The dynamic systems of mitochondria, including mitochondrial fusion and fission, are essential for ovarian endocrine and follicular development. Meanwhile, ERK1/2 signaling is an important mechanism mediating altered mitochondrial dynamics and steroidogenesis. The purpose of this study was to investigate the seasonal changes in ovarian steroidogenesis concerning EGFR-ERK1/2 signaling and mitochondrial dynamics of the muskrats (Ondatra zibethicus). The results showed that follicular development in the muskrats remained in the tertiary follicular stage during the non-breeding season, accompanied by a significant decrease in serum and ovarian concentrations of 17β-estradiol and progesterone from the breeding season to the non-breeding season. EGF, EGFR, ERK1/2, p-ERK1/2, and mitochondrial dynamics regulators were mainly localized in granulosa cells and theca cells of muskrats during the breeding and non-breeding seasons. The mRNA levels of Egfr, Erk1/2, Mfn1/2, Opa1, Drp1, and steroidogenic enzymes in the ovaries were remarkably higher during the breeding season. The 17β-estradiol concentrations in the serum and ovaries as well as the relative levels of Mfn1/2, Opa1, and Drp1 were positively associated with each other. Furthermore, transcriptomic analysis of the ovaries revealed that differentially expressed genes might be linked to steroid biosynthesis, estrogen signaling pathway, and mitochondrial membrane-related pathways. In conclusion, these results suggest that the up-regulation of mitochondrial dynamics regulators during the breeding season is closely associated with enhanced ovarian steroidogenesis in the muskrats, which may be regulated by upstream EGFR-ERK1/2 signaling.
{"title":"EGFR-ERK1/2 signaling and mitochondrial dynamics in seasonal ovarian steroidogenesis of the muskrats (Ondatra zibethicus)","authors":"Wenjing Lu, Meiqi Chen, Yue Zhou, María Daniela Artigas Ramírez, Yuning Liu, Haolin Zhang, Zhengrong Yuan, Yingying Han, Qiang Weng","doi":"10.1016/j.jsbmb.2024.106558","DOIUrl":"10.1016/j.jsbmb.2024.106558","url":null,"abstract":"<div><p>The dynamic systems of mitochondria, including mitochondrial fusion and fission, are essential for ovarian endocrine and follicular development. Meanwhile, ERK1/2 signaling is an important mechanism mediating altered mitochondrial dynamics and steroidogenesis. The purpose of this study was to investigate the seasonal changes in ovarian steroidogenesis concerning EGFR-ERK1/2 signaling and mitochondrial dynamics of the muskrats (<em>Ondatra zibethicus</em>). The results showed that follicular development in the muskrats remained in the tertiary follicular stage during the non-breeding season, accompanied by a significant decrease in serum and ovarian concentrations of 17β-estradiol and progesterone from the breeding season to the non-breeding season. EGF, EGFR, ERK1/2, p-ERK1/2, and mitochondrial dynamics regulators were mainly localized in granulosa cells and theca cells of muskrats during the breeding and non-breeding seasons. The mRNA levels of <em>Egfr</em>, <em>Erk1/2</em>, <em>Mfn1</em>/<em>2</em>, <em>Opa1</em>, <em>Drp1</em>, and steroidogenic enzymes in the ovaries were remarkably higher during the breeding season. The 17β-estradiol concentrations in the serum and ovaries as well as the relative levels of <em>Mfn1</em>/<em>2</em>, <em>Opa1</em>, and <em>Drp1</em> were positively associated with each other. Furthermore, transcriptomic analysis of the ovaries revealed that differentially expressed genes might be linked to steroid biosynthesis, estrogen signaling pathway, and mitochondrial membrane-related pathways. In conclusion, these results suggest that the up-regulation of mitochondrial dynamics regulators during the breeding season is closely associated with enhanced ovarian steroidogenesis in the muskrats, which may be regulated by upstream EGFR-ERK1/2 signaling.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141181423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-16DOI: 10.1016/j.jsbmb.2024.106545
Ðorđe D. Janković , Tijana Lj. Šestić , Sofija S. Bekić , Marina P. Savić , Andjelka S. Ćelić , Julia Scholda , Florian Kopp , Maja A. Marinović , Edward T. Petri , Jovana J. Ajduković
Most breast and prostate cancers are caused by abnormal production or action of steroidal hormones. Hormonal drugs based on steroid scaffolds represent a significant class of chemotherapeutics that are routinely used in chemotherapy. In this study, the synthesis of new 17a-homo lactone and 17α-(pyridine-2-ylmethyl) androstane derivatives with hydrazide and semicarbazone motifs is presented. All compounds were screened for their effect on cell viability against a panel of five cancer cell lines and one healthy cell line. Two compounds showed significant cytotoxicity against cancer cells, with low toxicity against healthy cells. The relative binding affinities of compounds for the ligand-binding domains of estrogen receptor α, estrogen receptor β, androgen receptor and glucocorticoid receptor were tested using a fluorescence screen in yeast. Potential for inhibition of aldo-keto reductase 1C3 and 1C4 activity was measured in vitro. Experimental results are analyzed in the context of molecular docking simulations. Our results could help guide design of steroid compounds with improved anticancer properties against androgen- and estrogen-dependent cancers.
