首页 > 最新文献

Archive for History of Exact Sciences最新文献

英文 中文
Auerbach, Lotka, and Zipf: pioneers of power-law city-size distributions Auerbach, Lotka和Zipf:幂律城市规模分布的先驱
IF 0.5 2区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Pub Date : 2023-07-14 DOI: 10.1007/s00407-023-00314-0
Diego Rybski, Antonio Ciccone

Power-law city-size distributions are a statistical regularity researched in many countries and urban systems. In this history of science treatise we reconsider Felix Auerbach’s paper published in 1913. We reviewed his analysis and found (i) that a constant absolute concentration, as introduced by him, is equivalent to a power-law distribution with exponent (approx 1), (ii) that Auerbach describes this equivalence, and (iii) that Auerbach also pioneered the empirical analysis of city-size distributions across countries, regions, and time periods. We further investigate his legacy as reflected in citations and find that important follow-up work, e.g. by Lotka (Elements of physical biology. Williams & Wilkins Company, Baltimore, 1925) and Zipf (Human behavior and the principle of least effort: an introduction to human ecology, Martino Publishing, Manfield Centre, CT (2012), 1949), does give proper reference to his discovery—but others do not. For example, only approximately 20% of city-related works citing Zipf (1949) also cite Auerbach (Petermanns Geogr Mitteilungen 59(74):74–76, 1913). To our best knowledge, Lotka (1925) was the first to describe the power-law rank-size rule as it is analyzed today. Saibante (Metron Rivista Internazionale di Statistica 7(2):53–99, 1928), building on Auerbach and Lotka, investigated the power-law rank-size rule across countries, regions, and time periods. Zipf’s achievement was to embed these findings in his monumental 1949 book. We suggest that the use of “Auerbach–Lotka–Zipf law” (or “ALZ-law”) is more appropriate than “Zipf’s law for cities”, which also avoids confusion with Zipf’s law for word frequency. We end the treatise with biographical notes on Auerbach.

幂律城市规模分布是许多国家和城市系统研究的一个统计规律。在这篇科学史论文中,我们重新考虑费利克斯·奥尔巴赫1913年发表的论文。我们回顾了他的分析,发现(i)他引入的恒定绝对浓度等价于指数为(约1)的幂律分布,(ii)奥尔巴赫描述了这种等价性,以及(iii)奥尔巴赫还率先对国家、地区和时间段的城市规模分布进行了实证分析。我们进一步调查了引用中反映的他的遗产,并发现重要的后续工作,例如Lotka(《物理生物学的元素》,Williams&Wilkins Company,Baltimore,1925)和Zipf(《人类行为与最小努力原则:人类生态学导论》,Martino出版社,Manfield Centre,CT(2012),1949),确实恰当地提到了他的发现,但其他人没有。例如,只有大约20%的引用Zipf(1949)的城市相关作品也引用了Auerbach(Petermans-Georgr-Mitteilungen 59(74):74-761913)。据我们所知,Lotka(1925)是第一个描述今天分析的幂律秩大小规则的人。Saibante(Metron Rivista Internazionale di Statistica 7(2):53-9921928)以奥尔巴赫和洛特卡为基础,研究了不同国家、地区和时间段的幂律秩大小规则。齐普夫的成就是将这些发现嵌入他1949年出版的不朽著作中。我们建议使用“奥尔巴赫-洛卡-齐普夫定律”(或“ALZ定律”)比“齐普夫城市定律”更合适,这也避免了与齐普夫词频定律混淆。我们以奥尔巴赫的传记作为论文的结尾。
{"title":"Auerbach, Lotka, and Zipf: pioneers of power-law city-size distributions","authors":"Diego Rybski,&nbsp;Antonio Ciccone","doi":"10.1007/s00407-023-00314-0","DOIUrl":"10.1007/s00407-023-00314-0","url":null,"abstract":"<div><p>Power-law city-size distributions are a statistical regularity researched in many countries and urban systems. In this history of science treatise we reconsider Felix Auerbach’s paper published in 1913. We reviewed his analysis and found (i) that a constant absolute concentration, as introduced by him, is equivalent to a power-law distribution with exponent <span>(approx 1)</span>, (ii) that Auerbach describes this equivalence, and (iii) that Auerbach also pioneered the empirical analysis of city-size distributions across countries, regions, and time periods. We further investigate his legacy as reflected in citations and find that important follow-up work, e.g. by Lotka (Elements of physical biology. Williams &amp; Wilkins Company, Baltimore, 1925) and Zipf (Human behavior and the principle of least effort: an introduction to human ecology, Martino Publishing, Manfield Centre, CT (2012), 1949), does give proper reference to his discovery—but others do not. For example, only approximately 20% of city-related works citing Zipf (1949) also cite Auerbach (Petermanns Geogr Mitteilungen 59(74):74–76, 1913). To our best knowledge, Lotka (1925) was the first to describe the power-law rank-size rule as it is analyzed today. Saibante (Metron Rivista Internazionale di Statistica 7(2):53–99, 1928), building on Auerbach and Lotka, investigated the power-law rank-size rule across countries, regions, and time periods. Zipf’s achievement was to embed these findings in his monumental 1949 book. We suggest that the use of “Auerbach–Lotka–Zipf law” (or “ALZ-law”) is more appropriate than “Zipf’s law for cities”, which also avoids confusion with Zipf’s law for word frequency. We end the treatise with biographical notes on Auerbach.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 6","pages":"601 - 613"},"PeriodicalIF":0.5,"publicationDate":"2023-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-023-00314-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47063522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An early system A-type scheme for Saturn from Babylon 来自巴比伦的土星早期系统A型方案
IF 0.5 2区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Pub Date : 2023-06-20 DOI: 10.1007/s00407-023-00311-3
John Steele, Teije de Jong

