Mayra I. Rodríguez González, C. Scott, Tatiana Marquina, Demeke B. Mewa, Jorge García Polo, Binbin Peng
Strategies that demonstrate renewed potential to enhance both social and ecological systems are crucial in today’s era of rapid urbanization. However, the approaches used to understand the impacts of such strategies sometimes favor social over environmental theory, or the opposite, but do not always consider both equally. Our study addresses this disconnect by exploring the role of urban agriculture (UA) as an alleviation and land management strategy in Mexico City (MC), Mexico. Our integrated design combined the ecosystem services framework, which was primarily used to assess material and non-material benefits MC residents obtain from UA spaces and its associated vegetation, and the livelihoods framework, which was used to evaluate the relationship between UA and societal impacts. We used a mixed-method approach to quantify the amount of food produced, assess crop diversity, assess six distinct ecological processes linked to UA, identify cultural benefits, and conduct an evaluation of contributions to livelihood capitals. Our study documented the role of UA in supporting ecological processes, connecting humans to nature, and providing a supplemental source of income. However, a multitude of unintended outcomes are identified, such as tradeoffs between different ecological processes, constraints in promoting formal education beyond agroecological knowledge, and an inability to fully elevate families out of poverty. Our integrated approach demonstrated how the ecosystem services and livelihoods frameworks can be used simultaneously to provide thorough assessments of socio-ecological systems, identifying outcomes that could go unnoticed without an interdisciplinary lens.
{"title":"Integration of the Livelihood and Ecosystem Services Frameworks—A Case Study on Urban Agriculture in Mexico City","authors":"Mayra I. Rodríguez González, C. Scott, Tatiana Marquina, Demeke B. Mewa, Jorge García Polo, Binbin Peng","doi":"10.1175/ei-d-22-0010.1","DOIUrl":"https://doi.org/10.1175/ei-d-22-0010.1","url":null,"abstract":"\u0000Strategies that demonstrate renewed potential to enhance both social and ecological systems are crucial in today’s era of rapid urbanization. However, the approaches used to understand the impacts of such strategies sometimes favor social over environmental theory, or the opposite, but do not always consider both equally. Our study addresses this disconnect by exploring the role of urban agriculture (UA) as an alleviation and land management strategy in Mexico City (MC), Mexico. Our integrated design combined the ecosystem services framework, which was primarily used to assess material and non-material benefits MC residents obtain from UA spaces and its associated vegetation, and the livelihoods framework, which was used to evaluate the relationship between UA and societal impacts. We used a mixed-method approach to quantify the amount of food produced, assess crop diversity, assess six distinct ecological processes linked to UA, identify cultural benefits, and conduct an evaluation of contributions to livelihood capitals. Our study documented the role of UA in supporting ecological processes, connecting humans to nature, and providing a supplemental source of income. However, a multitude of unintended outcomes are identified, such as tradeoffs between different ecological processes, constraints in promoting formal education beyond agroecological knowledge, and an inability to fully elevate families out of poverty. Our integrated approach demonstrated how the ecosystem services and livelihoods frameworks can be used simultaneously to provide thorough assessments of socio-ecological systems, identifying outcomes that could go unnoticed without an interdisciplinary lens.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46038365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abdulghani Swesi, Y. Yusup, M. Ahmad, Haitem M Almdhun, E. J. Jamshidi, M. F. Sigid, A. Ibrahim, J. Kayode
Carbon dioxide flux from the Earth’s surface is a critical component of the global carbon budget, and the ocean surface is a significant CO2 source and sink. The tropical coast absorbs CO2 due to phytoplankton abundance and the all-year availability of photosynthetically active radiation. However, the role of the tropical coastal ocean in the global carbon budget is uncertain because of its under-representation in the literature. This study is the first to describe the variations of long-term CO2 flux in the tropical coast on monthly and annual scales using the eddy covariance method and remote sensing data. The five-year average of the CO2 flux is −0.089 ± 0.024 mmol m−2 d−1, which indicate that it is a moderate carbon sink. The results show that the CO2 flux varied seasonally: the Fall Transitional, Southwest, Spring Transitional, and Northeast Monsoons partitioned the flux into three phases, which were the increasing, stable, and decreasing phases. The rising and falling stages can be identified by the erratic behavior of the flux, while the stable phase’s fluxes were relatively constant. The environmental parameters that regulated CO2 flux were chlorophyll-α, sea surface temperatures, wind, and atmospheric stability, which modulated the CO2 flux on the monthly timescale. Wavelet analysis corroborated the finding and revealed the role of PAR on CO2 flux through the El-Niño-Southern Oscillation. On the monthly timescale, sea surface temperature only slightly affected the fluxes unlike chlorophyll-α, but temperature’s control on the flux became more apparent on the yearly timescale. These findings help understand the monthly and yearly controls of CO2 flux and could contribute to developing models in predicting the flux on the tropical coast.
