Pub Date : 2024-02-06DOI: 10.3390/separations11020047
G. Melzi, Corrado L. Galli, M. Marinovich
Extracts of Rheum palmatum L., Rhamnus purshiana DC., Rhamnus frangula L., and Cassia senna L. are used in traditional medicine thanks to their beneficial properties. These species contain hydroxyanthracene derivatives, considered genotoxic and possibly related to colorectal cancer development. This research aimed to study, using a micronucleus assay in vitro, the genotoxic potential of Rheum palmatum L., Rhamnus purshiana DC., Rhamnus frangula L. (bark), and Cassia senna L. (leaves and fruits) extracts. The extracts were evaluated at different concentrations: from 0 to 2000 µg/mL for Rhamnus purshiana DC, from 0 to 2500 µg/mL for Rheum palmatum L. and Rhamnus frangula L., and from 0 to 5000 µg/mL for Cassia senna L. The cytokinesis-block proliferation index was calculated to analyse if the used concentrations showed cytotoxicity. The hydroxyanthracene content varied between 0.06% and 0.23% for aloe-emodin, and between 0.07% and 0.16% for emodin and rhein. No cytotoxic effect was detected at any of these concentrations. Micronucleus analyses showed a lack of genotoxicity for all the extracts tested. These results show that Rheum palmatum L., Rhamnus purshiana DC, Rhamnus frangula L., and Cassia senna L. extracts do not induce genotoxicity since no increase in micronuclei formation in human lymphocytes in vitro was detected.
{"title":"Risk Characterization of Botanical Extracts Containing Hydroxyanthracenes as Determined by a Validated Micronucleus In Vitro Assay","authors":"G. Melzi, Corrado L. Galli, M. Marinovich","doi":"10.3390/separations11020047","DOIUrl":"https://doi.org/10.3390/separations11020047","url":null,"abstract":"Extracts of Rheum palmatum L., Rhamnus purshiana DC., Rhamnus frangula L., and Cassia senna L. are used in traditional medicine thanks to their beneficial properties. These species contain hydroxyanthracene derivatives, considered genotoxic and possibly related to colorectal cancer development. This research aimed to study, using a micronucleus assay in vitro, the genotoxic potential of Rheum palmatum L., Rhamnus purshiana DC., Rhamnus frangula L. (bark), and Cassia senna L. (leaves and fruits) extracts. The extracts were evaluated at different concentrations: from 0 to 2000 µg/mL for Rhamnus purshiana DC, from 0 to 2500 µg/mL for Rheum palmatum L. and Rhamnus frangula L., and from 0 to 5000 µg/mL for Cassia senna L. The cytokinesis-block proliferation index was calculated to analyse if the used concentrations showed cytotoxicity. The hydroxyanthracene content varied between 0.06% and 0.23% for aloe-emodin, and between 0.07% and 0.16% for emodin and rhein. No cytotoxic effect was detected at any of these concentrations. Micronucleus analyses showed a lack of genotoxicity for all the extracts tested. These results show that Rheum palmatum L., Rhamnus purshiana DC, Rhamnus frangula L., and Cassia senna L. extracts do not induce genotoxicity since no increase in micronuclei formation in human lymphocytes in vitro was detected.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"4 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139800630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-06DOI: 10.3390/separations11020048
Xing Xie, Mangmang Li, Dan Lin, Bin Li, C. Li, Dongjing Liu
Recently, salt-assisted pyrolyzation has been deemed an emerging and efficient method for the preparation of biochars due to its facile operation as well as its good structural and chemical properties. In this work, biochars (MBCx) are prepared by heating bamboo powders in eutectic salts (Li2CO3 + K2CO3) at 500–600 °C in the air. Multiple technologies are employed to examine the physiochemical properties of bamboo biochars. Correlations between heating temperature and structural features and carbon dioxide uptakes of bamboo biochars have been investigated. The results show that heating temperature has a significant influence on the physicochemical properties of bamboo biochars. With the elevation of the heating temperature, the defect structures of bamboo biochars gradually ascend, especially when the heating temperature reaches 600 °C. MBCx biochars visibly exceed conventional bamboo biochar prepared via pyrolyzation in a nitrogen stream free of salt addition. Pyrolysis of bamboo in eutectic salts endows biochars with higher oxygen content and more carbon defects, which likely accounts for their better CO2 capture activities.