In this paper we publish three fragments of a cuneiform tablet that, when complete, contained the dates and zodiacal positions of Saturn’s synodic phenomena for roughly 60 years. The text is unique in containing comparisons of computed data with observations. Through an analysis of the preserved data we propose that the dates and positions were computed by an otherwise unknown two-zone System A-type scheme and show that the computed data in the tablet can be dated to the fourth century BC. This early date and the comparisons with observations suggest that the text was produced during the period of active development of the planetary systems.

在这篇论文中,我们发表了一块楔形文字石碑的三块碎片,完整后,其中包含了大约60年来土星会合现象的日期和黄道带位置。该文本在包含计算数据与观测结果的比较方面是独特的。通过对保存的数据的分析,我们提出日期和位置是通过一个未知的两区系统A型方案计算的,并表明石碑中的计算数据可以追溯到公元前四世纪。这一早期日期以及与观测结果的比较表明,该文本是在行星系统积极发展的时期产生的。
{"title":"An early system A-type scheme for Saturn from Babylon","authors":"John Steele,&nbsp;Teije de Jong","doi":"10.1007/s00407-023-00311-3","DOIUrl":"10.1007/s00407-023-00311-3","url":null,"abstract":"<div><p>In this paper we publish three fragments of a cuneiform tablet that, when complete, contained the dates and zodiacal positions of Saturn’s synodic phenomena for roughly 60 years. The text is unique in containing comparisons of computed data with observations. Through an analysis of the preserved data we propose that the dates and positions were computed by an otherwise unknown two-zone System A-type scheme and show that the computed data in the tablet can be dated to the fourth century BC. This early date and the comparisons with observations suggest that the text was produced during the period of active development of the planetary systems.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 5","pages":"501 - 535"},"PeriodicalIF":0.5,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-023-00311-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44377583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Eudoxus’ simultaneous risings and settings 尤多克索斯的同时升起和设置
IF 0.5 2区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Pub Date : 2023-06-14 DOI: 10.1007/s00407-023-00309-x
Francesca Schironi

The article provides a reconstruction of Eudoxus' approach to simultaneous risings and settings in his two works dedicated to the issue: the Phaenomena and the Enoptron. This reconstruction is based on the analysis of Eudoxus’ fragments transmitted by Hipparchus. These fragments are difficult and problematic, but a close analysis and a comparison with the corresponding passages in Aratus suggests a possible solution.

