Pub Date : 2024-02-04DOI: 10.3390/magnetism4010002
Sueli H. Masunaga, V. Barbeta, Fábio Abud, Milton S. Torikachvili, Renato F. Jardim
Measurements of specific heat and magnetization in single crystals were used to map out the magnetic phase diagram of Gd1−xErxB4 (x = 0.2 and 0.4) solid solutions along the c-axis. While GdB4 orders antiferromagnetically (AF) at 41.7 K, with the easy plane of magnetization oriented perpendicularly to the c-axis, ErB4 displays AF ordering below 15.4 K, with the easy axis along c. Therefore, in solid solutions, the competition between the different spin anisotropies, as well as frustration, lead to a complex spin configuration. These measurements reveal that a 40% substitution of Er for Gd is sufficient for generating a phase diagram similar to the one for the ErB4 system, characterized by the occurrence of plateau phases and other exotic features attributed to the interplay of competing magnetic anisotropies.
通过测量单晶体的比热和磁化率,绘制出了 Gd1-xErxB4 (x = 0.2 和 0.4)固溶体沿 c 轴的磁相图。GdB4 在 41.7 K 时反铁磁(AF)有序,易磁化面垂直于 c 轴,而 ErB4 则在 15.4 K 以下显示 AF 有序,易磁化轴沿着 c 轴。这些测量结果表明,只要用 40% 的 Er 取代 Gd,就足以产生与 ErB4 系统相图相似的相图,其特点是出现高原相和其他归因于相互竞争的磁各向异性相互作用的奇异特征。
{"title":"Phase Diagram Mapping out the Complex Magnetic Structure of Single Crystals of (Gd, Er)B4 Solid Solutions","authors":"Sueli H. Masunaga, V. Barbeta, Fábio Abud, Milton S. Torikachvili, Renato F. Jardim","doi":"10.3390/magnetism4010002","DOIUrl":"https://doi.org/10.3390/magnetism4010002","url":null,"abstract":"Measurements of specific heat and magnetization in single crystals were used to map out the magnetic phase diagram of Gd1−xErxB4 (x = 0.2 and 0.4) solid solutions along the c-axis. While GdB4 orders antiferromagnetically (AF) at 41.7 K, with the easy plane of magnetization oriented perpendicularly to the c-axis, ErB4 displays AF ordering below 15.4 K, with the easy axis along c. Therefore, in solid solutions, the competition between the different spin anisotropies, as well as frustration, lead to a complex spin configuration. These measurements reveal that a 40% substitution of Er for Gd is sufficient for generating a phase diagram similar to the one for the ErB4 system, characterized by the occurrence of plateau phases and other exotic features attributed to the interplay of competing magnetic anisotropies.","PeriodicalId":509814,"journal":{"name":"Magnetism","volume":"2020 13","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139807100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-15DOI: 10.3390/magnetism4010001
Uta Rösel, D. Drummer
The applications of polymer-bonded magnets are increasing within drive technology mostly because of new concepts concerning the magnetic excitation of direct current (DC) or synchronous machines. To satisfy this rising demand for hard magnetic filler particles—mainly rare earth materials—in polymer-bonded magnets, a recycling strategy for thermoplastic-based bonded magnets has to be found that can be applied to polymer-bonded magnets. The most important factor for the recycling strategy is the filler material, especially when using rare earth materials, as those particles are associated with limited resources and high costs. However, thermoplastic-based bonded magnets reveal the opportunity to reuse the compound material system without separation of the filler from the matrix. Most known recycling strategies focus on sintered magnets, which leads to highly limited knowledge in terms of strategies for recycling bonded magnets. This paper illustrates the impact of different amounts of recycling material within the material system on material behavior and magnetic properties that can be achieved by taking different flow conditions and varying gating systems into account. The recycled material is generated by the mechanical reuse of shreds. We found that a supporting effect can be achieved with up to 50% recycled material in the material system, which leads to only minimal changes in the material’s behavior. Furthermore, changes in magnetic properties in terms of recycled material are affected by the gating system. To reduce the reduction in magnetic properties, the number of pin points should be as low as possible, and they should located in the middle. The filler orientation of the recycled material is minimally influenced by the outer magnetic field and, therefore, mainly follows the flow conditions. These flow conditions are likely to be affected by elastic flow proportions with increasing amounts of recycled material.