{"title":"Development of new steroid-based hydrazide and (thio)semicarbazone compounds with anticancer properties","authors":"Ðorđe D. Janković , Tijana Lj. Šestić , Sofija S. Bekić , Marina P. Savić , Andjelka S. Ćelić , Julia Scholda , Florian Kopp , Maja A. Marinović , Edward T. Petri , Jovana J. Ajduković","doi":"10.1016/j.jsbmb.2024.106545","DOIUrl":"10.1016/j.jsbmb.2024.106545","url":null,"abstract":"<div><p>Most breast and prostate cancers are caused by abnormal production or action of steroidal hormones. Hormonal drugs based on steroid scaffolds represent a significant class of chemotherapeutics that are routinely used in chemotherapy. In this study, the synthesis of new 17a-homo lactone and 17α-(pyridine-2-ylmethyl) androstane derivatives with hydrazide and semicarbazone motifs is presented. All compounds were screened for their effect on cell viability against a panel of five cancer cell lines and one healthy cell line. Two compounds showed significant cytotoxicity against cancer cells, with low toxicity against healthy cells. The relative binding affinities of compounds for the ligand-binding domains of estrogen receptor α, estrogen receptor β, androgen receptor and glucocorticoid receptor were tested using a fluorescence screen in yeast. Potential for inhibition of aldo-keto reductase 1C3 and 1C4 activity was measured <em>in vitro</em>. Experimental results are analyzed in the context of molecular docking simulations. Our results could help guide design of steroid compounds with improved anticancer properties against androgen- and estrogen-dependent cancers.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1016/j.jsbmb.2024.106546
Foruzan Hosseinkhani , Shima Hosseinifar , Mohammad Reza Tabandeh
Polycystic ovary syndrome (PCOS) is the most common cause of anovulation and infertility in women. Inflammation and oxidative stress are considered to be the causes of ovarian dysfunction in PCOS. Dimethyl itaconate, as a macrophage-derived immunometabolite, has anti-inflammatory and antioxidative properties, but limited data are available about its effect on female reproductive dysfunctions. The present study aimed to determine the effects of dimethyl itaconate, a cell-permeable derivative of itaconate, on the histological changes, oxidative stress, and inflammation in the ovaries of PCOS rats. In this experimental study, 48 mature female Wistar rats (160–180 g) were randomly divided into the six groups including control, PCOS, PCOS+DMI, PCOS+ metformin, control DMI and control metformin. Following PCOS induction by using testosterone enanthate (1 mg/100 g/day for 35 days), the animals were treated with DMI (50 mg/kg) or metformin (300 mg/kg) for 30 days. At the end of the experimental period, the insulin resistance markers (serum insulin and glucose concentrations, and the homeostasis model assessment of basal insulin resistance (HOMA-IR), oxidative stress index (OSI), and inflammatory cytokines were measured. The process of Folliculogenesis was evaluated by histological examination of the ovary. The results showed that DMI improved insulin resistance and decreased TNF- and IL-1β levels and OSI in the ovarian tissue of rats following androgen-induced PCOS. It also improved steroidogenesis and Folliculogenesis by reducing cystic follicles and ovarian tissue structure. Results indicated that DMI may be a potential candidate to ameliorate PCOS adverse effects by reducing insulin resistance, inflammation, and oxidative stress and restoring ovarian Folliculogenesis.