{"title":"Seasonal and Yearly Controls of CO2 Fluxes in A Tropical Coastal Ocean","authors":"Abdulghani Swesi, Y. Yusup, M. Ahmad, Haitem M Almdhun, E. J. Jamshidi, M. F. Sigid, A. Ibrahim, J. Kayode","doi":"10.1175/ei-d-22-0023.1","DOIUrl":"https://doi.org/10.1175/ei-d-22-0023.1","url":null,"abstract":"\u0000Carbon dioxide flux from the Earth’s surface is a critical component of the global carbon budget, and the ocean surface is a significant CO2 source and sink. The tropical coast absorbs CO2 due to phytoplankton abundance and the all-year availability of photosynthetically active radiation. However, the role of the tropical coastal ocean in the global carbon budget is uncertain because of its under-representation in the literature. This study is the first to describe the variations of long-term CO2 flux in the tropical coast on monthly and annual scales using the eddy covariance method and remote sensing data. The five-year average of the CO2 flux is −0.089 ± 0.024 mmol m−2 d−1, which indicate that it is a moderate carbon sink. The results show that the CO2 flux varied seasonally: the Fall Transitional, Southwest, Spring Transitional, and Northeast Monsoons partitioned the flux into three phases, which were the increasing, stable, and decreasing phases. The rising and falling stages can be identified by the erratic behavior of the flux, while the stable phase’s fluxes were relatively constant. The environmental parameters that regulated CO2 flux were chlorophyll-α, sea surface temperatures, wind, and atmospheric stability, which modulated the CO2 flux on the monthly timescale. Wavelet analysis corroborated the finding and revealed the role of PAR on CO2 flux through the El-Niño-Southern Oscillation. On the monthly timescale, sea surface temperature only slightly affected the fluxes unlike chlorophyll-α, but temperature’s control on the flux became more apparent on the yearly timescale. These findings help understand the monthly and yearly controls of CO2 flux and could contribute to developing models in predicting the flux on the tropical coast.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46694281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Casper Boongaling Agaton, Patricia Marie Caparas Guila
Constructed wetlands (CWs) are nature-based solutions that utilize natural vegetation, soils, and microbes to treat domestic wastewater and industrial effluents. They are engineered treatment systems that mimic the functions of natural wetlands to capture stormwater, reduce nutrient loads, and create diverse wildlife habitats. Providing these monetary and non-monetary benefits, its implementation has grown in several applications and geographical spread. Recent studies integrate the ecosystem services of CWs in project valuation, and the critical analysis of research hotspots has not been made yet. This study employs a systematic review to analyze the literature on ecosystem services provided by CWs and how they are incorporated into the valuation of CW projects. Among the ecosystem services that have been identified are provisioning (biomass and water supply), regulating (wastewater treatment and purification, climate regulation, flood prevention, and erosion control), cultural (recreation and aesthetic, biodiversity, education, and research), and supporting (habitat formation, nutrient cycling, and hydrological cycle). In terms of valuation methods and techniques, the results identified contingent valuation, shadow pricing, cost–benefit analysis, benefits transfer, habitat evaluation procedures, replacement cost, and travel cost. The analysis results provide researchers with a concrete basis for future studies and directions for further development. This also provides policymakers and CW project planners with valuable insights on various aspects of policy support for CW adoption and project valuation.