最近,盐助热解因其简便的操作以及良好的结构和化学特性,被认为是制备生物炭的一种新兴而有效的方法。在这项工作中,通过在 500-600 °C 的空气中加热共晶盐(Li2CO3 + K2CO3)中的竹粉来制备生物炭(MBCx)。采用多种技术来研究竹生物炭的理化性质。研究了加热温度与竹生物脆的结构特征和二氧化碳吸收之间的相关性。结果表明,加热温度对竹生物脆的理化性质有显著影响。随着加热温度的升高,竹生物碳渣的缺陷结构逐渐增加,尤其是当加热温度达到 600 ℃ 时。MBCx 生物炭明显优于在不加盐的氮气流中热解制备的传统竹生物炭。在共晶盐中热解竹子使生物炭具有更高的氧含量和更多的碳缺陷,这可能是它们具有更好的二氧化碳捕集活性的原因。
{"title":"CO2 Adsorption by Bamboo Biochars Obtained via a Salt-Assisted Pyrolysis Route","authors":"Xing Xie, Mangmang Li, Dan Lin, Bin Li, C. Li, Dongjing Liu","doi":"10.3390/separations11020048","DOIUrl":"https://doi.org/10.3390/separations11020048","url":null,"abstract":"Recently, salt-assisted pyrolyzation has been deemed an emerging and efficient method for the preparation of biochars due to its facile operation as well as its good structural and chemical properties. In this work, biochars (MBCx) are prepared by heating bamboo powders in eutectic salts (Li2CO3 + K2CO3) at 500–600 °C in the air. Multiple technologies are employed to examine the physiochemical properties of bamboo biochars. Correlations between heating temperature and structural features and carbon dioxide uptakes of bamboo biochars have been investigated. The results show that heating temperature has a significant influence on the physicochemical properties of bamboo biochars. With the elevation of the heating temperature, the defect structures of bamboo biochars gradually ascend, especially when the heating temperature reaches 600 °C. MBCx biochars visibly exceed conventional bamboo biochar prepared via pyrolyzation in a nitrogen stream free of salt addition. Pyrolysis of bamboo in eutectic salts endows biochars with higher oxygen content and more carbon defects, which likely accounts for their better CO2 capture activities.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"56 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139861719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-06DOI: 10.3390/separations11020049
K. Urbanova, A. Romulo, M. Houdková, P. Nový, L. Kokoska
This study assessed the antistaphylococcal activity of essential oil (EO) hydrodistilled from the rhizome of Curcuma mangga grown in Indonesia using the broth microdilution volatilization method and standard broth microdilution method modified for evaluation of volatile agents, as well as described its chemical composition using gas chromatography (GC) with mass spectrometry (MS). A fused-silica HP-5MS column and a DB-17MS column were used to separate the components into two columns. The results demonstrated that the EO exhibited antistaphylococcal activity at the minimum inhibitory concentration (MIC) ranging from 128 to 1024 µg/mL. In contrast, the clinical isolate of tetracycline-resistant Staphylococcus aureus was the most sensitive strain (MIC 128 µg/mL). The major constituents of the EO were 15,16-dinorlabda-8(17),11-dien-13-one (24.63/15.78%), followed by ambrial (16.12/10.97%), 13-nor-eremophil-1(10)-en-11-one (7.16/6.21%), 15,16-dinorlabda-8(17),12-dien-14-al (6.61/11.57%), and aromadendrene oxide (5.98/3.77%). These results propose C. mangga rhizome EO as a promising agent for developing natural-based anti-infective preparations.
{"title":"Chemical Composition and Antistaphylococcal Activity of Essential Oil of Curcuma mangga Rhizome from Indonesia","authors":"K. Urbanova, A. Romulo, M. Houdková, P. Nový, L. Kokoska","doi":"10.3390/separations11020049","DOIUrl":"https://doi.org/10.3390/separations11020049","url":null,"abstract":"This study assessed the antistaphylococcal activity of essential oil (EO) hydrodistilled from the rhizome of Curcuma mangga grown in Indonesia using the broth microdilution volatilization method and standard broth microdilution method modified for evaluation of volatile agents, as well as described its chemical composition using gas chromatography (GC) with mass spectrometry (MS). A fused-silica HP-5MS column and a DB-17MS column were used to separate the components into two columns. The results demonstrated that the EO exhibited antistaphylococcal activity at the minimum inhibitory concentration (MIC) ranging from 128 to 1024 µg/mL. In contrast, the clinical isolate of tetracycline-resistant Staphylococcus aureus was the most sensitive strain (MIC 128 µg/mL). The major constituents of the EO were 15,16-dinorlabda-8(17),11-dien-13-one (24.63/15.78%), followed by ambrial (16.12/10.97%), 13-nor-eremophil-1(10)-en-11-one (7.16/6.21%), 15,16-dinorlabda-8(17),12-dien-14-al (6.61/11.57%), and aromadendrene oxide (5.98/3.77%). These results propose C. mangga rhizome EO as a promising agent for developing natural-based anti-infective preparations.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"183 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139799730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-06DOI: 10.3390/separations11020047
G. Melzi, Corrado L. Galli, M. Marinovich