{"title":"Dimethyl itaconate mitigates histological distortions, inflammation, and oxidative stress in the rat model of polycystic ovary syndrome","authors":"Foruzan Hosseinkhani , Shima Hosseinifar , Mohammad Reza Tabandeh","doi":"10.1016/j.jsbmb.2024.106546","DOIUrl":"10.1016/j.jsbmb.2024.106546","url":null,"abstract":"<div><p>Polycystic ovary syndrome (PCOS) is the most common cause of anovulation and infertility in women. Inflammation and oxidative stress are considered to be the causes of ovarian dysfunction in PCOS. Dimethyl itaconate, as a macrophage-derived immunometabolite, has anti-inflammatory and antioxidative properties, but limited data are available about its effect on female reproductive dysfunctions. The present study aimed to determine the effects of dimethyl itaconate, a cell-permeable derivative of itaconate, on the histological changes, oxidative stress, and inflammation in the ovaries of PCOS rats. In this experimental study, 48 mature female Wistar rats (160–180 g) were randomly divided into the six groups including control, PCOS, PCOS+DMI, PCOS+ metformin, control DMI and control metformin. Following PCOS induction by using testosterone enanthate (1 mg/100 g/day for 35 days), the animals were treated with DMI (50 mg/kg) or metformin (300 mg/kg) for 30 days. At the end of the experimental period, the insulin resistance markers (serum insulin and glucose concentrations, and the homeostasis model assessment of basal insulin resistance (HOMA-IR), oxidative stress index (OSI), and inflammatory cytokines were measured. The process of Folliculogenesis was evaluated by histological examination of the ovary. The results showed that DMI improved insulin resistance and decreased TNF- and IL-1β levels and OSI in the ovarian tissue of rats following androgen-induced PCOS. It also improved steroidogenesis and Folliculogenesis by reducing cystic follicles and ovarian tissue structure. Results indicated that DMI may be a potential candidate to ameliorate PCOS adverse effects by reducing insulin resistance, inflammation, and oxidative stress and restoring ovarian Folliculogenesis.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1016/j.jsbmb.2024.106544
Jean-Yves Sancéau , René Maltais , Ming Zhou , Sheng-Xiang Lin , Donald Poirier
Sex steroid hormones such as estrogen estradiol (E2) and androgen dihydrotestosterone (DHT) are involved in the development of hormone-dependent cancers. Blockade of 17β-hydroxysteroid dehydrogenase type 7 (17β-HSD7), a member of the short chain dehydrogenase/reductase superfamily, is thought to decrease E2 levels while increasing those of DHT. Therefore, its unique double action makes this enzyme as an interesting drug target for treatment of breast cancer. The chemical synthesis, molecular characterization, and preliminary biological evaluation as 17β-HSD7 inhibitors of novel carbamate derivatives 3 and 4 are described. Like previous 17β-HSD7 inhibitors 1 and 2, compounds 3 and 4 bear a hydrophobic nonyl side chain at the C-17β position of a 4-aza-5α-androstane nucleus, but compound 3 has an oxygen atom replacing the CH2 in the steroid A-ring C-2 position, while compound 4 has a C17-spiranic E-ring containing a carbamate function. They both inhibited the in vitro transformation of estrone (E1) into E2 by 17β-HSD7, but the introduction of a (17 R)-spirocarbamate is preferable to replacing C-2 methylene with an oxygen atom since compound 4 (IC50 = 63 nM) is an inhibitor 14 times more powerful than compound 3 (IC50 = 900 nM). Furthermore, when compared to the reference inhibitor 1 (IC50 = 111 nM), the use of a C17-spiranic E-ring made it possible to introduce differently the hydrophobic nonyl side chain, without reducing the inhibitory activity.
{"title":"Synthesis and characterization of targeted 17β-hydroxysteroid dehydrogenase type 7 inhibitors","authors":"Jean-Yves Sancéau , René Maltais , Ming Zhou , Sheng-Xiang Lin , Donald Poirier","doi":"10.1016/j.jsbmb.2024.106544","DOIUrl":"10.1016/j.jsbmb.2024.106544","url":null,"abstract":"<div><p>Sex steroid hormones such as estrogen estradiol (E2) and androgen dihydrotestosterone (DHT) are involved in the development of hormone-dependent cancers. Blockade of 17β-hydroxysteroid dehydrogenase type 7 (17β-HSD7), a member of the short chain dehydrogenase/reductase superfamily, is thought to decrease E2 levels while increasing those of DHT. Therefore, its unique double action makes this enzyme as an interesting drug target for