这篇文章重建了尤多克斯在他的两部作品中同时出现和设置的方法:《Phaenomena》和《Enotron》。这一重建是基于对喜帕恰斯传播的尤多克斯碎片的分析。这些片段既困难又有问题,但仔细分析并与《阿拉图》中的相应段落进行比较,可以找到一个可能的解决方案。
{"title":"Eudoxus’ simultaneous risings and settings","authors":"Francesca Schironi","doi":"10.1007/s00407-023-00309-x","DOIUrl":"10.1007/s00407-023-00309-x","url":null,"abstract":"<div><p>The article provides a reconstruction of Eudoxus' approach to simultaneous risings and settings in his two works dedicated to the issue: the <i>Phaenomena</i> and the <i>Enoptron</i>. This reconstruction is based on the analysis of Eudoxus’ fragments transmitted by Hipparchus. These fragments are difficult and problematic, but a close analysis and a comparison with the corresponding passages in Aratus suggests a possible solution.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 4","pages":"423 - 441"},"PeriodicalIF":0.5,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46893922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometry and analysis in Anastácio da Cunha’s calculus 几何和分析Anastácio达库尼亚的微积分
IF 0.5 2区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Pub Date : 2023-06-08 DOI: 10.1007/s00407-023-00313-1
João Caramalho Domingues

It is well known that over the eighteenth century the calculus moved away from its geometric origins; Euler, and later Lagrange, aspired to transform it into a “purely analytical” discipline. In the 1780 s, the Portuguese mathematician José Anastácio da Cunha developed an original version of the calculus whose interpretation in view of that process presents challenges. Cunha was a strong admirer of Newton (who famously favoured geometry over algebra) and criticized Euler’s faith in analysis. However, the fundamental propositions of his calculus follow the analytical trend. This appears to have been possible due to a nominalistic conception of variable that allowed him to deal with expressions as names, rather than abstract quantities. Still, Cunha tried to keep the definition of fluxion directly applicable to geometrical magnitudes. According to a friend of Cunha’s, his calculus had an algebraic (analytical) branch and a geometrical branch, and it was because of this that his definition of fluxion appeared too complex to some contemporaries.

众所周知,在十八世纪,微积分脱离了其几何起源;欧拉和后来的拉格朗日都渴望将其转化为一门“纯粹的分析”学科。在1780年代,葡萄牙数学家JoséAnastácio da Cunha开发了微积分的原始版本,鉴于这一过程,其解释提出了挑战。库尼亚是牛顿的崇拜者(牛顿以偏爱几何而非代数著称),并批评欧拉对分析的信仰。然而,他的微积分的基本命题遵循着分析的趋势。这似乎是可能的,因为变量的唯名论概念使他能够将表达式作为名称而不是抽象量来处理。尽管如此,库尼亚还是试图保持通量的定义直接适用于几何量。根据库尼亚的一位朋友的说法,他的微积分有代数(分析)分支和几何分支,正因为如此,他对通量的定义对一些同时代人来说显得过于复杂。
{"title":"Geometry and analysis in Anastácio da Cunha’s calculus","authors":"João Caramalho Domingues","doi":"10.1007/s00407-023-00313-1","DOIUrl":"10.1007/s00407-023-00313-1","url":null,"abstract":"<div><p>It is well known that over the eighteenth century the calculus moved away from its geometric origins; Euler, and later Lagrange, aspired to transform it into a “purely analytical” discipline. In the 1780 s, the Portuguese mathematician José Anastácio da Cunha developed an original version of the calculus whose interpretation in view of that process presents challenges. Cunha was a strong admirer of Newton (who famously favoured geometry over algebra) and criticized Euler’s faith in analysis. However, the fundamental propositions of his calculus follow the analytical trend. This appears to have been possible due to a nominalistic conception of variable that allowed him to deal with expressions as names, rather than abstract quantities. Still, Cunha tried to keep the definition of fluxion directly applicable to geometrical magnitudes. According to a friend of Cunha’s, his calculus had an algebraic (analytical) branch and a geometrical branch, and it was because of this that his definition of fluxion appeared too complex to some contemporaries.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 6","pages":"579 - 600"},"PeriodicalIF":0.5,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-023-00313-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48266395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurements of altitude and geographic latitude in Latin astronomy, 1100–1300 拉丁天文学中海拔和地理纬度的测量,1100–1300
IF 0.5 2区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Pub Date : 2023-06-06 DOI: 10.1007/s00407-023-00312-2
C. Philipp E. Nothaft

