首页 > 最新文献

Journal of Evolution Equations最新文献

英文 中文
On maximal attractors for dynamical systems. Application to a semilinear parabolic problem with controlled growth 论动力系统的最大吸引子。应用于受控增长的半线性抛物线问题
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-04-22 DOI: 10.1007/s00028-024-00966-7
M. Bortolan, Juan Garcìa-Fuentes, Juliana Fernandes, Piotr Kalita
{"title":"On maximal attractors for dynamical systems. Application to a semilinear parabolic problem with controlled growth","authors":"M. Bortolan, Juan Garcìa-Fuentes, Juliana Fernandes, Piotr Kalita","doi":"10.1007/s00028-024-00966-7","DOIUrl":"https://doi.org/10.1007/s00028-024-00966-7","url":null,"abstract":"","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140673937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Propagation of anisotropic Gabor singularities for Schrödinger type equations 薛定谔方程的各向异性 Gabor 奇点传播
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-04-02 DOI: 10.1007/s00028-024-00963-w

Abstract

We show results on propagation of anisotropic Gabor wave front sets for solutions to a class of evolution equations of Schrödinger type. The Hamiltonian is assumed to have a real-valued principal symbol with the anisotropic homogeneity (a(lambda x, lambda ^sigma xi ) = lambda ^{1+sigma } a(x,xi )) for (lambda > 0) where (sigma > 0) is a rational anisotropy parameter. We prove that the propagator is continuous on anisotropic Shubin–Sobolev spaces. The main result says that the propagation of the anisotropic Gabor wave front set follows the Hamilton flow of the principal symbol.

摘要 我们展示了各向异性 Gabor 波前集在一类薛定谔型演化方程的解中的传播结果。假定哈密顿有一个实值主符号,具有各向异性的同质性 (a(lambda x, lambda ^sigma xi ) = lambda ^{1+sigma } a(x,xi )) for (lambda > 0) 其中 (sigma > 0) 是一个合理的各向异性参数。我们证明传播者在各向异性的舒宾-索博列夫空间上是连续的。主要结果表明,各向异性 Gabor 波前集的传播遵循主符号的汉密尔顿流。
{"title":"Propagation of anisotropic Gabor singularities for Schrödinger type equations","authors":"","doi":"10.1007/s00028-024-00963-w","DOIUrl":"https://doi.org/10.1007/s00028-024-00963-w","url":null,"abstract":"<h3>Abstract</h3> <p>We show results on propagation of anisotropic Gabor wave front sets for solutions to a class of evolution equations of Schrödinger type. The Hamiltonian is assumed to have a real-valued principal symbol with the anisotropic homogeneity <span> <span>(a(lambda x, lambda ^sigma xi ) = lambda ^{1+sigma } a(x,xi ))</span> </span> for <span> <span>(lambda &gt; 0)</span> </span> where <span> <span>(sigma &gt; 0)</span> </span> is a rational anisotropy parameter. We prove that the propagator is continuous on anisotropic Shubin–Sobolev spaces. The main result says that the propagation of the anisotropic Gabor wave front set follows the Hamilton flow of the principal symbol.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large deviation principle for multi-scale distribution-dependent stochastic differential equations driven by fractional Brownian motions 分数布朗运动驱动的多尺度分布依赖性随机微分方程的大偏差原理
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-04-02 DOI: 10.1007/s00028-024-00960-z
Guangjun Shen, Huan Zhou, Jiang-Lun Wu

In this paper, we are concerned with multi-scale distribution-dependent stochastic differential equations driven by fractional Brownian motion (with Hurst index (H>frac{1}{2})) and standard Brownian motion, simultaneously. Our aim is to establish a large deviation principle for the multi-scale distribution-dependent stochastic differential equations. This is done via the weak convergence approach and our proof is based heavily on the fractional calculus.

在本文中,我们关注的是由分数布朗运动(Hurst index (H>frac{1}{2})和标准布朗运动同时驱动的多尺度分布依赖随机微分方程。我们的目标是建立多尺度分布依赖随机微分方程的大偏差原理。这是通过弱收敛方法实现的,我们的证明主要基于分数微积分。
{"title":"Large deviation principle for multi-scale distribution-dependent stochastic differential equations driven by fractional Brownian motions","authors":"Guangjun Shen, Huan Zhou, Jiang-Lun Wu","doi":"10.1007/s00028-024-00960-z","DOIUrl":"https://doi.org/10.1007/s00028-024-00960-z","url":null,"abstract":"<p>In this paper, we are concerned with multi-scale distribution-dependent stochastic differential equations driven by fractional Brownian motion (with Hurst index <span>(H&gt;frac{1}{2})</span>) and standard Brownian motion, simultaneously. Our aim is to establish a large deviation principle for the multi-scale distribution-dependent stochastic differential equations. This is done via the weak convergence approach and our proof is based heavily on the fractional calculus.\u0000</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions 具有时间相关线性算子的抛物方程的扰动:线性过程和解的收敛性
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-04-01 DOI: 10.1007/s00028-024-00961-y
Maykel Belluzi