{"title":"Ecosystem Services Valuation of Constructed Wetland as a Nature-Based Solution to Wastewater Treatment","authors":"Casper Boongaling Agaton, Patricia Marie Caparas Guila","doi":"10.3390/earth4010006","DOIUrl":"https://doi.org/10.3390/earth4010006","url":null,"abstract":"Constructed wetlands (CWs) are nature-based solutions that utilize natural vegetation, soils, and microbes to treat domestic wastewater and industrial effluents. They are engineered treatment systems that mimic the functions of natural wetlands to capture stormwater, reduce nutrient loads, and create diverse wildlife habitats. Providing these monetary and non-monetary benefits, its implementation has grown in several applications and geographical spread. Recent studies integrate the ecosystem services of CWs in project valuation, and the critical analysis of research hotspots has not been made yet. This study employs a systematic review to analyze the literature on ecosystem services provided by CWs and how they are incorporated into the valuation of CW projects. Among the ecosystem services that have been identified are provisioning (biomass and water supply), regulating (wastewater treatment and purification, climate regulation, flood prevention, and erosion control), cultural (recreation and aesthetic, biodiversity, education, and research), and supporting (habitat formation, nutrient cycling, and hydrological cycle). In terms of valuation methods and techniques, the results identified contingent valuation, shadow pricing, cost–benefit analysis, benefits transfer, habitat evaluation procedures, replacement cost, and travel cost. The analysis results provide researchers with a concrete basis for future studies and directions for further development. This also provides policymakers and CW project planners with valuable insights on various aspects of policy support for CW adoption and project valuation.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"33 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89611157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fungi are a diverse and fascinating group of organisms that play an important role in various ecosystems, e.g., in the decomposition of organic matter and nutrient cycling. However, climate change poses a significant threat to these ecosystems and the organisms that inhabit them. Fluctuations in temperature and humidity can cause shifts in the distribution of fungi and negatively impact the ecosystems they inhabit. Yet fungi have the potential to play a role in mitigating the effects of climate change. With the use of biotechnology, fungi can help meet the United Nations Sustainable Development Goals, and their properties make them useful organisms in addressing the urgent challenges that humanity faces. For example, industrial biotechnology using fungi can lead to the production of goods that are more biodegradable, use less energy and produce less waste. Fungi have long been used in the production of enzymes, alkaloids, detergents, acids, and biosurfactants on an industrial scale. Recent research in the field of white biotechnology has made significant progress, and further advances are expected in the near future, especially in agricultural and environmental biotechnology. With this in mind, it is crucial to explore the use of fungi in novel and environmentally conscious technologies, as well as in mitigating the effects of climate change.