treatment of breast cancer. The chemical synthesis, molecular characterization, and preliminary biological evaluation as 17β-HSD7 inhibitors of novel carbamate derivatives <strong>3</strong> and <strong>4</strong> are described. Like previous 17β-HSD7 inhibitors <strong>1</strong> and <strong>2</strong>, compounds <strong>3</strong> and <strong>4</strong> bear a hydrophobic nonyl side chain at the C-17β position of a 4-aza-5α-androstane nucleus, but compound <strong>3</strong> has an oxygen atom replacing the CH<sub>2</sub> in the steroid A-ring C-2 position, while compound <strong>4</strong> has a C17-spiranic E-ring containing a carbamate function. They both inhibited the <em>in vitro</em> transformation of estrone (E1) into E2 by 17β-HSD7, but the introduction of a (17 <em>R</em>)-spirocarbamate is preferable to replacing C-2 methylene with an oxygen atom since compound <strong>4</strong> (IC<sub>50</sub> = 63 nM) is an inhibitor 14 times more powerful than compound <strong>3</strong> (IC<sub>50</sub> = 900 nM). Furthermore, when compared to the reference inhibitor <strong>1</strong> (IC<sub>50</sub> = 111 nM), the use of a C17-spiranic E-ring made it possible to introduce differently the hydrophobic nonyl side chain, without reducing the inhibitory activity.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141039180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1016/j.jsbmb.2024.106547
Rui Zhao , Lingxiang Ran , Hanyue Yao , Yizhi He , Xinru Lu , Weina Zhu , Yajie Zhang , Tianyi Zhang , Shijie Shi , Zheng Luo , Cairong Zhang
Premature ovarian insufficiency (POI) presents a substantial challenge to women's physiological and psychological well-being. Hormone replacement therapy, as the preferred therapeutic approach, involves solely exogenous supplementation of estrogen. Moxibustion, a traditional Chinese external treatment, has been investigated in our previous studies. It not only improves hormone levels and clinical symptoms in POI patients but also safeguards ovarian reserve. This study aims to explore the regulatory mechanisms by which moxibustion modulates hormone levels and restores ovarian function in POI. A POI rat model was established using cyclophosphamide, and moxibustion treatment was applied at acupoints "CV4" and "SP6" for a total of four courses. Subsequently, ovaries from each group were subjected to transcriptome sequencing (Bulk RNA-seq). Target pathways and key genes were selected through enrichment analysis and GSVA scoring, with validation using various techniques including electron microscopy, ELISA, Western blot, and immunohistochemistry. The results demonstrated that moxibustion restored the estrous cycle in POI rats, improved sex hormone levels, reduced the number of atretic follicles, and increased the count of dominant follicles (P<0.05). Bulk RNA-seq analysis revealed that moxibustion downregulated pathways associated with ovarian dysfunction, infertility, and immune responses, upregulated pathways related to follicular development and ovarian steroidogenesis. Furthermore, our data confirmed that moxibustion significantly increased the number of ovarian granulosa cells (GCs) and upregulated the expression of proteins related to steroidogenesis in GCs, including FSHR, P450 arom, cAMP, PKA, and CREB (P<0.05), with no significant effect observed on proteins related to steroidogenesis in theca cells. These outcomes aligned with the RNA-seq results. In conclusion, these findings propose that moxibustion enhances steroidogenesis in GCs through the activation of the cAMP/PKA/CREB pathway, consequently improving impaired ovarian function in POI rats. This study provides robust evidence supporting moxibustion as a targeted intervention for treating POI by specifically regulating steroidogenesis in GCs.
卵巢早衰(POI)给女性的生理和心理健康带来了巨大挑战。激素替代疗法作为首选的治疗方法,只涉及外源性雌激素的补充。艾灸是一种传统的中医外治法,我们在以往的研究中对其进行了调查。它不仅能改善 POI 患者的激素水平和临床症状,还能保护卵巢储备功能。本研究旨在探讨艾灸调节激素水平和恢复 POI 卵巢功能的调节机制。研究人员使用环磷酰胺建立了 POI 大鼠模型,并在穴位 "CV4 "和 "SP6 "进行艾灸治疗,共四个疗程。随后,对每组大鼠的卵巢进行转录组测序(Bulk RNA-seq)。通过富集分析和 GSVA 评分筛选出目标通路和关键基因,并利用电子显微镜、ELISA、Western 印迹和免疫组化等多种技术进行验证。结果表明,艾灸能恢复 POI 大鼠的发情周期,改善性激素水平,减少闭锁卵泡的数量,增加优势卵泡的数量(P<0.05)。