In this work, we consider parabolic equations of the form

$$begin{aligned} (u_{varepsilon })_t +A_{varepsilon }(t)u_{{varepsilon }} = F_{varepsilon } (t,u_{{varepsilon } }), end{aligned}$$

where (varepsilon ) is a parameter in ([0,varepsilon _0)), and ({A_{varepsilon }(t), tin {mathbb {R}}}) is a family of uniformly sectorial operators. As (varepsilon rightarrow 0^{+}), we assume that the equation converges to

$$begin{aligned} u_t +A_{0}(t)u_{} = F_{0} (t,u_{}). end{aligned}$$

The time-dependence found on the linear operators (A_{varepsilon }(t)) implies that linear process is the central object to obtain solutions via variation of constants formula. Under suitable conditions on the family (A_{varepsilon }(t)) and on its convergence to (A_0(t)) when (varepsilon rightarrow 0^{+}), we obtain a Trotter-Kato type Approximation Theorem for the linear process (U_{varepsilon }(t,tau )) associated with (A_{varepsilon }(t)), estimating its convergence to the linear process (U_0(t,tau )) associated with (A_0(t)). Through the variation of constants formula and assuming that (F_{varepsilon }) converges to (F_0), we analyze how this linear process convergence is transferred to the solution of the semilinear equation. We illustrate the ideas in two examples. First a reaction-diffusion equation in a bounded smooth domain (Omega subset {mathbb {R}}^{3})

$$begin{aligned}begin{aligned}&(u_{varepsilon })_t - div (a_{varepsilon } (t,x) nabla u_{varepsilon }) +u_{varepsilon } = f_{varepsilon } (t,u_{varepsilon }), quad xin Omega , t> tau , end{aligned} end{aligned}$$

where (a_varepsilon ) converges to a function (a_0), (f_{varepsilon }) converges to (f_0). We apply the abstract theory in this example, obtaining convergence of the linear process and solution. As a consequence, we also obtain upper-semicontinuity of the family of pullback attractors associated with each problem. The second example is a nonautonomous strongly damped wave equation

$$begin{aligned} u_{tt}+(-a(t) Delta _D) u + 2 (-a(t)Delta _D)^{frac{1}{2}} u_t = f(t,u), quad xin Omega , t>tau ,end{aligned}$$

where (Delta _D) is the Laplacian operator with Dirichlet boundary conditions in a domain (Omega ) and we analyze convergence of solution as we perturb the fractional powers of the associated linear operator.