This article surveys measurements of celestial (chiefly solar) altitudes documented from twelfth- and thirteenth-century Latin Europe. It consists of four main parts providing (i) an overview of the instruments available for altitude measurements and described in contemporary sources, viz. astrolabes, quadrants, shadow sticks, and the torquetum; (ii) a survey of the role played by altitude measurements in the determination of geographic latitude, which takes into account more than 70 preserved estimates; (iii) case studies of four sets of measured solar altitudes in twelfth-century Latin sources; (iv) an in-depth discussion of the evidence relating to altitude measurements performed in Paris in the period 1281–1290. The findings from the last part indicate that by the end of the thirteenth century Parisian astronomer had developed rigorous standards of observational practice in which altitudes were typically measured to a precision of minutes of arc and with a level of accuracy higher than ± 0;5°, and sometimes exceeding ± 0;1°.

这篇文章调查了十二世纪和十三世纪拉丁欧记录的天体(主要是太阳)高度的测量结果。它由四个主要部分组成,提供(i)可用于高度测量的仪器概述,并在当代资料中进行了描述,即星盘、象限、阴影棒和扭矩表;(ii)对海拔测量在确定地理纬度方面所起作用的调查,其中考虑了70多个保留的估计数;(iii)对十二世纪拉丁来源的四组测量太阳高度的案例研究;(iv)深入讨论1281-1290年间在巴黎进行的海拔测量的相关证据。最后一部分的发现表明,到13世纪末,巴黎天文学家已经制定了严格的观测实践标准,在这些标准中,高度的测量精度通常为弧分,精度高于 ± 0;5°,有时甚至超过 ± 0;1°。
{"title":"Measurements of altitude and geographic latitude in Latin astronomy, 1100–1300","authors":"C. Philipp E. Nothaft","doi":"10.1007/s00407-023-00312-2","DOIUrl":"10.1007/s00407-023-00312-2","url":null,"abstract":"<div><p>This article surveys measurements of celestial (chiefly solar) altitudes documented from twelfth- and thirteenth-century Latin Europe. It consists of four main parts providing (i) an overview of the instruments available for altitude measurements and described in contemporary sources, viz. astrolabes, quadrants, shadow sticks, and the torquetum; (ii) a survey of the role played by altitude measurements in the determination of geographic latitude, which takes into account more than 70 preserved estimates; (iii) case studies of four sets of measured solar altitudes in twelfth-century Latin sources; (iv) an in-depth discussion of the evidence relating to altitude measurements performed in Paris in the period 1281–1290. The findings from the last part indicate that by the end of the thirteenth century Parisian astronomer had developed rigorous standards of observational practice in which altitudes were typically measured to a precision of minutes of arc and with a level of accuracy higher than ± 0;5°, and sometimes exceeding ± 0;1°.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 6","pages":"537 - 577"},"PeriodicalIF":0.5,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-023-00312-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50456450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Jeffreys–Lindley paradox: an exchange 杰弗里斯-林德利悖论:一种交换
IF 0.5 2区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Pub Date : 2023-05-30 DOI: 10.1007/s00407-023-00310-4
Jeremy Gray, Joshua L. Cherry, Eric-Jan Wagenmakers, Alexander Ly

This Editorial reports an exchange in form of a comment and reply on the article “History and Nature of the Jeffreys–Lindley Paradox” (Arch Hist Exact Sci 77:25, 2023) by Eric-Jan Wagenmakers and Alexander Ly.