Extracts of Rheum palmatum L., Rhamnus purshiana DC., Rhamnus frangula L., and Cassia senna L. are used in traditional medicine thanks to their beneficial properties. These species contain hydroxyanthracene derivatives, considered genotoxic and possibly related to colorectal cancer development. This research aimed to study, using a micronucleus assay in vitro, the genotoxic potential of Rheum palmatum L., Rhamnus purshiana DC., Rhamnus frangula L. (bark), and Cassia senna L. (leaves and fruits) extracts. The extracts were evaluated at different concentrations: from 0 to 2000 µg/mL for Rhamnus purshiana DC, from 0 to 2500 µg/mL for Rheum palmatum L. and Rhamnus frangula L., and from 0 to 5000 µg/mL for Cassia senna L. The cytokinesis-block proliferation index was calculated to analyse if the used concentrations showed cytotoxicity. The hydroxyanthracene content varied between 0.06% and 0.23% for aloe-emodin, and between 0.07% and 0.16% for emodin and rhein. No cytotoxic effect was detected at any of these concentrations. Micronucleus analyses showed a lack of genotoxicity for all the extracts tested. These results show that Rheum palmatum L., Rhamnus purshiana DC, Rhamnus frangula L., and Cassia senna L. extracts do not induce genotoxicity since no increase in micronuclei formation in human lymphocytes in vitro was detected.
{"title":"Risk Characterization of Botanical Extracts Containing Hydroxyanthracenes as Determined by a Validated Micronucleus In Vitro Assay","authors":"G. Melzi, Corrado L. Galli, M. Marinovich","doi":"10.3390/separations11020047","DOIUrl":"https://doi.org/10.3390/separations11020047","url":null,"abstract":"Extracts of Rheum palmatum L., Rhamnus purshiana DC., Rhamnus frangula L., and Cassia senna L. are used in traditional medicine thanks to their beneficial properties. These species contain hydroxyanthracene derivatives, considered genotoxic and possibly related to colorectal cancer development. This research aimed to study, using a micronucleus assay in vitro, the genotoxic potential of Rheum palmatum L., Rhamnus purshiana DC., Rhamnus frangula L. (bark), and Cassia senna L. (leaves and fruits) extracts. The extracts were evaluated at different concentrations: from 0 to 2000 µg/mL for Rhamnus purshiana DC, from 0 to 2500 µg/mL for Rheum palmatum L. and Rhamnus frangula L., and from 0 to 5000 µg/mL for Cassia senna L. The cytokinesis-block proliferation index was calculated to analyse if the used concentrations showed cytotoxicity. The hydroxyanthracene content varied between 0.06% and 0.23% for aloe-emodin, and between 0.07% and 0.16% for emodin and rhein. No cytotoxic effect was detected at any of these concentrations. Micronucleus analyses showed a lack of genotoxicity for all the extracts tested. These results show that Rheum palmatum L., Rhamnus purshiana DC, Rhamnus frangula L., and Cassia senna L. extracts do not induce genotoxicity since no increase in micronuclei formation in human lymphocytes in vitro was detected.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"60 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139860664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-06DOI: 10.3390/separations11020050
U. Muddapur, Samiksha Manjunath, Yahya S. Alqahtani, I. Shaikh, A. Khan, B. A. Mannasaheb, Deepak A. Yaraguppi, S. More
The main objective of this research was to perform Gymnema sylvestre (Asclepiadaceae) extract’s phytochemical screening and identify its therapeutic potential. Using a Soxhlet apparatus, the powdered plant material was extracted using ethyl acetate. The preliminary phytochemical analysis confirmed the presence of alkaloids, flavonoids, phenols, glycosides, and steroids. Gas chromatography–mass spectroscopy analysis of the extract was performed and confirmed the presence of 11 compounds. As per the quantitative analysis, the extract exhibited a phenolic content of 948 µg gallic acid equivalent/g dry weight, a total flavonoid content of 398 µg quercetin equivalent/g dry weight, and an alkaloid content of 487 µg atropine equivalent/g dry weight. As per the in vitro cytotoxicity test using A549 cells, the IC50 (half-maximal inhibitory concentration) value for the extract was found to be 76.06 ± 1.26 µg/mL, indicating its cytotoxic effect on the cells. The ethyl acetate extract showed significant antibacterial efficacy, as evidenced by a zone of clearance measuring 3 mm against Escherichia coli and 6 mm against Bacillus subtilis. For anthelmintic activity, the earthworm paralysis time induced by G. sylvestre extract (10 mg/mL) was 28.13 ± 0.8 min, and the time of death was 68.21 ± 1.72 min. In comparison, the reference drug, piperazine citrate (10 mg/mL), caused paralysis in 22.18 ± 1.02 min and resulted in death at 66.22 ± 2.35 min. Similarly, the coagulation time was notably prolonged, with blood clot formation observed at 1 min and 40 s, at a concentration of 1 mg/mL, which underscores the potential anticoagulant or hemostatic modulation properties of G. sylvestre extract. The test extract showed good inhibition of alpha-amylase activity and exhibited an IC50 value of 15.59 µg/mL. The IC50 value for DPPH (2,2-diphenyl-1-picrylhydrazyl)-scavenging activity for the extract was 19.19 µg/mL. Based on the GCMS results, the compound 2,7-dimethyl-undecane was selected for its anticancer potential. Docking studies were conducted with the epidermal growth factor receptor (EGFR) protein, specifically the 5WB7 variant associated with lung cancer. The docking score was −4.5, indicating a potential interaction. Key interaction residues such as ASN328, VAL350, and THR358 were identified. Overall, this research provides valuable insights into the phytochemical composition and diverse biological activities of G. sylvestre extract, offering a foundation for further exploration of its medicinal and pharmacological potential.