在这项工作中,我们考虑的抛物线方程的形式为 $$begin{aligned} (u_{varepsilon })_t +A_{varepsilon }(t)u_{{varepsilon }} = F_{varepsilon } (t,u_{varepsilon } }, end{aligned}$ 其中 (varepsilon )是 ([0}[0}[0}[0}[0}[0}[0}[0}[0}[0}[0}[0}[0}[0}[0(t,u_{{varepsilon } }), (end{aligned}$$其中(varepsilon )是([0,varepsilon _0))中的一个参数,而({A_{varepsilon }(t), tin {mathbb {R}}}) 是均匀扇形算子族。由于(varepsilon rightarrow 0^{+}),我们假设方程收敛为 $$begin{aligned} u_t +A_{0}(t)u_{} = F_{0} (t,u_{})。end{aligned}$$ 在线性算子 (A_{varepsilon }(t)) 上发现的时间依赖性意味着线性过程是通过常数变化公式求解的核心对象。在关于族 (A_{varepsilon }(t)) 及其在 (varepsilon rightarrow 0^{+}) 时向 (A_0(t)) 收敛的适当条件下,我们得到了线性过程 (U_{varepsilon }(t. tau )) 的 Trotter-Kato 型近似定理、与 (A_{varepsilon }(t)) 相关联的线性过程 (U_0(t,tau )) 的收敛性,估计其收敛于与(A_0(t)) 相关联的线性过程 (U_0(t,tau ))。通过常量变化公式并假设 (F_{varepsilon }) 收敛到 (F_0),我们分析了线性过程的收敛如何转移到半线性方程的解上。我们用两个例子来说明这些观点。首先是有界光滑域中的反应-扩散方程(Omega 子集 {mathbb {R}}^{3})$$begin{aligned}begin{aligned}&(u_{varepsilon })_t - div (a_{varepsilon } (t,x) nn)(t,x) nabla u_{varepsilon })+u_{varepsilon }= f_{varepsilon } (t,u_{varepsilon })(t,u_{varepsilon }), quad xin Omega , t> tau , end{aligned}$其中 (a_varepsilon })收敛于函数 (a_0), (f_{varepsilon })收敛于函数 (f_0)。我们在这个例子中应用了抽象理论,得到了线性过程和解的收敛性。因此,我们还得到了与每个问题相关的回拉吸引子族的上连续性。第二个例子是一个非自主强阻尼波方程 $$begin{aligned} u_{tt}+(-a(t) Delta _D) u + 2 (-a(t)Delta _D)^{frac{1}{2}} u_t = f(t,u), quad xin Omega , t>;tau ,end{aligned}$ 其中 (Delta _D)是域 (Omega )中具有迪里夏特边界条件的拉普拉斯算子,我们分析了当我们扰动相关线性算子的分数幂时求解的收敛性。
{"title":"Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions","authors":"Maykel Belluzi","doi":"10.1007/s00028-024-00961-y","DOIUrl":"https://doi.org/10.1007/s00028-024-00961-y","url":null,"abstract":"<p>In this work, we consider parabolic equations of the form </p><span>$$begin{aligned} (u_{varepsilon })_t +A_{varepsilon }(t)u_{{varepsilon }} = F_{varepsilon } (t,u_{{varepsilon } }), end{aligned}$$</span><p>where <span>(varepsilon )</span> is a parameter in <span>([0,varepsilon _0))</span>, and <span>({A_{varepsilon }(t), tin {mathbb {R}}})</span> is a family of uniformly sectorial operators. As <span>(varepsilon rightarrow 0^{+})</span>, we assume that the equation converges to </p><span>$$begin{aligned} u_t +A_{0}(t)u_{} = F_{0} (t,u_{}). end{aligned}$$</span><p>The time-dependence found on the linear operators <span>(A_{varepsilon }(t))</span> implies that linear process is the central object to obtain solutions via variation of constants formula. Under suitable conditions on the family <span>(A_{varepsilon }(t))</span> and on its convergence to <span>(A_0(t))</span> when <span>(varepsilon rightarrow 0^{+})</span>, we obtain a Trotter-Kato type Approximation Theorem for the linear process <span>(U_{varepsilon }(t,tau ))</span> associated with <span>(A_{varepsilon }(t))</span>, estimating its convergence to the linear process <span>(U_0(t,tau ))</span> associated with <span>(A_0(t))</span>. Through the variation of constants formula and assuming that <span>(F_{varepsilon })</span> converges to <span>(F_0)</span>, we analyze how this linear process convergence is transferred to the solution of the semilinear equation. We illustrate the ideas in two examples. First a reaction-diffusion equation in a bounded smooth domain <span>(Omega subset {mathbb {R}}^{3})</span></p><span>$$begin{aligned}begin{aligned}&amp;(u_{varepsilon })_t - div (a_{varepsilon } (t,x) nabla u_{varepsilon }) +u_{varepsilon } = f_{varepsilon } (t,u_{varepsilon }), quad xin Omega , t&gt; tau , end{aligned} end{aligned}$$</span><p>where <span>(a_varepsilon )</span> converges to a function <span>(a_0)</span>, <span>(f_{varepsilon })</span> converges to <span>(f_0)</span>. We apply the abstract theory in this example, obtaining convergence of the linear process and solution. As a consequence, we also obtain upper-semicontinuity of the family of pullback attractors associated with each problem. The second example is a nonautonomous strongly damped wave equation </p><span>$$begin{aligned} u_{tt}+(-a(t) Delta _D) u + 2 (-a(t)Delta _D)^{frac{1}{2}} u_t = f(t,u), quad xin Omega , t&gt;tau ,end{aligned}$$</span><p>where <span>(Delta _D)</span> is the Laplacian operator with Dirichlet boundary conditions in a domain <span>(Omega )</span> and we analyze convergence of solution as we perturb the fractional powers of the associated linear operator.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp ill-posedness for the Hunter–Saxton equation on the line 线段上亨特-萨克斯顿方程的尖锐非确定性
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-04-01 DOI: 10.1007/s00028-024-00962-x