{"title":"Moxibustion ameliorates ovarian function in premature ovarian insufficiency rats by activating cAMP/PKA/CREB to promote steroidogenesis in ovarian granulosa cells","authors":"Rui Zhao , Lingxiang Ran , Hanyue Yao , Yizhi He , Xinru Lu , Weina Zhu , Yajie Zhang , Tianyi Zhang , Shijie Shi , Zheng Luo , Cairong Zhang","doi":"10.1016/j.jsbmb.2024.106547","DOIUrl":"10.1016/j.jsbmb.2024.106547","url":null,"abstract":"<div><p>Premature ovarian insufficiency (POI) presents a substantial challenge to women's physiological and psychological well-being. Hormone replacement therapy, as the preferred therapeutic approach, involves solely exogenous supplementation of estrogen. Moxibustion, a traditional Chinese external treatment, has been investigated in our previous studies. It not only improves hormone levels and clinical symptoms in POI patients but also safeguards ovarian reserve. This study aims to explore the regulatory mechanisms by which moxibustion modulates hormone levels and restores ovarian function in POI. A POI rat model was established using cyclophosphamide, and moxibustion treatment was applied at acupoints \"CV4\" and \"SP6\" for a total of four courses. Subsequently, ovaries from each group were subjected to transcriptome sequencing (Bulk RNA-seq). Target pathways and key genes were selected through enrichment analysis and GSVA scoring, with validation using various techniques including electron microscopy, ELISA, Western blot, and immunohistochemistry. The results demonstrated that moxibustion restored the estrous cycle in POI rats, improved sex hormone levels, reduced the number of atretic follicles, and increased the count of dominant follicles (P<0.05). Bulk RNA-seq analysis revealed that moxibustion downregulated pathways associated with ovarian dysfunction, infertility, and immune responses, upregulated pathways related to follicular development and ovarian steroidogenesis. Furthermore, our data confirmed that moxibustion significantly increased the number of ovarian granulosa cells (GCs) and upregulated the expression of proteins related to steroidogenesis in GCs, including FSHR, P450 arom, cAMP, PKA, and CREB (P<0.05), with no significant effect observed on proteins related to steroidogenesis in theca cells. These outcomes aligned with the RNA-seq results. In conclusion, these findings propose that moxibustion enhances steroidogenesis in GCs through the activation of the cAMP/PKA/CREB pathway, consequently improving impaired ovarian function in POI rats. This study provides robust evidence supporting moxibustion as a targeted intervention for treating POI by specifically regulating steroidogenesis in GCs.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-11DOI: 10.1016/j.jsbmb.2024.106543
Wei Yang , Yan Tian , Mingmao Yang , John Mauck , Juan J. Loor , Bin Jia , Shuang Wang , Wenwen Fan , Zhendong Li , Bingbing Zhang , Chuang Xu
A significant reduction in plasma concentration of cholesterol during early lactation is a common occurrence in high-yielding dairy cows. An insufficient synthesis of cholesterol in the liver has been linked to lipid accumulation caused by high concentrations of fatty acids during negative energy balance (NEB). As ruminant diets do not provide quantitative amounts of cholesterol for absorption, phytosterols such as β-sitosterol may serve to mitigate the shortfall in cholesterol within the liver during NEB. To gain mechanistic insights, primary hepatocytes were isolated from healthy female 1-day old calves for in vitro studies with or without 1.2 mM fatty acids (FA) to induce metabolic stress. Furthermore, hepatocytes were treated with 50 μM β-sitosterol with or without FA. Data were analyzed by one-way ANOVA with subsequent Bonferroni correction. Results revealed that calf hepatocytes treated with FA had greater content of non-esterified fatty acids (NEFA) and triacylglycerol (TAG), and greater mRNA and protein abundance of the lipid synthesis-related SREBF1 and FASN. In contrast, mRNA and protein of CPT1A (fatty acid oxidation) and the cholesterol metabolism-related targets SREBF2, HMGCR, ACAT2, APOA1, ABCA1 and ABCG5 was lower. Content of the antioxidant-related glutathione (GSH) and activities of superoxide dismutase (SOD) also was lower. Compared with FA challenge alone, 50 μM β-sitosterol led to greater mRNA and protein abundance of SREBF2, HMGCR, ACAT2 and ABCG5, and greater content of GSH and activity of SOD. In contrast, compared with the FA group, the mRNA and protein abundance of SREBF1 and ACC1 and the content of TAG and NEFA in the β-sitosterol + FA group were lower. Overall, β-sitosterol can promote cholesterol metabolism and reduce oxidative stress while reducing lipid accumulation in hepatocytes challenged with high concentrations of fatty acids.