{"title":"Exploring Bioactive Phytochemicals in Gymnema sylvestre: Biomedical Uses and Computational Investigations","authors":"U. Muddapur, Samiksha Manjunath, Yahya S. Alqahtani, I. Shaikh, A. Khan, B. A. Mannasaheb, Deepak A. Yaraguppi, S. More","doi":"10.3390/separations11020050","DOIUrl":"https://doi.org/10.3390/separations11020050","url":null,"abstract":"The main objective of this research was to perform Gymnema sylvestre (Asclepiadaceae) extract’s phytochemical screening and identify its therapeutic potential. Using a Soxhlet apparatus, the powdered plant material was extracted using ethyl acetate. The preliminary phytochemical analysis confirmed the presence of alkaloids, flavonoids, phenols, glycosides, and steroids. Gas chromatography–mass spectroscopy analysis of the extract was performed and confirmed the presence of 11 compounds. As per the quantitative analysis, the extract exhibited a phenolic content of 948 µg gallic acid equivalent/g dry weight, a total flavonoid content of 398 µg quercetin equivalent/g dry weight, and an alkaloid content of 487 µg atropine equivalent/g dry weight. As per the in vitro cytotoxicity test using A549 cells, the IC50 (half-maximal inhibitory concentration) value for the extract was found to be 76.06 ± 1.26 µg/mL, indicating its cytotoxic effect on the cells. The ethyl acetate extract showed significant antibacterial efficacy, as evidenced by a zone of clearance measuring 3 mm against Escherichia coli and 6 mm against Bacillus subtilis. For anthelmintic activity, the earthworm paralysis time induced by G. sylvestre extract (10 mg/mL) was 28.13 ± 0.8 min, and the time of death was 68.21 ± 1.72 min. In comparison, the reference drug, piperazine citrate (10 mg/mL), caused paralysis in 22.18 ± 1.02 min and resulted in death at 66.22 ± 2.35 min. Similarly, the coagulation time was notably prolonged, with blood clot formation observed at 1 min and 40 s, at a concentration of 1 mg/mL, which underscores the potential anticoagulant or hemostatic modulation properties of G. sylvestre extract. The test extract showed good inhibition of alpha-amylase activity and exhibited an IC50 value of 15.59 µg/mL. The IC50 value for DPPH (2,2-diphenyl-1-picrylhydrazyl)-scavenging activity for the extract was 19.19 µg/mL. Based on the GCMS results, the compound 2,7-dimethyl-undecane was selected for its anticancer potential. Docking studies were conducted with the epidermal growth factor receptor (EGFR) protein, specifically the 5WB7 variant associated with lung cancer. The docking score was −4.5, indicating a potential interaction. Key interaction residues such as ASN328, VAL350, and THR358 were identified. Overall, this research provides valuable insights into the phytochemical composition and diverse biological activities of G. sylvestre extract, offering a foundation for further exploration of its medicinal and pharmacological potential.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"129 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139858930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study tried to use electroflocculating precipitated waste to prepare a Si@Al adsorbent by simply mixing sodium silicate at a mass ratio of 4:1 and calcining at 200 °C for 2 h. The adsorbent was low cost, high efficiency, and could remove a variety of contaminants (organic pollutants, antibiotics, and metal ions) from water. In this study, adsorbent characterization and pollutant adsorption experiments were carried out. The results showed that: Si@Al adsorbent had uniform particles, distinct layers, a loose porous appearance, and the internal structure was scattered without a crystal structure. The optimal adsorption conditions for tetracycline were as follows: dosage of adsorbent 2.0 g/L, reaction time 10 min, pH = 4.5, and tetracycline removal rate of 97.13%. The optimal adsorption conditions for MB (MB stands for methylene blue) were an adsorption dosage of 4.0 g/L, a reaction time of 15 min, pH = 4.5–8.5, and a removal rate of 96.39%. The optimal adsorption conditions for Cu were a 2.0 g/L dosage of adsorbent, a reaction time of 30 min, a pH of 8.5, and a highest removal rate of 97.47%. It was worth noting that the effect of temperature on TC, MB and Cu was not significant. At the same time, the kinetic fitting results showed that the adsorption of MB was more consistent with the quasi-second-order kinetic model, with R2 ranging from 0.9788 to 1.0000. The adsorption of TC and Cu was more consistent with the quasi-first-order kinetic model, with R2 ranging from 0.9598 to 0.9999 and 0.9844 to 0.9988, respectively. According to the results of thermodynamics, kinetics and zero potential point, the adsorption of tetracycline and methylene blue was mainly a physical adsorption, multilayer heterogeneous or single-layer homogeneous adsorption process. The adsorption of Cu was categorized as multi-layer heterogeneous chemical adsorption. The co-existing substances had little effect on the properties of the adsorbent, and the adsorbent could be recycled 5 times. Compared with other adsorbents, the results showed that the adsorbents had obvious advantages in terms of the raw material source, preparation method, time cost and removal effect. This study provided a “waste into treasure, green and efficient” multi-pollutant adsorption method.