Abstract

The purpose of this paper is to give an exact division for the well-posedness and ill-posedness (non-existence) of the Hunter–Saxton equation on the line. Since the force term is not bounded in the classical Besov spaces (even in the classical Sobolev spaces), a new mixed space (mathcal {B}) is constructed to overcome this difficulty. More precisely, if the initial data (u_0in mathcal {B}cap dot{H}^{1}(mathbb {R}),) the local well-posedness of the Cauchy problem for the Hunter–Saxton equation is established in this space. Contrariwise, if (u_0in mathcal {B}) but (u_0notin dot{H}^{1}(mathbb {R}),) the norm inflation and hence the ill-posedness is presented. It’s worth noting that this norm inflation occurs in the low frequency part, which exactly leads to a non-existence result. Moreover, the above result clarifies a corollary with physical significance such that all the smooth solutions in (L^{infty }(0,T;L^{infty }(mathbb {R}))) must have the (dot{H}^1) norm.

摘要 本文的目的是给出线性上亨特-萨克斯顿方程的好摆(well-posedness)和坏摆(non-posedness)的精确划分。由于力项在经典 Besov 空间(甚至在经典 Sobolev 空间)中都不受约束,因此本文构建了一个新的混合空间 (mathcal {B}) 来克服这一困难。更确切地说,如果初始数据 (u_0in mathcal {B}cap dot{H}^{1}(mathbb {R}),) 亨特-萨克斯顿方程的考奇问题的局部好求性在这个空间中成立。相反,如果 (u_0in mathcal {B}) 但是 (u_0notin dot{H}^{1}(mathbb {R}),) 则会出现规范膨胀,进而出现问题。值得注意的是,这种规范膨胀发生在低频部分,这恰恰导致了不存在结果。此外,上述结果澄清了一个具有物理意义的推论,即所有在 (L^{infty }(0,T;L^{infty }(mathbb {R}))) 中的平稳解必须具有 (dot{H}^1) 规范。
{"title":"Sharp ill-posedness for the Hunter–Saxton equation on the line","authors":"","doi":"10.1007/s00028-024-00962-x","DOIUrl":"https://doi.org/10.1007/s00028-024-00962-x","url":null,"abstract":"<h3>Abstract</h3> <p>The purpose of this paper is to give an exact division for the well-posedness and ill-posedness (non-existence) of the Hunter–Saxton equation on the line. Since the force term is not bounded in the classical Besov spaces (even in the classical Sobolev spaces), a new mixed space <span> <span>(mathcal {B})</span> </span> is constructed to overcome this difficulty. More precisely, if the initial data <span> <span>(u_0in mathcal {B}cap dot{H}^{1}(mathbb {R}),)</span> </span> the local well-posedness of the Cauchy problem for the Hunter–Saxton equation is established in this space. Contrariwise, if <span> <span>(u_0in mathcal {B})</span> </span> but <span> <span>(u_0notin dot{H}^{1}(mathbb {R}),)</span> </span> the norm inflation and hence the ill-posedness is presented. It’s worth noting that this norm inflation occurs in the low frequency part, which exactly leads to a non-existence result. Moreover, the above result clarifies a corollary with physical significance such that all the smooth solutions in <span> <span>(L^{infty }(0,T;L^{infty }(mathbb {R})))</span> </span> must have the <span> <span>(dot{H}^1)</span> </span> norm.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymptotic behavior of solutions to the extension problem for the fractional Laplacian on noncompact symmetric spaces 非紧凑对称空间上分数拉普拉奇扩展问题解的渐近行为
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-04-01 DOI: 10.1007/s00028-024-00959-6
Effie Papageorgiou

This work deals with the extension problem for the fractional Laplacian on Riemannian symmetric spaces G/K of noncompact type and of general rank, which gives rise to a family of convolution operators, including the Poisson operator. More precisely, motivated by Euclidean results for the Poisson semigroup, we study the long-time asymptotic behavior of solutions to the extension problem for (L^1) initial data. In the case of the Laplace–Beltrami operator, we show that if the initial data are bi-K-invariant, then the solution to the extension problem behaves asymptotically as the mass times the fundamental solution, but this convergence may break down in the non-bi-K-invariant case. In the second part, we investigate the long-time asymptotic behavior of the extension problem associated with the so-called distinguished Laplacian on G/K. In this case, we observe phenomena which are similar to the Euclidean setting for the Poisson semigroup, such as (L^1) asymptotic convergence without the assumption of bi-K-invariance.