{"title":"Environmentally Conscious Technologies Using Fungi in a Climate-Changing World","authors":"Davor Kržišnik, José Gonçalves","doi":"10.3390/earth4010005","DOIUrl":"https://doi.org/10.3390/earth4010005","url":null,"abstract":"Fungi are a diverse and fascinating group of organisms that play an important role in various ecosystems, e.g., in the decomposition of organic matter and nutrient cycling. However, climate change poses a significant threat to these ecosystems and the organisms that inhabit them. Fluctuations in temperature and humidity can cause shifts in the distribution of fungi and negatively impact the ecosystems they inhabit. Yet fungi have the potential to play a role in mitigating the effects of climate change. With the use of biotechnology, fungi can help meet the United Nations Sustainable Development Goals, and their properties make them useful organisms in addressing the urgent challenges that humanity faces. For example, industrial biotechnology using fungi can lead to the production of goods that are more biodegradable, use less energy and produce less waste. Fungi have long been used in the production of enzymes, alkaloids, detergents, acids, and biosurfactants on an industrial scale. Recent research in the field of white biotechnology has made significant progress, and further advances are expected in the near future, especially in agricultural and environmental biotechnology. With this in mind, it is crucial to explore the use of fungi in novel and environmentally conscious technologies, as well as in mitigating the effects of climate change.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82949481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Despite prompting persistent meteorological changes, severe defoliation following a tropical cyclone (TC) landfall has received relatively little attention and is largely overlooked within hurricane preparedness and recovery planning. Changes to near-track vegetation can modify evapotranspiration for months after tropical cyclone passage, thereby altering boundary layer moisture and energy fluxes that drive the local water cycle. This study seeks to understand potential spatial and temporal changes in defoliation-driven meteorological conditions using Hurricane Michael (2018) as a testbed. In this sensitivity study, two Weather Research and Forecasting (WRF) model simulations, a normal-landscape and a post-TC scenario, are compared to determine how a defoliation scar placed along Michael’s path alters surface heat fluxes, temperature, relative humidity, and precipitation near the storm’s track. In the month following the foliage reduction, WRF resolves a 0.7°C 2-m temperature increase with the greatest changes occurring at night. Meanwhile, the simulations produce changes to the sensible and latent heat fluxes of +8.3 W m−2 and −13.9 W m−2, respectively, while average relative humidity decreased from 73% to 70.1%. Though the accumulated precipitation in the defoliated simulation was larger along a narrow corridor paralleling and downwind of the hurricane track, neither simulation satisfactorily replicated post-Michael precipitation patterns as recorded by NCEP Stage IV QPE, casting doubt as to whether the downwind enhancement was exclusively due to the defoliation scar. This sensitivity analysis provides insight to the types of changes that may be possible following rapid and widespread defoliation during a TC landfall.
尽管引发了持续的气象变化,热带气旋(TC)登陆后的严重落叶却很少受到关注,而且在飓风准备和恢复计划中很大程度上被忽视。热带气旋通过后,近轨道植被的变化可以改变几个月的蒸散,从而改变驱动当地水循环的边界层水分和能量通量。本研究试图以飓风迈克尔(2018)为实验平台,了解落叶驱动的气象条件的潜在时空变化。在这项敏感性研究中,比较了两个天气研究与预报(WRF)模型的模拟,一个是正常景观,一个是后tc情景,以确定沿着迈克尔路径放置的落叶疤痕如何改变风暴路径附近的地表热通量、温度、相对湿度和降水。在落叶减少后的一个月里,WRF解析出0.7°C的2米温度升高,其中最大的变化发生在夜间。与此同时,模拟结果显示,+8.3 W m−2和- 13.9 W m−2的感热通量和潜热通量发生了变化,平均相对湿度从73%下降到70.1%。虽然在飓风路径平行和下风的狭窄走廊上,落叶模拟的累积降水更大,但两种模拟都不能令人满意地复制NCEP第四阶段QPE记录的后michael降水模式,这让人怀疑下风增强是否完全是由于落叶疤痕造成的。这种敏感性分析提供了对TC登陆期间快速和广泛落叶后可能发生的变化类型的见解。
{"title":"Understanding Meteorological Changes Following Severe Defoliation During a Strong Hurricane Landfall: Insights from Hurricane Michael (2018)","authors":"Shannon A. Nelson, P. Miller","doi":"10.1175/ei-d-22-0012.1","DOIUrl":"https://doi.org/10.1175/ei-d-22-0012.1","url":null,"abstract":"\u0000Despite prompting persistent meteorological changes, severe defoliation following a tropical cyclone (TC) landfall has received relatively little attention and is largely overlooked within hurricane preparedness and recovery planning. Changes to near-track vegetation can modify evapotranspiration for months after tropical cyclone passage, thereby altering boundary layer moisture and energy fluxes that drive the local water cycle. This study seeks to understand potential spatial and temporal changes in defoliation-driven meteorological conditions using Hurricane Michael (2018) as a testbed. In this sensitivity study, two Weather Research and Forecasting (WRF) model simulations, a normal-landscape and a post-TC scenario, are compared to determine how a defoliation scar placed along Michael’s path alters surface heat fluxes, temperature, relative humidity, and precipitation near the storm’s track.\u0000In the month following the foliage reduction, WRF resolves a 0.7°C 2-m temperature increase with the greatest changes occurring at night. Meanwhile, the simulations produce changes to the sensible and latent heat fluxes of +8.3 W m−2 and −13.9 W m−2, respectively, while average relative humidity decreased from 73% to 70.1%. Though the accumulated precipitation in the defoliated simulation was larger along a narrow corridor paralleling and downwind of the hurricane track, neither simulation satisfactorily replicated post-Michael precipitation patterns as recorded by NCEP Stage IV QPE, casting doubt as to whether the downwind enhancement was exclusively due to the defoliation scar. This sensitivity analysis provides insight to the types of changes that may be possible following rapid and widespread defoliation during a TC landfall.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43370762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
High-quality academic publishing is built on rigorous peer review [...]
