, Daoliang You, Zhiqiang Jiang","doi":"10.1177/09544070241229775","DOIUrl":"https://doi.org/10.1177/09544070241229775","url":null,"abstract":"In order to solve the problem of motor performance degradation caused by torque ripple and large cogging torque of in-wheel permanent magnet synchronous motor for electric vehicles, Taguchi is used to optimize the magnetic pole of built-in Permanent magnet synchronous motor, and the orthogonal optimization matrix of magnetic pole parameters is established. Through the parameter optimization matrix, the workload of pole optimization is reduced and the optimization speed is improved. The optimization results show that the orthogonal matrix optimization can not only improve the output torque of permanent magnet synchronous motor, but also further control its torque ripple and cogging. The orthogonal matrix optimization method used in this paper for V-I type built-in permanent magnet synchronous motor has a certain positive significance, and provides a certain reference value for the subsequent motor performance optimization.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":"10 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139784243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-11DOI: 10.1177/09544070241229116
Lihong Sun, Dang Lu
In this study, tests on the cornering and self-aligning stiffness of tires with various belt cord angles were conducted. Subsequently, a new cornering power model was developed to analyze the mechanism of the belt cord angle’s influence. It was observed that the cornering stiffness is influenced by the combined effect of the length of contact patch and the lateral stiffness of the belt, both of which are affected by the belt cord angle. Specifically, an increase in the belt cord angle leads to a longer contact patch, which results in an increase in the cornering stiffness. Additionally, an increase in the belt cord angle causes a decrease in the lateral stiffness of the belt. Consequently, the lateral flexibility of the carcass increases, leading to a decrease in cornering stiffness. Furthermore, the influence of the lateral flexibility of the carcass becomes more prominent with an increase in the load. As a result, under heavy loads, the cornering stiffness decreases with an increasing belt cord angle. It was also observed that the influence of the belt cord angle on self-aligning stiffness is mainly achieved through the impact on contact length, with self-aligning stiffness increasing as contact length increases. The torsional stiffness of the carcass, influenced by variations in the belt cord angle, does not significantly impact the self-aligning stiffness of the tire. These findings provide valuable insights into tire mechanics and offer guidance for the design and development of tires with enhanced cornering performance.
{"title":"Study on the mechanism of belt cord angle contribution to tire cornering power","authors":"Lihong Sun, Dang Lu","doi":"10.1177/09544070241229116","DOIUrl":"https://doi.org/10.1177/09544070241229116","url":null,"abstract":"In this study, tests on the cornering and self-aligning stiffness of tires with various belt cord angles were conducted. Subsequently, a new cornering power model was developed to analyze the mechanism of the belt cord angle’s influence. It was observed that the cornering stiffness is influenced by the combined effect of the length of contact patch and the lateral stiffness of the belt, both of which are affected by the belt cord angle. Specifically, an increase in the belt cord angle leads to a longer contact patch, which results in an increase in the cornering stiffness. Additionally, an increase in the belt cord angle causes a decrease in the lateral stiffness of the belt. Consequently, the lateral flexibility of the carcass increases, leading to a decrease in cornering stiffness. Furthermore, the influence of the lateral flexibility of the carcass becomes more prominent with an increase in the load. As a result, under heavy loads, the cornering stiffness decreases with an increasing belt cord angle. It was also observed that the influence of the belt cord angle on self-aligning stiffness is mainly achieved through the impact on contact length, with self-aligning stiffness increasing as contact length increases. The torsional stiffness of the carcass, influenced by variations in the belt cord angle, does not significantly impact the self-aligning stiffness of the tire. These findings provide valuable insights into tire mechanics and offer guidance for the design and development of tires with enhanced cornering performance.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":"116 38","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139785826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-11DOI: 10.1177/09544070241229116
Lihong Sun, Dang Lu
In this study, tests on the cornering and self-aligning stiffness of tires with various belt cord angles were conducted. Subsequently, a new cornering power model was developed to analyze the mechanism of the belt cord angle’s influence. It was observed that the cornering stiffness is influenced by the combined effect of the length of contact patch and the lateral stiffness of the belt, both of which are affected by the belt cord angle. Specifically, an increase in the belt cord angle leads to a longer contact patch, which results in an increase in the cornering stiffness. Additionally, an increase in the belt cord angle causes a decrease in the lateral stiffness of the belt. Consequently, the lateral flexibility of the carcass increases, leading to a decrease in cornering stiffness. Furthermore, the influence of the lateral flexibility of the carcass becomes more prominent with an increase in the load. As a result, under heavy loads, the cornering stiffness decreases with an increasing belt cord angle. It was also observed that the influence of the belt cord angle on self-aligning stiffness is mainly achieved through the impact on contact length, with self-aligning stiffness increasing as contact length increases. The torsional stiffness of the carcass, influenced by variations in the belt cord angle, does not significantly impact the self-aligning stiffness of the tire. These findings provide valuable insights into tire mechanics and offer guidance for the design and development of tires with enhanced cornering performance.
{"title":"Study on the mechanism of belt cord angle contribution to tire cornering power","authors":"Lihong Sun, Dang Lu","doi":"10.1177/09544070241229116","DOIUrl":"https://doi.org/10.1177/09544070241229116","url":null,"abstract":"In this study, tests on the cornering and self-aligning stiffness of tires with various belt cord angles were conducted. Subsequently, a new cornering power model was developed to analyze the mechanism of the belt cord angle’s influence. It was observed that the cornering stiffness is influenced by the combined effect of the length of contact patch and the lateral stiffness of the belt, both of which are affected by the belt cord angle. Specifically, an increase in the belt cord angle leads to a longer contact patch, which results in an increase in the cornering stiffness. Additionally, an increase in the belt cord angle causes a decrease in the lateral stiffness of the belt. Consequently, the lateral flexibility of the carcass increases, leading to a decrease in cornering stiffness. Furthermore, the influence of the lateral flexibility of the carcass becomes more prominent with an increase in the load. As a result, under heavy loads, the cornering stiffness decreases with an increasing belt cord angle. It was also observed that the influence of the belt cord angle on self-aligning stiffness is mainly achieved through the impact on contact length, with self-aligning stiffness increasing as contact length increases. The torsional stiffness of the carcass, influenced by variations in the belt cord angle, does not significantly impact the self-aligning stiffness of the tire. These findings provide valuable insights into tire mechanics and offer guidance for the design and development of tires with enhanced cornering performance.","PeriodicalId":509770,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering","volume":"13 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139845715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}