本研究涉及非紧凑型和一般秩的黎曼对称空间 G/K 上分数拉普拉斯的扩展问题,它产生了包括泊松算子在内的卷积算子族。更确切地说,受泊松半群的欧几里得结果的启发,我们研究了针对 (L^1) 初始数据的扩展问题解的长期渐近行为。在拉普拉斯-贝尔特拉米算子的情况下,我们证明了如果初始数据是双 K 不变的,那么扩展问题的解就会渐近地表现为基本解的质量乘以基本解,但在非双 K 不变的情况下,这种收敛性可能会崩溃。在第二部分中,我们研究了与 G/K 上所谓的杰出拉普拉斯相关的扩展问题的长期渐近行为。在这种情况下,我们观察到了类似于欧几里得背景下的泊松半群的现象,比如在没有双K不变性假设的情况下的(L^1)渐近收敛。
{"title":"Asymptotic behavior of solutions to the extension problem for the fractional Laplacian on noncompact symmetric spaces","authors":"Effie Papageorgiou","doi":"10.1007/s00028-024-00959-6","DOIUrl":"https://doi.org/10.1007/s00028-024-00959-6","url":null,"abstract":"<p>This work deals with the extension problem for the fractional Laplacian on Riemannian symmetric spaces <i>G</i>/<i>K</i> of noncompact type and of general rank, which gives rise to a family of convolution operators, including the Poisson operator. More precisely, motivated by Euclidean results for the Poisson semigroup, we study the long-time asymptotic behavior of solutions to the extension problem for <span>(L^1)</span> initial data. In the case of the Laplace–Beltrami operator, we show that if the initial data are bi-<i>K</i>-invariant, then the solution to the extension problem behaves asymptotically as the mass times the fundamental solution, but this convergence may break down in the non-bi-<i>K</i>-invariant case. In the second part, we investigate the long-time asymptotic behavior of the extension problem associated with the so-called distinguished Laplacian on <i>G</i>/<i>K</i>. In this case, we observe phenomena which are similar to the Euclidean setting for the Poisson semigroup, such as <span>(L^1)</span> asymptotic convergence without the assumption of bi-<i>K</i>-invariance.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140592737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
KFP operators with coefficients measurable in time and Dini continuous in space 系数在时间上可测、在空间上迪尼连续的 KFP 算子
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-04-01 DOI: 10.1007/s00028-024-00964-9

Abstract

We consider degenerate Kolmogorov–Fokker–Planck operators $$begin{aligned} mathcal {L}u&=sum _{i,j=1}^{m_{0}}a_{ij}(x,t)partial _{x_{i}x_{j}} ^{2}u+sum _{k,j=1}^{N}b_{jk}x_{k}partial _{x_{j}}u-partial _{t}u&equiv sum _{i,j=1}^{m_{0}}a_{ij}(x,t)partial _{x_{i}x_{j}}^{2}u+Yu end{aligned}$$ (with ((x,t)in mathbb {R}^{N+1}) and (1le m_{0}le N) ) such that the corresponding model operator having constant (a_{ij}) is hypoelliptic, translation invariant w.r.t. a Lie group operation in (mathbb {R} ^{N+1}) and 2-homogeneous w.r.t. a family of nonisotropic dilations. The matrix ((a_{ij})_{i,j=1}^{m_{0}}) is symmetric and uniformly positive on (mathbb {R}^{m_{0}}) . The coefficients (a_{ij}) are bounded and Dini continuous in space, and only bounded measurable in time. This means that, setting $$begin{aligned} mathrm {(i)}&,,S_{T}=mathbb {R}^{N}times left( -infty ,Tright) , mathrm {(ii)}&,,omega _{f,S_{T}}(r) = sup _{begin{array}{c} (x,t),(y,t)in S_{T} Vert x-yVert le r end{array}}vert f(x,t) -f(y,t)vert mathrm {(iii)}&,,Vert fVert _{mathcal {D}( S_{T}) } =int _{0}^{1} frac{omega _{f,S_{T}}(r) }{r}dr+Vert fVert _{L^{infty }left( S_{T}right) } end{aligned}$$ we require the finiteness of (Vert a_{ij}Vert _{mathcal {D}(S_{T})}) . We bound (omega _{u_{x_{i}x_{j}},S_{T}}) , (Vert u_{x_{i}x_{j}}Vert _{L^{infty }( S_{T}) }) ( (i,j=1,2,...,m_{0}) ), (omega _{Yu,S_{T}}) , (Vert YuVert _{L^{infty }( S_{T}) }) in terms of (omega _{mathcal {L}u,S_{T}}) , (Vert mathcal {L}uVert _{L^{infty }( S_{T}) }) and (Vert uVert _{L^{infty }left( S_{T}right) }) , getting a control on the uniform continuity in space of (u_{x_{i}x_{j}},Yu) if (mathcal {L}u) is bounded and Dini-continuous in space. Under the additional assumption that both the coefficients (a_{ij}) and (mathcal {L}u) are log-Dini continuous, meaning the finiteness of the quantity $$begin{aligned} int _{0}^{1}frac{omega _{f,S_{T}}left( rright) }{r}left| log rright| dr, end{aligned}$$ we prove that (u_{x_{i}x_{j}}) and Yu are Dini continuous; moreover, in this case, the derivatives (u_{x_{i}x_{j}}) are locally uniformly continuous in space and time.