高质量的学术出版建立在严格的同行评审的基础上[…]
{"title":"Acknowledgment to the Reviewers of Earth in 2022","authors":"","doi":"10.3390/earth4010004","DOIUrl":"https://doi.org/10.3390/earth4010004","url":null,"abstract":"High-quality academic publishing is built on rigorous peer review [...]","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"7 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90652386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sea-level rise, population growth, and changing land-use patterns will further constrain Florida’s already scarce groundwater and surface water supplies in the coming decades. Significant investments in water supply and water demand management are needed to ensure sufficient water availability for human and natural systems. Section 403.928 (1) (b) of the Florida Statutes requires estimating the expenditures needed to meet the future water demand and avoid the adverse effects of competition for water supplies to 2040. This study considers the 2020–2040 planning period and projects (1) future water demand and supplies; and (2) the total expenditures (capital costs) necessary to meet the future water demand in Florida, USA. The uniqueness of this study compared with the previous studies is the introduction of a probabilistic-based approach to quantify the uncertainty of the investment costs to meet future water demand. We compile data from the U.S. Geological Survey, Florida’s Department of Agriculture & Consumer Services, Florida’s Water Management Districts, and the Florida Department of Environmental Protection to project the future water demand and supplies, and the expenditures needed to meet the demand considering uncertainty in the costs of alternative water supply options. The results show that the total annual water demand is projected to increase by 1405 million cubic meters (+15.9%) by 2040, driven primarily by urbanization. Using the median capital costs of alternative water supply projects, cumulative expenditures for the additional water supplies are estimated between USD 1.11–1.87 billion. However, when uncertainty in the project costs is accounted for, the projected expenditure range shifts to USD 1.65 and USD 3.21 billion. In addition, we illustrate how using Modern Portfolio Theory (MPT) can increase the efficacy of investment planning to develop alternative water supply options. The results indicate that using MPT in selecting the share of each project type in developing water supply options can reduce the standard deviation of capital costs per one unit of capacity by 74% compared to the equal share allocation. This study highlights the need for developing more flexible funding strategies on local, regional, and state levels to finance additional water supply infrastructure, and more cost-effective combinations of demand management strategies and alternative water supply options to meet the water needed for the state in the future.