{"title":"β-sitosterol alleviates high fatty acid-induced lipid accumulation in calf hepatocytes by regulating cholesterol metabolism","authors":"Wei Yang , Yan Tian , Mingmao Yang , John Mauck , Juan J. Loor , Bin Jia , Shuang Wang , Wenwen Fan , Zhendong Li , Bingbing Zhang , Chuang Xu","doi":"10.1016/j.jsbmb.2024.106543","DOIUrl":"10.1016/j.jsbmb.2024.106543","url":null,"abstract":"<div><p>A significant reduction in plasma concentration of cholesterol during early lactation is a common occurrence in high-yielding dairy cows. An insufficient synthesis of cholesterol in the liver has been linked to lipid accumulation caused by high concentrations of fatty acids during negative energy balance (NEB). As ruminant diets do not provide quantitative amounts of cholesterol for absorption, phytosterols such as β-sitosterol may serve to mitigate the shortfall in cholesterol within the liver during NEB. To gain mechanistic insights, primary hepatocytes were isolated from healthy female 1-day old calves for in vitro studies with or without 1.2 mM fatty acids (FA) to induce metabolic stress. Furthermore, hepatocytes were treated with 50 μM β-sitosterol with or without FA. Data were analyzed by one-way ANOVA with subsequent Bonferroni correction. Results revealed that calf hepatocytes treated with FA had greater content of non-esterified fatty acids (NEFA) and triacylglycerol (TAG), and greater mRNA and protein abundance of the lipid synthesis-related SREBF1 and FASN. In contrast, mRNA and protein of CPT1A (fatty acid oxidation) and the cholesterol metabolism-related targets SREBF2, HMGCR, ACAT2, APOA1, ABCA1 and ABCG5 was lower. Content of the antioxidant-related glutathione (GSH) and activities of superoxide dismutase (SOD) also was lower. Compared with FA challenge alone, 50 μM β-sitosterol led to greater mRNA and protein abundance of SREBF2, HMGCR, ACAT2 and ABCG5, and greater content of GSH and activity of SOD. In contrast, compared with the FA group, the mRNA and protein abundance of SREBF1 and ACC1 and the content of TAG and NEFA in the β-sitosterol + FA group were lower. Overall, β-sitosterol can promote cholesterol metabolism and reduce oxidative stress while reducing lipid accumulation in hepatocytes challenged with high concentrations of fatty acids.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140915826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1016/j.jsbmb.2024.106542
Ernestine Fanjara , Grete K.F.H. Aas , Yanran Cao , Vera Kristinova , Asgeir Sæbø , Anne Stene
The sustainability of commercial aquaculture production depends critically on prioritizing fish welfare management. Besides monitoring welfare parameters such as fish behaviour and water quality, fish stress level can also provide a reliable measure of the welfare status of farmed fish. Cortisol and 5 of its metabolites (5β-THF, cortisone, 5β-DHE, 5β-THE, β-cortolone) were previously identified by the authors as suitable stress biomarkers of farmed Atlantic salmon. Based on this knowledge, the present study aimed to investigate the time-related dynamics of these metabolites in plasma, skin mucus, bile and faeces over a 72 h- period. The objective was to determine the optimal sampling time for each matrix and to understand the clearance pathway of these metabolites following stress. An experiment was carried out using a total of 90 Atlantic salmon with an average weight of 438 (±132) g. The average sea temperature was 6.9 °C during the experimental period. A control group of 10 fish was first collected before the remaining 80 fish were submitted to a stress of netting and subsequent relocation into two separate cages. From each of these two stress groups, 10 fish were sampled at 1 h, 2 h, 4 h, 6 h and 12 h, 24 h, 48 h, 72 h after the stress event respectively. The concentrations of cortisol and its metabolites were measured at each of the sampling timepoint. The results demonstrated that plasma cortisol metabolites reached the highest concentration 4 h after stress and remained elevated despite the slight decrease for the remaining timepoints. The peak level was observed at 12 h post-stress in skin mucus and 24 h in bile and faeces. The findings suggest that these timepoints are the optimal for sampling Atlantic salmon post-smolt following stressful events in acute stress studies. Furthermore, the results reveal that analysing cortisol and its metabolites, both in free and conjugated forms, rather than free cortisol provides greater flexibility as their concentrations are less affected by sampling procedure. This study confirms the appropriateness of skin mucus and faeces as less-invasive sample matrices for fish stress evaluation and provides a basis for further developing low invasive tools for monitoring the welfare of farmed salmonid.
{"title":"Sampling time for different matrices in stress assessment of farmed Atlantic salmon post-smolt","authors":"Ernestine Fanjara , Grete K.F.H. Aas , Yanran Cao , Vera Kristinova , Asgeir Sæbø , Anne Stene","doi":"10.1016/j.jsbmb.2024.106542","DOIUrl":"10.1016/j.jsbmb.2024.106542","url":null,"abstract":"<div><p>The sustainability of commercial aquaculture production depends critically on prioritizing fish welfare management. Besides monitoring welfare parameters such as fish behaviour and water quality, fish stress level can also provide a reliable measure of the welfare status of farmed fish. Cortisol and 5 of its metabolites (5β-THF, cortisone, 5β-DHE, 5β-THE, β-cortolone) were previously identified by the authors as suitable stress biomarkers of farmed Atlantic salmon. Based on this knowledge, the present study aimed to investigate the time-related dynamics of these metabolites in plasma, skin mucus, bile and faeces over a 72 h- period. The objective was to determine the optimal sampling time for each matrix and to understand the clearance pathway of these metabolites following stress. An experiment was carried out using a total of 90 Atlantic salmon with an average weight of 438 (±132) g. The average sea temperature was 6.9 °C during the experimental period. A control group of 10 fish was first collected before the remaining 80 fish were submitted to a stress of netting and subsequent relocation into two separate cages. From each of these two stress groups, 