Abstract We consider degenerate Kolmogorov-Fokker-Planck operators $$begin{aligned} (我们考虑退化的 Kolmogorov-Fokker-Planck 算子)。mathcal {L}u&=/sum _{i,j=1}^{m_{0}}a_{ij}(x,t)partial _{x_{i}x_{j}}^{2}u+sum _{k,j=1}^{N}b_{jk}x_{k} (部分) _{x_{j}}u- (部分) _{t}u&;equiv _{i,j=1}^{m_{0}}a_{ij}(x,t)partial _{x_{i}x_{j}}^{2}u+Yu end{aligned}$$ (其中 ((x、t)in mathbb {R}^{N+1}) and(1le m_{0}le N) ),这样具有常数 (a_{ij}) 的相应模型算子就是次椭圆的,平移不变的。(mathbb{R}^{N+1})中的一个李群运算时是次椭圆的、平移不变的,并且在非各向同性的扩张族中是2-同调的。矩阵 ((a_{ij})_{i,j=1}^{m_{0}}) 在 (mathbb {R}^{m_{0}}) 上对称且均匀为正。系数 (a_{ij})在空间上是有界和迪尼连续的,而在时间上只有有界可测。这意味着,设置 $$begin{aligned}mathrm {(i)}&,,S_{T}=mathbb {R}^{N}times left( -infty ,Tright) ,mathrm {(ii)}&;sup _{begin{array}{c} (x,t),(y,t)in S_{T}Vert x-yVert le r end{array}}vert f(x,t) -f(y,t)vert mathrm {(iii)}&;fVert _{mathcal {D}( S_{T}) } =int _{0}^{1}frac{omega _{f,S_{T}}(r) }{r}dr+Vert fVert _{L^{infty }left( S_{T}right) }end{aligned}$$ 我们要求 (Vert a_{ij}Vert _{mathcal {D}(S_{T})}) 的有限性。We bound (omega _{u_{x_{i}x_{j}},S_{T}}) , (Vert u_{x_{i}x_{j}}Vert _{L^{infty }( S_{T}) }) ( ( i,j=1,2,...,m_{0}) ), (omega _{Yu,S_{T}}) ,(Vert YuVert _{L^{infty }( S_{T}) }) in terms of (omega _{mathcal {L}u、S_{T}}) ,(Vert mathcal {L}uVert _{L^{infty }( S_{T}) }) and(Vert uVert _{L^{infty }left( S_{T}right) })如果 (mathcal {L}u) 在空间中是有界的和迪尼连续的,那么就可以控制 (u_{x_{i}x_{j}},Yu) 在空间中的均匀连续性。在系数 (a_{ij}) 和 (mathcal {L}u) 都是对数-迪尼连续的额外假设下,意味着数量 $$begin{aligned} 的有限性。int _{0}^{1}frac{omega _{f,S_{T}}left( rright) }{r}left| log rright| dr, end{aligned}$$我们证明(u_{x_{i}x_{j}})和Yu是Dini连续的;此外,在这种情况下,导数(u_{x_{i}x_{j}})在空间和时间上是局部均匀连续的。
{"title":"KFP operators with coefficients measurable in time and Dini continuous in space","authors":"","doi":"10.1007/s00028-024-00964-9","DOIUrl":"https://doi.org/10.1007/s00028-024-00964-9","url":null,"abstract":"<h3>Abstract</h3> <p>We consider degenerate Kolmogorov–Fokker–Planck operators <span> <span>$$begin{aligned} mathcal {L}u&amp;=sum _{i,j=1}^{m_{0}}a_{ij}(x,t)partial _{x_{i}x_{j}} ^{2}u+sum _{k,j=1}^{N}b_{jk}x_{k}partial _{x_{j}}u-partial _{t}u&amp;equiv sum _{i,j=1}^{m_{0}}a_{ij}(x,t)partial _{x_{i}x_{j}}^{2}u+Yu end{aligned}$$</span> </span>(with <span> <span>((x,t)in mathbb {R}^{N+1})</span> </span> and <span> <span>(1le m_{0}le N)</span> </span>) such that the corresponding model operator having constant <span> <span>(a_{ij})</span> </span> is hypoelliptic, translation invariant w.r.t. a Lie group operation in <span> <span>(mathbb {R} ^{N+1})</span> </span> and 2-homogeneous w.r.t. a family