{"title":"Preparation and Application of Si@Al Adsorbents for Different Pollutants Removal from Aqueous Solution","authors":"Xiaoyu Xu, Jiahua Liu, Yuang Cao, Han Wang, Keqiang Zhang, Chein-Chi Chang, Suli Zhi","doi":"10.3390/separations11010029","DOIUrl":"https://doi.org/10.3390/separations11010029","url":null,"abstract":"This study tried to use electroflocculating precipitated waste to prepare a Si@Al adsorbent by simply mixing sodium silicate at a mass ratio of 4:1 and calcining at 200 °C for 2 h. The adsorbent was low cost, high efficiency, and could remove a variety of contaminants (organic pollutants, antibiotics, and metal ions) from water. In this study, adsorbent characterization and pollutant adsorption experiments were carried out. The results showed that: Si@Al adsorbent had uniform particles, distinct layers, a loose porous appearance, and the internal structure was scattered without a crystal structure. The optimal adsorption conditions for tetracycline were as follows: dosage of adsorbent 2.0 g/L, reaction time 10 min, pH = 4.5, and tetracycline removal rate of 97.13%. The optimal adsorption conditions for MB (MB stands for methylene blue) were an adsorption dosage of 4.0 g/L, a reaction time of 15 min, pH = 4.5–8.5, and a removal rate of 96.39%. The optimal adsorption conditions for Cu were a 2.0 g/L dosage of adsorbent, a reaction time of 30 min, a pH of 8.5, and a highest removal rate of 97.47%. It was worth noting that the effect of temperature on TC, MB and Cu was not significant. At the same time, the kinetic fitting results showed that the adsorption of MB was more consistent with the quasi-second-order kinetic model, with R2 ranging from 0.9788 to 1.0000. The adsorption of TC and Cu was more consistent with the quasi-first-order kinetic model, with R2 ranging from 0.9598 to 0.9999 and 0.9844 to 0.9988, respectively. According to the results of thermodynamics, kinetics and zero potential point, the adsorption of tetracycline and methylene blue was mainly a physical adsorption, multilayer heterogeneous or single-layer homogeneous adsorption process. The adsorption of Cu was categorized as multi-layer heterogeneous chemical adsorption. The co-existing substances had little effect on the properties of the adsorbent, and the adsorbent could be recycled 5 times. Compared with other adsorbents, the results showed that the adsorbents had obvious advantages in terms of the raw material source, preparation method, time cost and removal effect. This study provided a “waste into treasure, green and efficient” multi-pollutant adsorption method.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"44 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139533363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-11DOI: 10.3390/separations11010028
T. Senfter, Igor Schweiggl, M. Berger, C. Mayerl, T. Kofler, M. Kraxner, Axel Steffens, M. Pillei
The dewatering of substrates is one of the key tasks in the handling of material flows in a circular economy. Besides belt filters, sedimenters, and decanters, screw presses are frequently used to reduce the water content of substrates. However, screw presses available on the market are usually designed for high throughputs (>5 m3/h). The dewatering of smaller feed rates (<1 m3/h), however, requires more compact solutions. For this reason, a compact screw press (short screw length), which is normally used in agriculture for cow manure dewatering, was investigated in this work, as there exist no publications on this type of compact screw press. A mobile test setup was developed and loaded with different material such as digested sludge from a wastewater treatment plant, commercially available potting soil, wood shavings, and biological waste. The dry matter content of the feed material, the feed material itself, the screw rotational speed, and the weight setting (pressure) at the back plate were varied, and the effects on the dewatering result were recorded. A significant influence on the dewatering result was found for the weight setting, the type of substrate (particle size), and the dry substance content of the feed material. The tests confirmed that the compact screw press separator is suitable for the dewatering of wood shavings and biological waste (with an increase in dry matter percentage of up to 7.7%). The direct dewatering of potting soil and digested sludge is not possible and can only be implemented by using structural support material. This study fills the gap between published work on large screw presses and potentially new application fields of compact screw press manure separators, which, until now, have only been used in agriculture.