{"title":"The Cost of Alternative Water Supply and Efficiency Options under Uncertainty: An Application of Modern Portfolio Theory and Chebyshev’s Inequality","authors":"D. Tran, T. Borisova, K. Beggs","doi":"10.3390/earth4010003","DOIUrl":"https://doi.org/10.3390/earth4010003","url":null,"abstract":"Sea-level rise, population growth, and changing land-use patterns will further constrain Florida’s already scarce groundwater and surface water supplies in the coming decades. Significant investments in water supply and water demand management are needed to ensure sufficient water availability for human and natural systems. Section 403.928 (1) (b) of the Florida Statutes requires estimating the expenditures needed to meet the future water demand and avoid the adverse effects of competition for water supplies to 2040. This study considers the 2020–2040 planning period and projects (1) future water demand and supplies; and (2) the total expenditures (capital costs) necessary to meet the future water demand in Florida, USA. The uniqueness of this study compared with the previous studies is the introduction of a probabilistic-based approach to quantify the uncertainty of the investment costs to meet future water demand. We compile data from the U.S. Geological Survey, Florida’s Department of Agriculture & Consumer Services, Florida’s Water Management Districts, and the Florida Department of Environmental Protection to project the future water demand and supplies, and the expenditures needed to meet the demand considering uncertainty in the costs of alternative water supply options. The results show that the total annual water demand is projected to increase by 1405 million cubic meters (+15.9%) by 2040, driven primarily by urbanization. Using the median capital costs of alternative water supply projects, cumulative expenditures for the additional water supplies are estimated between USD 1.11–1.87 billion. However, when uncertainty in the project costs is accounted for, the projected expenditure range shifts to USD 1.65 and USD 3.21 billion. In addition, we illustrate how using Modern Portfolio Theory (MPT) can increase the efficacy of investment planning to develop alternative water supply options. The results indicate that using MPT in selecting the share of each project type in developing water supply options can reduce the standard deviation of capital costs per one unit of capacity by 74% compared to the equal share allocation. This study highlights the need for developing more flexible funding strategies on local, regional, and state levels to finance additional water supply infrastructure, and more cost-effective combinations of demand management strategies and alternative water supply options to meet the water needed for the state in the future.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"13 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90479309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The moderating influence of irrigation on dry heat extremes is well established, but the effect of irrigation on humid heat is more uncertain. Here, we study the impact of modern irrigation on both dry and humid heat-wave occurrences during the boreal summer using the NASA GISS Earth System Model (ModelE) with and without present-day irrigation. We show that the presence of modern irrigation reduces the total number of dry heat waves in most land areas, especially in arid and temperate regions. In contrast, humid heat waves occur more frequently under modern irrigation, especially in the Mediterranean Sea region, northern Africa, southern Africa, and the Middle East. Present-day irrigation reduces dry heat extremes by favoring latent heating over sensible heating and lowering surface solar radiation by increasing total cloud cover. Meanwhile, modern irrigation drives increases in humid heat through increases in specific humidity and precipitation. Notably, the reduction in dry heat is mostly localized over irrigated grid cells while humid heat increases both in locally irrigated areas and remote (nonirrigated) regions because of widespread increases in humidity associated with irrigation. Our results suggest that irrigation may amplify humid heat, even in nonirrigated areas, highlighting the importance of improving our understanding of both local and remote effects of the irrigation forcing on climate hazards.
{"title":"Diverging Global Dry and Humid Heat Responses to Modern Irrigation","authors":"Felicia Chiang, Benjamin I. Cook, Sonali McDermid","doi":"10.1175/ei-d-23-0006.1","DOIUrl":"https://doi.org/10.1175/ei-d-23-0006.1","url":null,"abstract":"Abstract The moderating influence of irrigation on dry heat extremes is well established, but the effect of irrigation on humid heat is more uncertain. Here, we study the impact of modern irrigation on both dry and humid heat-wave occurrences during the boreal summer using the NASA GISS Earth System Model (ModelE) with and without present-day irrigation. We show that the presence of modern irrigation reduces the total number of dry heat waves in most land areas, especially in arid and temperate regions. In contrast, humid heat waves occur more