of nonisotropic dilations. The matrix <span> <span>((a_{ij})_{i,j=1}^{m_{0}})</span> </span> is symmetric and uniformly positive on <span> <span>(mathbb {R}^{m_{0}})</span> </span>. The coefficients <span> <span>(a_{ij})</span> </span> are bounded and <em>Dini continuous in space</em>, and only bounded measurable in time. This means that, setting <span> <span>$$begin{aligned} mathrm {(i)}&amp;,,S_{T}=mathbb {R}^{N}times left( -infty ,Tright) , mathrm {(ii)}&amp;,,omega _{f,S_{T}}(r) = sup _{begin{array}{c} (x,t),(y,t)in S_{T} Vert x-yVert le r end{array}}vert f(x,t) -f(y,t)vert mathrm {(iii)}&amp;,,Vert fVert _{mathcal {D}( S_{T}) } =int _{0}^{1} frac{omega _{f,S_{T}}(r) }{r}dr+Vert fVert _{L^{infty }left( S_{T}right) } end{aligned}$$</span> </span>we require the finiteness of <span> <span>(Vert a_{ij}Vert _{mathcal {D}(S_{T})})</span> </span>. We bound <span> <span>(omega _{u_{x_{i}x_{j}},S_{T}})</span> </span>, <span> <span>(Vert u_{x_{i}x_{j}}Vert _{L^{infty }( S_{T}) })</span> </span> (<span> <span>(i,j=1,2,...,m_{0})</span> </span>), <span> <span>(omega _{Yu,S_{T}})</span> </span>, <span> <span>(Vert YuVert _{L^{infty }( S_{T}) })</span> </span> in terms of <span> <span>(omega _{mathcal {L}u,S_{T}})</span> </span>, <span> <span>(Vert mathcal {L}uVert _{L^{infty }( S_{T}) })</span> </span> and <span> <span>(Vert uVert _{L^{infty }left( S_{T}right) })</span> </span>, getting a control on the uniform continuity in space of <span> <span>(u_{x_{i}x_{j}},Yu)</span> </span> if <span> <span>(mathcal {L}u)</span> </span> is bounded and Dini-continuous in space. Under the additional assumption that both the coefficients <span> <span>(a_{ij})</span> </span> and <span> <span>(mathcal {L}u)</span> </span> are log-Dini continuous, meaning the finiteness of the quantity <span> <span>$$begin{aligned} int _{0}^{1}frac{omega _{f,S_{T}}left( rright) }{r}left| log rright| dr, end{aligned}$$</span> </span>we prove that <span> <span>(u_{x_{i}x_{j}})</span> </span> and <em>Yu</em> are Dini continuous; moreover, in this case, the derivatives <span> <span>(u_{x_{i}x_{j}})</span> </span> are locally uniformly continuous in space <em>and time</em>. </p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140571932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A perturbative approach to Hölder continuity of solutions to a nonlocal p-parabolic equation 非局部对抛物方程解的荷尔德连续性的微扰方法
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-03-15 DOI: 10.1007/s00028-024-00949-8
Alireza Tavakoli