10 fish were sampled at 1 h, 2 h, 4 h, 6 h and 12 h, 24 h, 48 h, 72 h after the stress event respectively. The concentrations of cortisol and its metabolites were measured at each of the sampling timepoint. The results demonstrated that plasma cortisol metabolites reached the highest concentration 4 h after stress and remained elevated despite the slight decrease for the remaining timepoints. The peak level was observed at 12 h post-stress in skin mucus and 24 h in bile and faeces. The findings suggest that these timepoints are the optimal for sampling Atlantic salmon post-smolt following stressful events in acute stress studies. Furthermore, the results reveal that analysing cortisol and its metabolites, both in free and conjugated forms, rather than free cortisol provides greater flexibility as their concentrations are less affected by sampling procedure. This study confirms the appropriateness of skin mucus and faeces as less-invasive sample matrices for fish stress evaluation and provides a basis for further developing low invasive tools for monitoring the welfare of farmed salmonid.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960076024000906/pdfft?md5=bb296899ec3283256add621bfa81f16d&pid=1-s2.0-S0960076024000906-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140911565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1016/j.jsbmb.2024.106518
Abigail B. Clark, Suzanne D. Conzen
Breast cancer incidence has been steadily rising and is the leading cause of cancer death in women due to its high metastatic potential. Individual breast cancer subtypes are classified by both cell type of origin and receptor expression, namely estrogen, progesterone and human epidermal growth factor receptors (ER, PR and HER2). Recently, the importance and context-dependent role of glucocorticoid receptor (GR) expression in the natural history and prognosis of breast cancer subtypes have been uncovered. In ER-positive breast cancer, GR expression is associated with a better prognosis as a result of ER-GR crosstalk. GR appears to modulate ER-mediated gene expression resulting in decreased tumor cell proliferation and a more indolent cancer phenotype. In ER-negative breast cancer, including GR-positive triple-negative breast cancer (TNBC), GR expression enhances migration, chemotherapy resistance and cell survival. In invasive lobular carcinoma, GR function is relatively understudied, and more work is required to determine whether lobular subtypes behave similarly to their invasive ductal carcinoma counterparts. Importantly, understanding GR signaling in individual breast cancer subtypes has potential clinical implications because of the recent development of highly selective GR non-steroidal ligands, which represent a therapeutic approach for modulating GR activity systemically.
{"title":"Glucocorticoid receptor-mediated oncogenic activity is dependent on breast cancer subtype","authors":"Abigail B. Clark, Suzanne D. Conzen","doi":"10.1016/j.jsbmb.2024.106518","DOIUrl":"10.1016/j.jsbmb.2024.106518","url":null,"abstract":"<div><p>Breast cancer incidence has been steadily rising and is the leading cause of cancer death in women due to its high metastatic potential. Individual breast cancer subtypes are classified by both cell type of origin and receptor expression, namely estrogen, progesterone and human epidermal growth factor receptors (ER, PR and HER2). Recently, the importance and context-dependent role of glucocorticoid receptor (GR) expression in the natural history and prognosis of breast cancer subtypes have been uncovered. In ER-positive breast cancer, GR expression is associated with a better prognosis as a result of ER-GR crosstalk. GR appears to modulate ER-mediated gene expression resulting in decreased tumor cell proliferation and a more indolent cancer phenotype. In ER-negative breast cancer, including GR-positive triple-negative breast cancer (TNBC), GR expression enhances migration, chemotherapy resistance and cell survival. In invasive lobular carcinoma, GR function is relatively understudied, and more work is required to determine whether lobular subtypes behave similarly to their invasive ductal carcinoma counterparts. Importantly, understanding GR signaling in individual breast cancer subtypes has potential clinical implications because of the recent development of highly selective GR non-steroidal ligands, which represent a therapeutic approach for modulating GR activity systemically.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1016/j.jsbmb.2024.106527
Yanan Sun , Ginevra Giacomello , Ulrich Girreser , Jakob Steff , Matthias Bureik , Xavier de la Torre , Francesco Botrè , Maria Kristina Parr
Methyltestosterone (MT) is one of the most frequently misused anabolic androgenic steroids detected in doping control analysis. The metabolism of MT in humans leads to several phase І metabolites and their corresponding phase Ⅱ conjugates. Previous studies have postulated the 3α-sulfoconjugate of 17α-methyl-5β-androstane-3α,17β-diol (S2) as principal sulfate metabolite of MT, with a detection window exceeding 10 days. However, a final direct and unambiguous confirmation of the structure of this metabolite is missing until now. In this study, we established an approach to detect and identify S2, using intact analysis by liquid chromatography hyphenated with tandem mass spectrometry (LC-MS/MS) without complex sample pretreatment. An in vitro study yielded the LC-MS/MS reference retention times of all 3-sulfated 17-methylandrostane-3,17-diol diastereomers, allowing for accurate structure assignment of potentially detected metabolites. In an in vivo excretion study with a single healthy male volunteer, the presence of the metabolite S2 was confirmed after a single oral dose of 10 mg MT. The reference standard was chemically synthesized, characterized by accurate mass mass spectrometry (MS) and nuclear magnetic resonance (NMR), and quantified by quantitative NMR (qNMR). Thus, this study finally provides accurate structure information on the S2 metabolite and a direct analytical method for detection of MT misuse. The availability of the reference material is expected to facilitate further evaluation and subsequent analytical method validation in anti-doping research.