frequently under modern irrigation, especially in the Mediterranean Sea region, northern Africa, southern Africa, and the Middle East. Present-day irrigation reduces dry heat extremes by favoring latent heating over sensible heating and lowering surface solar radiation by increasing total cloud cover. Meanwhile, modern irrigation drives increases in humid heat through increases in specific humidity and precipitation. Notably, the reduction in dry heat is mostly localized over irrigated grid cells while humid heat increases both in locally irrigated areas and remote (nonirrigated) regions because of widespread increases in humidity associated with irrigation. Our results suggest that irrigation may amplify humid heat, even in nonirrigated areas, highlighting the importance of improving our understanding of both local and remote effects of the irrigation forcing on climate hazards.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135400697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equity, Inclusion, and Justice: An Opportunity for Action for AMS Publications Stakeholders","authors":"","doi":"10.1175/ei-d-23-0013.1","DOIUrl":"https://doi.org/10.1175/ei-d-23-0013.1","url":null,"abstract":"","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":" ","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43331545","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Air temperature and precipitation outputs from 10 CMIP6 GCMs were input to the Precipitation-Runoff Modeling System hydrologic model to evaluate water and energy responses in three headwater basins to projected climate change over the twenty-first century. The headwater basins (398–801 km2) are located within the Mataura River basin in the South Island of New Zealand. CMIP6 datasets included two emission scenarios [shared socioeconomic pathways (SSPs) SSP2-4.5 and SSP5-8.5]. Half of the 10 GCMs selected in the study have equilibrium climate sensitivity (ECS) values above 4.5°C, which has been considered the upper end of equilibrium climate sensitivity. Modeling results included increased annual air temperature, evapotranspiration, and precipitation by the end of the twenty-first century for both SSP emissions scenarios, both high- and low-ECS GCMs, and all three headwater basins. Monthly precipitation and evapotranspiration totals also increased for all or most months. Monthly streamflow changes generally corresponded with monthly precipitation changes. Snowpack decreased significantly in depth and seasonal duration in all basins. However, streamflow increased for all SSP and ECS groups and basins because increased precipitation was consistently greater than increased evapotranspiration losses. Sources of uncertainty include the GCMs, climate sensitivity, downscaling, bias adjustment, emission scenarios, and the hydrologic model. Simulated hydrologic responses based on climate data from GCMs with ECS values of greater than 4.5°C could be less plausible since previous studies have suggested true ECS ranges from 1.5° to 4.5°C.
{"title":"Simulating the Hydrologic Response to Climate Change in Three New Zealand Headwater Basins Using CMIP6 Datasets","authors":"J. Risley, C. Zammit","doi":"10.1175/ei-d-22-0018.1","DOIUrl":"https://doi.org/10.1175/ei-d-22-0018.1","url":null,"abstract":"\u0000Air temperature and precipitation outputs from 10 CMIP6 GCMs were input to the Precipitation-Runoff Modeling System hydrologic model to evaluate water and energy responses in three headwater basins to projected climate change over the twenty-first century. The headwater basins (398–801 km2) are located within the Mataura River basin in the South Island of New Zealand. CMIP6 datasets included two emission scenarios [shared socioeconomic pathways (SSPs) SSP2-4.5 and SSP5-8.5]. Half of the 10 GCMs selected in the study have equilibrium climate sensitivity (ECS) values above 4.5°C, which has been considered the upper end of equilibrium climate sensitivity. Modeling results included increased annual air temperature, evapotranspiration, and precipitation by the end of the twenty-first century for both SSP emissions scenarios, both high- and low-ECS GCMs, and all three headwater basins. Monthly precipitation and evapotranspiration totals also increased for all or most months. Monthly streamflow changes generally corresponded with monthly precipitation changes. Snowpack decreased significantly in depth and seasonal duration in all basins. However, streamflow increased for all SSP and ECS groups and basins because increased precipitation was consistently greater than increased evapotranspiration losses. Sources of uncertainty include the GCMs, climate sensitivity, downscaling, bias adjustment, emission scenarios, and the hydrologic model. Simulated hydrologic responses based on climate data from GCMs with ECS values of greater than 4.5°C could be less plausible since previous studies have suggested true ECS ranges from 1.5° to 4.5°C.","PeriodicalId":51020,"journal":{"name":"Earth Interactions","volume":"1 1","pages":""},"PeriodicalIF":2.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41822486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}