{"title":"Changes in Material Behavior according to the Amount of Recycled Magnetic Materials in Polymer-Bonded Magnets Based on Thermoplastics","authors":"Uta Rösel, D. Drummer","doi":"10.3390/magnetism4010001","DOIUrl":"https://doi.org/10.3390/magnetism4010001","url":null,"abstract":"The applications of polymer-bonded magnets are increasing within drive technology mostly because of new concepts concerning the magnetic excitation of direct current (DC) or synchronous machines. To satisfy this rising demand for hard magnetic filler particles—mainly rare earth materials—in polymer-bonded magnets, a recycling strategy for thermoplastic-based bonded magnets has to be found that can be applied to polymer-bonded magnets. The most important factor for the recycling strategy is the filler material, especially when using rare earth materials, as those particles are associated with limited resources and high costs. However, thermoplastic-based bonded magnets reveal the opportunity to reuse the compound material system without separation of the filler from the matrix. Most known recycling strategies focus on sintered magnets, which leads to highly limited knowledge in terms of strategies for recycling bonded magnets. This paper illustrates the impact of different amounts of recycling material within the material system on material behavior and magnetic properties that can be achieved by taking different flow conditions and varying gating systems into account. The recycled material is generated by the mechanical reuse of shreds. We found that a supporting effect can be achieved with up to 50% recycled material in the material system, which leads to only minimal changes in the material’s behavior. Furthermore, changes in magnetic properties in terms of recycled material are affected by the gating system. To reduce the reduction in magnetic properties, the number of pin points should be as low as possible, and they should located in the middle. The filler orientation of the recycled material is minimally influenced by the outer magnetic field and, therefore, mainly follows the flow conditions. These flow conditions are likely to be affected by elastic flow proportions with increasing amounts of recycled material.","PeriodicalId":509814,"journal":{"name":"Magnetism","volume":" 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139623251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-11DOI: 10.3390/magnetism3040025
Kai Xu, Youguang Guo, Gang Lei, Jianguo Zhu
The popularity of permanent magnet synchronous motors (PMSMs) has increased in recent years due to their high efficiency, compact size, and low maintenance needs. Calculating iron loss in PMSMs is crucial for designing and optimizing PMSMs to achieve high efficiency and a long lifespan, as this can significantly affect motor performance. However, multiple factors influence the accuracy of iron loss calculations in PMSMs, including the intricate magnetic behavior of the motor under different operating conditions, as well as the influence of the motor’s dynamic behavior during the operation process. This paper proposes a method based on particle swarm optimization (PSO) and a recurrent neural network (RNN) to estimate the iron loss in PMSMs, independent of the empirical iron loss formula. This method establishes an iron loss calculation model considering high-order harmonics, rotating magnetization, and temperature factors. Accounting for the multifactor influence, the model studies the law of loss change under different magnetic flux densities, frequencies, and temperature conditions. To avoid the deviation problem caused by conventional polynomial fitting, a multilayer RNN and PSO are used to train and optimize the neural network. Iron loss in complex cases beyond the measurement range can be accurately estimated. The proposed method helps achieve a PMSM iron loss calculation model with broad applicability and high accuracy.
{"title":"Estimation of Iron Loss in Permanent Magnet Synchronous Motors Based on Particle Swarm Optimization and a Recurrent Neural Network","authors":"Kai Xu, Youguang Guo, Gang Lei, Jianguo Zhu","doi":"10.3390/magnetism3040025","DOIUrl":"https://doi.org/10.3390/magnetism3040025","url":null,"abstract":"The popularity of permanent magnet synchronous motors (PMSMs) has increased in recent years due to their high efficiency, compact size, and low maintenance needs. Calculating iron loss in PMSMs is crucial for designing and optimizing PMSMs to achieve high efficiency and a long lifespan, as this can significantly affect motor performance. However, multiple factors influence the accuracy of iron loss calculations in PMSMs, including the intricate magnetic behavior of the motor under different operating conditions, as well as the influence of the motor’s dynamic behavior during the operation process. This paper proposes a method based on particle swarm optimization (PSO) and a recurrent neural network (RNN) to estimate the iron loss in PMSMs, independent of the empirical iron loss formula. This method establishes an iron loss calculation model considering high-order harmonics, rotating magnetization, and temperature factors. Accounting for the multifactor influence, the model studies the law of loss change under different magnetic flux densities, frequencies, and temperature conditions. To avoid the deviation problem caused by conventional polynomial fitting, a multilayer RNN and PSO are used to train and optimize the neural network. Iron loss in complex cases beyond the measurement range can be accurately estimated. The proposed method helps achieve a PMSM iron loss calculation model with broad applicability and high accuracy.","PeriodicalId":509814,"journal":{"name":"Magnetism","volume":"63 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139183822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}