{"title":"The Dewatering Performance of a Compact Screw Press Manure Separator for Non-Typical Substrates","authors":"T. Senfter, Igor Schweiggl, M. Berger, C. Mayerl, T. Kofler, M. Kraxner, Axel Steffens, M. Pillei","doi":"10.3390/separations11010028","DOIUrl":"https://doi.org/10.3390/separations11010028","url":null,"abstract":"The dewatering of substrates is one of the key tasks in the handling of material flows in a circular economy. Besides belt filters, sedimenters, and decanters, screw presses are frequently used to reduce the water content of substrates. However, screw presses available on the market are usually designed for high throughputs (>5 m3/h). The dewatering of smaller feed rates (<1 m3/h), however, requires more compact solutions. For this reason, a compact screw press (short screw length), which is normally used in agriculture for cow manure dewatering, was investigated in this work, as there exist no publications on this type of compact screw press. A mobile test setup was developed and loaded with different material such as digested sludge from a wastewater treatment plant, commercially available potting soil, wood shavings, and biological waste. The dry matter content of the feed material, the feed material itself, the screw rotational speed, and the weight setting (pressure) at the back plate were varied, and the effects on the dewatering result were recorded. A significant influence on the dewatering result was found for the weight setting, the type of substrate (particle size), and the dry substance content of the feed material. The tests confirmed that the compact screw press separator is suitable for the dewatering of wood shavings and biological waste (with an increase in dry matter percentage of up to 7.7%). The direct dewatering of potting soil and digested sludge is not possible and can only be implemented by using structural support material. This study fills the gap between published work on large screw presses and potentially new application fields of compact screw press manure separators, which, until now, have only been used in agriculture.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"37 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139534050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.3390/separations11010024
M. Nijboer, Asif Jan, Mingliang Chen, Kevin Batenburg, Julia Peper, Tom Aarnink, Fred Roozeboom, Alexey Kovalgin, A. Nijmeijer, M. Luiten-Olieman
Atomic layer deposition (ALD) is known for its unparalleled control over layer thickness and 3D conformality and could be the future technique of choice to tailor the pore size of ceramic nanofiltration membranes. However, a major challenge in tuning and functionalizing a multichannel ceramic membrane is posed by its large internal pore volume, which needs to be evacuated during ALD cycling. This may require significant energy and processing time. This study presents a new reactor design, operating at atmospheric pressure, that is able to deposit thin layers in the pores of ceramic membranes. In this design, the reactor wall is formed by the industrial tubular ceramic membrane itself, and carrier gas flows are employed to transport the precursor and co-reactant vapors to the reactive surface groups present on the membrane surface. The layer growth for atmospheric-pressure ALD in this case proceeds similarly to that for state-of-the-art vacuum-based ALD. Moreover, for membrane preparation, this new reactor design has three advantages: (i) monolayers are deposited only at the outer pore mouths rather than in the entire bulk of the porous membrane substrate, resulting in reduced flow resistances for liquid permeation; (ii) an in-line gas permeation method was developed to follow the layer growth in the pores during the deposition process, allowing more precise control over the finished membrane; and (iii) expensive vacuum components and cleanroom environment are eliminated. This opens up a new avenue for ceramic membrane development with nano-scale precision using ALD at atmospheric pressure.