本社论以评论和回复的形式报道了Eric Jan Wagenmakers和Alexander Ly的文章《杰弗里斯-林德利悖论的历史和性质》(Arch Hist Exact Sci 77:252023)的交流。
{"title":"The Jeffreys–Lindley paradox: an exchange","authors":"Jeremy Gray,&nbsp;Joshua L. Cherry,&nbsp;Eric-Jan Wagenmakers,&nbsp;Alexander Ly","doi":"10.1007/s00407-023-00310-4","DOIUrl":"10.1007/s00407-023-00310-4","url":null,"abstract":"<div><p>This Editorial reports an exchange in form of a comment and reply on the article “History and Nature of the Jeffreys–Lindley Paradox” (Arch Hist Exact Sci 77:25, 2023) by Eric-Jan Wagenmakers and Alexander Ly.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 4","pages":"443 - 449"},"PeriodicalIF":0.5,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41682671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Federico Commandino and the Latin edition of Apollonius’s Conics (1566) 费德里科·科曼迪诺和拉丁文版阿波罗尼乌斯的《经济学》(1566年)
IF 0.5 2区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Pub Date : 2023-03-20 DOI: 10.1007/s00407-023-00307-z
Argante Ciocci

Federico Commandino’s Latin editions of the mathematical works written by the ancient Greeks constituted an essential reference for the scientific research undertaken by the moderns. In his Latin editions, Commandino cleverly combined his philological and mathematical skills. Philology and mathematics, moreover, nurtured each other. In this article, I analyze the Greek and Latin manuscripts and the printed edition of Apollonius’ Conics to highlight in a specific case study the role of the editions of the classics in the renaissance of modern mathematics.

Federico Commandino的古希腊人数学著作拉丁版为现代人的科学研究提供了重要参考。在他的拉丁版本中,Commandino巧妙地结合了他的语文学和数学技能。此外,语文学和数学相互滋养。在这篇文章中,我分析了希腊语和拉丁语的手稿以及阿波罗圆锥曲线的印刷版,以在一个具体的案例研究中强调经典版本在现代数学复兴中的作用。
{"title":"Federico Commandino and the Latin edition of Apollonius’s Conics (1566)","authors":"Argante Ciocci","doi":"10.1007/s00407-023-00307-z","DOIUrl":"10.1007/s00407-023-00307-z","url":null,"abstract":"<div><p>Federico Commandino’s Latin editions of the mathematical works written by the ancient Greeks constituted an essential reference for the scientific research undertaken by the moderns. In his Latin editions, Commandino cleverly combined his philological and mathematical skills. Philology and mathematics, moreover, nurtured each other. In this article, I analyze the Greek and Latin manuscripts and the printed edition of Apollonius’ <i>Conics</i> to highlight in a specific case study the role of the editions of the classics in the renaissance of modern mathematics.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 4","pages":"393 - 421"},"PeriodicalIF":0.5,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-023-00307-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41707906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ptolemy’s treatise on the meteoroscope recovered 托勒密关于气象仪的论文得以恢复
IF 0.5 2区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Pub Date : 2023-03-09 DOI: 10.1007/s00407-022-00302-w
Victor Gysembergh, Alexander Jones, Emanuel Zingg, Pascal Cotte, Salvatore Apicella

The eighth-century Latin manuscript Milan, Veneranda Biblioteca Ambrosiana, L 99 Sup. contains fifteen palimpsest leaves previously used for three Greek scientific texts: a text of unknown authorship on mathematical mechanics and catoptrics, known as the Fragmentum Mathematicum Bobiense (three leaves), Ptolemy's Analemma (six leaves), and an astronomical text that has hitherto remained unidentified and almost entirely unread (six leaves). We report here on the current state of our research on this last text, based on multispectral images. The text, incompletely preserved, is a treatise on the construction and uses of a nine-ringed armillary instrument, identifiable as the “meteoroscope” invented by Ptolemy and known to us from passages in Ptolemy's Geography and in writings of Pappus and Proclus. We further argue that the author of our text was Ptolemy himself.