We study local boundedness and Hölder continuity of a parabolic equation involving the fractional p-Laplacian of order s, with (0<s<1), (2le p < infty ), with a general right-hand side. We focus on obtaining precise Hölder continuity estimates. The proof is based on a perturbative argument using the already known Hölder continuity estimate for solutions to the equation with zero right-hand side.

我们研究了一个涉及阶数为 s 的分数 p-Laplacian 的抛物方程的局部有界性和霍尔德连续性,该方程有一个一般的右边:(0<s<1), (2le p < infty )。我们的重点是获得精确的霍尔德连续性估计。证明是基于一个扰动论证,使用已经知道的对方程右边为零的解的霍尔德连续性估计。
{"title":"A perturbative approach to Hölder continuity of solutions to a nonlocal p-parabolic equation","authors":"Alireza Tavakoli","doi":"10.1007/s00028-024-00949-8","DOIUrl":"https://doi.org/10.1007/s00028-024-00949-8","url":null,"abstract":"<p>We study local boundedness and Hölder continuity of a parabolic equation involving the fractional <i>p</i>-Laplacian of order <i>s</i>, with <span>(0&lt;s&lt;1)</span>, <span>(2le p &lt; infty )</span>, with a general right-hand side. We focus on obtaining precise Hölder continuity estimates. The proof is based on a perturbative argument using the already known Hölder continuity estimate for solutions to the equation with zero right-hand side.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140151272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the high friction limit for the complete Euler system 关于完整欧拉系统的高摩擦极限
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-03-15 DOI: 10.1007/s00028-024-00956-9
Eduard Feireisl, Piotr Gwiazda, Young-Sam Kwon, Agnieszka Świerczewska-Gwiazda

We show that solutions of the complete Euler system of gas dynamics perturbed by a friction term converge to a solution of the porous medium equation in the high friction/long time limit. The result holds in the largest possible class of generalized solutions–the measure–valued solutions of the Euler system.

我们证明,受摩擦项扰动的完整气体动力学欧拉系统的解在高摩擦/长时间限内收敛于多孔介质方程的解。这一结果在广义解的最大可能类别--欧拉系统的量值解中成立。
{"title":"On the high friction limit for the complete Euler system","authors":"Eduard Feireisl, Piotr Gwiazda, Young-Sam Kwon, Agnieszka Świerczewska-Gwiazda","doi":"10.1007/s00028-024-00956-9","DOIUrl":"https://doi.org/10.1007/s00028-024-00956-9","url":null,"abstract":"<p>We show that solutions of the complete Euler system of gas dynamics perturbed by a friction term converge to a solution of the porous medium equation in the high friction/long time limit. The result holds in the largest possible class of generalized solutions–the measure–valued solutions of the Euler system.\u0000</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generic alignment conjecture for systems of Cucker–Smale type 卡克-斯马尔型系统的通用排列猜想
IF 1.4 3区 数学 Q2 Mathematics Pub Date : 2024-03-15 DOI: 10.1007/s00028-024-00950-1
Roman Shvydkoy

The generic alignment conjecture states that for almost every initial data on the torus solutions to the Cucker–Smale system with a strictly local communication align to the common mean velocity. In this note, we present a partial resolution of this conjecture using a statistical mechanics approach. First, the conjecture holds in full for the sticky particle model representing, formally, infinitely strong local communication. In the classical case, the conjecture is proved when N, the number of agents, is equal to 2. It follows from a more general result, stating that for a system of any size for almost every data at least two agents align. The analysis is extended to the open space (mathbb {R}^n) in the presence of confinement and potential interaction forces. In particular, it is shown that almost every non-oscillatory pair of solutions aligns and aggregates in the potential well.

一般对齐猜想指出,对于环上几乎所有的初始数据,具有严格局部通信的 Cucker-Smale 系统解都对齐到共同的平均速度。在本论文中,我们用统计力学方法部分地解决了这一猜想。首先,该猜想在形式上代表无限强局部通讯的粘性粒子模型中完全成立。在经典情况下,当代理人数 N 等于 2 时,该猜想就被证明了。 它源于一个更普遍的结果,即对于任何规模的系统,几乎每个数据都至少有两个代理人对齐。分析扩展到了存在约束和潜在相互作用力的开放空间(mathbb {R}^n)。分析特别表明,几乎每一对非振荡解都会在势阱中对齐和聚集。
{"title":"Generic alignment conjecture for systems of Cucker–Smale type","authors":"Roman Shvydkoy","doi":"10.1007/s00028-024-00950-1","DOIUrl":"https://doi.org/10.1007/s00028-024-00950-1","url":null,"abstract":"<p>The generic alignment conjecture states that for almost every initial data on the torus solutions to the Cucker–Smale system with a strictly local communication align to the common mean velocity. In this note, we present a partial resolution of this conjecture using a statistical mechanics approach. First, the conjecture holds in full for the sticky particle model representing, formally, infinitely strong local communication. In the classical case, the conjecture is proved when <i>N</i>, the number of agents, is equal to 2. It follows from a more general result, stating that for a system of any size for almost every data at least two agents align. The analysis is extended to the open space <span>(mathbb {R}^n)</span> in the presence of confinement and potential interaction forces. In particular, it is shown that almost every non-oscillatory pair of solutions aligns and aggregates in the potential well.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.4,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140153547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Evolution Equations
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1