{"title":"Tuning Nanopores in Tubular Ceramic Nanofiltration Membranes with Atmospheric-Pressure Atomic Layer Deposition: Prospects for Pressure-Based In-Line Monitoring of Pore Narrowing","authors":"M. Nijboer, Asif Jan, Mingliang Chen, Kevin Batenburg, Julia Peper, Tom Aarnink, Fred Roozeboom, Alexey Kovalgin, A. Nijmeijer, M. Luiten-Olieman","doi":"10.3390/separations11010024","DOIUrl":"https://doi.org/10.3390/separations11010024","url":null,"abstract":"Atomic layer deposition (ALD) is known for its unparalleled control over layer thickness and 3D conformality and could be the future technique of choice to tailor the pore size of ceramic nanofiltration membranes. However, a major challenge in tuning and functionalizing a multichannel ceramic membrane is posed by its large internal pore volume, which needs to be evacuated during ALD cycling. This may require significant energy and processing time. This study presents a new reactor design, operating at atmospheric pressure, that is able to deposit thin layers in the pores of ceramic membranes. In this design, the reactor wall is formed by the industrial tubular ceramic membrane itself, and carrier gas flows are employed to transport the precursor and co-reactant vapors to the reactive surface groups present on the membrane surface. The layer growth for atmospheric-pressure ALD in this case proceeds similarly to that for state-of-the-art vacuum-based ALD. Moreover, for membrane preparation, this new reactor design has three advantages: (i) monolayers are deposited only at the outer pore mouths rather than in the entire bulk of the porous membrane substrate, resulting in reduced flow resistances for liquid permeation; (ii) an in-line gas permeation method was developed to follow the layer growth in the pores during the deposition process, allowing more precise control over the finished membrane; and (iii) expensive vacuum components and cleanroom environment are eliminated. This opens up a new avenue for ceramic membrane development with nano-scale precision using ALD at atmospheric pressure.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"30 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139441641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-09DOI: 10.3390/separations11010025
N. De Vietro, A. M. Aresta, J. Gubitosa, V. Rizzi, Carlo Zambonin
Phthalates are the synthetic chemical plasticizers with the most varied uses and are a source of concern due to their toxicity and ubiquity, so much so that even plasticizer-free polymers can contain them as non-intentionally added substances (NIAS). Food packaging is among the materials with the greatest impact. In this study, a simple protocol is proposed for the location and identification of dimethyl phthalate, diethyl phthalate, dipropyl phthalate, and dibutyl phthalate which is applicable to compliance studies of food packaging materials and for the associated risk assessment. Solid phase microextraction gas chromatography/mass spectrometry was used to evaluate the migration of four NIAS from food packaging to release media simulating food substrates. Three plasticizer-free polymers were used: two that were lab-made and based on sodium alginate and a commercial polyethylene film. Linearity ranged from the LOQ to 10 µg/mL; within-day and between-day precision values were between 12.3–25.7% and 21.9–35.8%, respectively; the LOD and LOQ were in the range 0.029–0.073 µg/mL and 0.122–0.970 µg/mL. Migration tests were conducted for different periods of time at room temperature and at 8 °C. Exposure to microwaves (MW) was also evaluated. All packaging materials tested had global migration limits lower than 10 mg/dm2 of material surface.
{"title":"Assessing the Conformity of Plasticizer-Free Polymers for Foodstuff Packaging Using Solid Phase Microextraction Coupled to Gas Chromatography/Mass Spectrometry","authors":"N. De Vietro, A. M. Aresta, J. Gubitosa, V. Rizzi, Carlo Zambonin","doi":"10.3390/separations11010025","DOIUrl":"https://doi.org/10.3390/separations11010025","url":null,"abstract":"Phthalates are the synthetic chemical plasticizers with the most varied uses and are a source of concern due to their toxicity and ubiquity, so much so that even plasticizer-free polymers can contain them as non-intentionally added substances (NIAS). Food packaging is among the materials with the greatest impact. In this study, a simple protocol is proposed for the location and identification of dimethyl phthalate, diethyl phthalate, dipropyl phthalate, and dibutyl phthalate which is applicable to compliance studies of food packaging materials and for the associated risk assessment. Solid phase microextraction gas chromatography/mass spectrometry was used to evaluate the migration of four NIAS from food packaging to release media simulating food substrates. Three plasticizer-free polymers were used: two that were lab-made and based on sodium alginate and a commercial polyethylene film. Linearity ranged from the LOQ to 10 µg/mL; within-day and between-day precision values were between 12.3–25.7% and 21.9–35.8%, respectively; the LOD and LOQ were in the range 0.029–0.073 µg/mL and 0.122–0.970 µg/mL. Migration tests were conducted for different periods of time at room temperature and at 8 °C. Exposure to microwaves (MW) was also evaluated. All packaging materials tested had global migration limits lower than 10 mg/dm2 of material surface.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"36 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139442798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-08DOI: 10.3390/separations11010023