八世纪的拉丁手稿米兰,Veneranda Biblioteca Ambrosiana,L 99 Sup。包含十五页重写本,之前用于三本希腊科学文本:一本关于数学力学和catoptrics的未知作者的文本,被称为《数学碎片》(三页)、托勒密的《困境》(六页),以及迄今为止一直未被识别且几乎完全未读的天文文本(六页)。我们在此报告基于多光谱图像的最后一篇文章的研究现状。该文本保存不完整,是一篇关于九环浑仪的构造和使用的论文,可识别为托勒密发明的“流星仪”,我们从托勒密的《地理学》以及帕普斯和普罗克洛斯的著作中了解到。我们进一步争辩说,我们文本的作者是托勒密本人。
{"title":"Ptolemy’s treatise on the meteoroscope recovered","authors":"Victor Gysembergh,&nbsp;Alexander Jones,&nbsp;Emanuel Zingg,&nbsp;Pascal Cotte,&nbsp;Salvatore Apicella","doi":"10.1007/s00407-022-00302-w","DOIUrl":"10.1007/s00407-022-00302-w","url":null,"abstract":"<div><p>The eighth-century Latin manuscript Milan, Veneranda Biblioteca Ambrosiana, L 99 Sup. contains fifteen palimpsest leaves previously used for three Greek scientific texts: a text of unknown authorship on mathematical mechanics and catoptrics, known as the <i>Fragmentum Mathematicum Bobiense</i> (three leaves), Ptolemy's <i>Analemma</i> (six leaves), and an astronomical text that has hitherto remained unidentified and almost entirely unread (six leaves). We report here on the current state of our research on this last text, based on multispectral images. The text, incompletely preserved, is a treatise on the construction and uses of a nine-ringed armillary instrument, identifiable as the “meteoroscope” invented by Ptolemy and known to us from passages in Ptolemy's <i>Geography</i> and in writings of Pappus and Proclus. We further argue that the author of our text was Ptolemy himself.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 2","pages":"221 - 240"},"PeriodicalIF":0.5,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-022-00302-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48791537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Felix Klein, Sophus Lie, contact transformations, and connexes Felix Klein, Sophus Lie,接触变换和连接
IF 0.5 2区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Pub Date : 2023-03-09 DOI: 10.1007/s00407-023-00305-1
L. D. Kay

Much of the mathematics with which Felix Klein and Sophus Lie are now associated (Klein’s Erlangen Program and Lie’s theory of transformation groups) is rooted in ideas they developed in their early work: the consideration of geometric objects or properties preserved by systems of transformations. As early as 1870, Lie studied particular examples of what he later called contact transformations, which preserve tangency and which came to play a crucial role in his systematic study of transformation groups and differential equations. This note examines Klein’s efforts in the 1870s to interpret contact transformations in terms of connexes and traces that interpretation (which included a false assumption) over the decades that follow. The analysis passes from Klein’s letters to Lie through Lindemann’s edition of Clebsch’s lectures on geometry in 1876, Lie’s criticism of it in his treatise on transformation groups in 1893, and the careful development of that interpretation by Dohmen, a student of Engel, in his 1905 dissertation. The now-obscure notion of connexes and its relation to Lie’s line elements and surface elements are discussed here in some detail.

Felix Klein和Sophus Lie现在所关联的许多数学(Klein的Erlangen程序和Lie的变换群理论)都植根于他们在早期工作中发展起来的思想:对几何对象或由变换系统保留的性质的考虑。早在1870年,李就研究了他后来所说的接触变换的特定例子,这种变换保持相切,在他对变换群和微分方程的系统研究中发挥了至关重要的作用。本注释考察了克莱因在19世纪70年代从连接词的角度解释接触转换的努力,并追溯了随后几十年的解释(包括错误的假设)。分析从克莱因给李的信,到1876年林德曼版的克莱布施关于几何的讲座,再到1893年李在其关于变换群的论文中对其的批评,再到恩格尔的学生多门在1905年的论文中仔细发展了这一解释。这里详细讨论了目前尚不清楚的连接概念及其与李线元和面元的关系。
{"title":"Felix Klein, Sophus Lie, contact transformations, and connexes","authors":"L. D. Kay","doi":"10.1007/s00407-023-00305-1","DOIUrl":"10.1007/s00407-023-00305-1","url":null,"abstract":"<div><p>Much of the mathematics with which Felix Klein and Sophus Lie are now associated (Klein’s Erlangen Program and Lie’s theory of transformation groups) is rooted in ideas they developed in their early work: the consideration of geometric objects or properties preserved by systems of transformations. As early as 1870, Lie studied particular examples of what he later called <i>contact transformations</i>, which preserve tangency and which came to play a crucial role in his systematic study of transformation groups and differential equations. This note examines Klein’s efforts in the 1870s to interpret contact transformations in terms of <i>connexes</i> and traces that interpretation (which included a false assumption) over the decades that follow. The analysis passes from Klein’s letters to Lie through Lindemann’s edition of Clebsch’s lectures on geometry in 1876, Lie’s criticism of it in his treatise on transformation groups in 1893, and the careful development of that interpretation by Dohmen, a student of Engel, in his 1905 dissertation. The now-obscure notion of connexes and its relation to Lie’s <i>line elements</i> and <i>surface elements</i> are discussed here in some detail.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 4","pages":"373 - 391"},"PeriodicalIF":0.5,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-023-00305-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42745210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SHAKE and the exact constraint satisfaction of the dynamics of semi-rigid molecules in Cartesian coordinates, 1973–1977 直角坐标系下半刚性分子动力学的SHAKE和精确约束满足,1973-1977
IF 0.5 2区 哲学 Q2 HISTORY & PHILOSOPHY OF SCIENCE Pub Date : 2023-02-21 DOI: 10.1007/s00407-023-00306-0
Daniele Macuglia

This essay traces the history of early molecular dynamics simulations, specifically exploring the development of SHAKE, a constraint-based technique devised in 1976 by Jean-Paul Ryckaert, Giovanni Ciccotti and the late Herman Berendsen at CECAM (Centre Européen de Calcul Atomique et Moléculaire). The work of the three scientists proved to be instrumental in giving impetus to the MD simulation of complex polymer systems and it currently underpins the work of thousands of researchers worldwide who are engaged in computational physics, chemistry and biology. Despite its impact and its role in bringing different scientific fields together, accurate historical studies on the birth of SHAKE are virtually absent. By collecting and elaborating on the accounts of Ryckaert and Ciccotti, this essay aims to fill this gap, while also commenting on the conceptual and computational difficulties faced by its developers.

本文追溯了早期分子动力学模拟的历史,特别是探索了SHAKE的发展,这是一种基于约束的技术,由Jean-Paul Ryckaert、Giovanni Ciccotti和已故的Herman Berendsen在CECAM(欧洲原子与分子计算中心)于1976年设计。这三位科学家的工作被证明有助于推动复杂聚合物系统的MD模拟,目前它支撑着全球数千名从事计算物理、化学和生物学的研究人员的工作。尽管它的影响和作用将不同的科学领域结合在一起,但关于SHAKE诞生的准确历史研究实际上是不存在的。通过收集和阐述Ryckaert和Ciccotti的叙述,本文旨在填补这一空白,同时也评论其开发人员面临的概念和计算困难。
{"title":"SHAKE and the exact constraint satisfaction of the dynamics of semi-rigid molecules in Cartesian coordinates, 1973–1977","authors":"Daniele Macuglia","doi":"10.1007/s00407-023-00306-0","DOIUrl":"10.1007/s00407-023-00306-0","url":null,"abstract":"<div><p>This essay traces the history of early molecular dynamics simulations, specifically exploring the development of SHAKE, a constraint-based technique devised in 1976 by Jean-Paul Ryckaert, Giovanni Ciccotti and the late Herman Berendsen at CECAM (Centre Européen de Calcul Atomique et Moléculaire). The work of the three scientists proved to be instrumental in giving impetus to the MD simulation of complex polymer systems and it currently underpins the work of thousands of researchers worldwide who are engaged in computational physics, chemistry and biology. Despite its impact and its role in bringing different scientific fields together, accurate historical studies on the birth of SHAKE are virtually absent. By collecting and elaborating on the accounts of Ryckaert and Ciccotti, this essay aims to fill this gap, while also commenting on the conceptual and computational difficulties faced by its developers.</p></div>","PeriodicalId":50982,"journal":{"name":"Archive for History of Exact Sciences","volume":"77 4","pages":"345 - 371"},"PeriodicalIF":0.5,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00407-023-00306-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43689315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Archive for History of Exact Sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1