A. M. Araya-Sibaja, Felipe Vargas-Huertas, Silvia Quesada, Gabriela Azofeifa, J. Vega-baudrit, Mirtha Navarro-Hoyos
The biological activities of curcuminoids, the main polyphenol constituents of Curcuma longa (turmeric), have been the subject of many studies in recent years. However, these studies have focused on the major active compound, curcumin (CUR), while other important constituents, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDM) have been less studied and reported in the literature regarding their bioactivity as well as their isolation and solid-state characterization. Hence, in this study, DMC and BDM were isolated using pressurized liquid extraction (PLE) followed by column chromatography and crystallization. HRMS and 1H and 13C NMR were used to characterize them. Solid-state characterization was performed through powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) techniques. Further, powder dissolution profiles were performed in two media, antioxidant and cytotoxic activities were determined through 2,2-diphenyl-1-picrylhidrazyl (DPPH) and an MTT assay on gastric adenocarcinoma (AGS), colorectal adenocarcinoma (SW-620), and hepatocellular carcinoma (HepG2) cell lines. DMC and BDM were extracted from Curcuma longa cultivated in Costa Rica, using pressurized liquid extraction (PLE), then isolated and purified, combining column chromatography and crystallization techniques. The highly pure solids obtained were shown to be crystalline with an amorphous component. Although the PXRD pattern of BDM suggested a high amorphous component, the crystal exhibited a well-defined and faceted shape. Meanwhile, DMC crystallized in a botryoidal habit, and this constitutes the first report for this compound. On the other hand, BDM was slightly more soluble than DMC, which in turn showed an antioxidant IC50 value 28% higher than BDM (12.46 and 17.94 µg/mL, respectively). In respect to the cytotoxic effects, DMC showed a better IC50 value than BDM for both the SW-620 and AGS cell lines, while BDM exhibited a better IC50 value than DMC against the HepG2 cell line (64.7 μM). In terms of selectivity, BDM and DMC had the highest SI value for SW-620 cells compared to non-tumoral cells, while both compounds also displayed the best cytotoxic effect against these colon adenocarcinoma SW-620 cells, indicating BDM and DMC as potential chemotherapeutic drugs.
{"title":"Characterization, Antioxidant and Cytotoxic Evaluation of Demethoxycurcumin and Bisdemethoxycurcumin from Curcuma longa Cultivated in Costa Rica","authors":"A. M. Araya-Sibaja, Felipe Vargas-Huertas, Silvia Quesada, Gabriela Azofeifa, J. Vega-baudrit, Mirtha Navarro-Hoyos","doi":"10.3390/separations11010023","DOIUrl":"https://doi.org/10.3390/separations11010023","url":null,"abstract":"The biological activities of curcuminoids, the main polyphenol constituents of Curcuma longa (turmeric), have been the subject of many studies in recent years. However, these studies have focused on the major active compound, curcumin (CUR), while other important constituents, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDM) have been less studied and reported in the literature regarding their bioactivity as well as their isolation and solid-state characterization. Hence, in this study, DMC and BDM were isolated using pressurized liquid extraction (PLE) followed by column chromatography and crystallization. HRMS and 1H and 13C NMR were used to characterize them. Solid-state characterization was performed through powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM) techniques. Further, powder dissolution profiles were performed in two media, antioxidant and cytotoxic activities were determined through 2,2-diphenyl-1-picrylhidrazyl (DPPH) and an MTT assay on gastric adenocarcinoma (AGS), colorectal adenocarcinoma (SW-620), and hepatocellular carcinoma (HepG2) cell lines. DMC and BDM were extracted from Curcuma longa cultivated in Costa Rica, using pressurized liquid extraction (PLE), then isolated and purified, combining column chromatography and crystallization techniques. The highly pure solids obtained were shown to be crystalline with an amorphous component. Although the PXRD pattern of BDM suggested a high amorphous component, the crystal exhibited a well-defined and faceted shape. Meanwhile, DMC crystallized in a botryoidal habit, and this constitutes the first report for this compound. On the other hand, BDM was slightly more soluble than DMC, which in turn showed an antioxidant IC50 value 28% higher than BDM (12.46 and 17.94 µg/mL, respectively). In respect to the cytotoxic effects, DMC showed a better IC50 value than BDM for both the SW-620 and AGS cell lines, while BDM exhibited a better IC50 value than DMC against the HepG2 cell line (64.7 μM). In terms of selectivity, BDM and DMC had the highest SI value for SW-620 cells compared to non-tumoral cells, while both compounds also displayed the best cytotoxic effect against these colon adenocarcinoma SW-620 cells, indicating BDM and DMC as potential chemotherapeutic drugs.","PeriodicalId":510456,"journal":{"name":"Separations","volume":"26 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139446919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}