{"title":"Characterization and quantitation of a sulfoconjugated metabolite for detection of methyltestosterone misuse and direct identification by LC-MS","authors":"Yanan Sun , Ginevra Giacomello , Ulrich Girreser , Jakob Steff , Matthias Bureik , Xavier de la Torre , Francesco Botrè , Maria Kristina Parr","doi":"10.1016/j.jsbmb.2024.106527","DOIUrl":"10.1016/j.jsbmb.2024.106527","url":null,"abstract":"<div><p>Methyltestosterone (MT) is one of the most frequently misused anabolic androgenic steroids detected in doping control analysis. The metabolism of MT in humans leads to several phase І metabolites and their corresponding phase Ⅱ conjugates. Previous studies have postulated the 3α-sulfoconjugate of 17α-methyl-5β-androstane-3α,17β-diol (S2) as principal sulfate metabolite of MT, with a detection window exceeding 10 days. However, a final direct and unambiguous confirmation of the structure of this metabolite is missing until now. In this study, we established an approach to detect and identify S2, using intact analysis by liquid chromatography hyphenated with tandem mass spectrometry (LC-MS/MS) without complex sample pretreatment. An <em>in vitro</em> study yielded the LC-MS/MS reference retention times of all 3-sulfated 17-methylandrostane-3,17-diol diastereomers, allowing for accurate structure assignment of potentially detected metabolites. In an <em>in vivo</em> excretion study with a single healthy male volunteer, the presence of the metabolite S2 was confirmed after a single oral dose of 10 mg MT. The reference standard was chemically synthesized, characterized by accurate mass mass spectrometry (MS) and nuclear magnetic resonance (NMR), and quantified by quantitative NMR (qNMR). Thus, this study finally provides accurate structure information on the S2 metabolite and a direct analytical method for detection of MT misuse. The availability of the reference material is expected to facilitate further evaluation and subsequent analytical method validation in anti-doping research.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S096007602400075X/pdfft?md5=e4e6d697ef223afbf717f3b991d56ed6&pid=1-s2.0-S096007602400075X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140854313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1016/j.jsbmb.2024.106540
Ping Li , Yiwen Chen , Yixiao Xiang , Ruixin Guo , Xiaosa Li , Junxiu Liu , Yuting Zhou , Xiaodong Fu
Inflammatory bowel disease (IBD) describes a group of clinically common autoimmune diseases characterized by chronic intestinal inflammation, with gender differences in prevalence. Estrogen has been previously shown to exert anti-inflammatory action in IBD development, however, the mechanisms remain obscure. Recent research has revealed that myeloid-derived suppressor cells (MDSCs) play a protective role in IBD pathogenesis. To investigate the molecular mechanisms of estrogen steroid 17β-estradiol (E2) in IBD progression, we established IBD mouse models (DNB-induced) with or without prior ovariectomy (OVX) and E2 implantation. We found that OVX led to worse IBD symptoms and reduced MDSCs frequency, whereas E2 significantly alleviated these effects in vivo. Moreover, in vitro experiments showed that E2 promoted the proliferation and immunosuppressive function of MDSCs through phosphorylation of Stat3 and p65. Mechanistically, E2-mediated Stat3/p65 phosphorylation depends on the interaction between HOTAIR, a long non-coding RNA that are well-known in MDSCs proliferation, and Stat3/p65 respectively. In conclusion, our study revealed that E2 promotes the expansion and immunosuppressive function of MDSCs, and thus diminished the occurrence and development of IBD.
{"title":"17β-estradiol promotes myeloid-derived suppressor cells functions and alleviates inflammatory bowel disease by activation of Stat3 and NF-κB signalings","authors":"Ping Li , Yiwen Chen , Yixiao Xiang , Ruixin Guo , Xiaosa Li , Junxiu Liu , Yuting Zhou , Xiaodong Fu","doi":"10.1016/j.jsbmb.2024.106540","DOIUrl":"10.1016/j.jsbmb.2024.106540","url":null,"abstract":"<div><p>Inflammatory bowel disease (IBD) describes a group of clinically common autoimmune diseases characterized by chronic intestinal inflammation, with gender differences in prevalence. Estrogen has been previously shown to exert anti-inflammatory action in IBD development, however, the mechanisms remain obscure. Recent research has revealed that myeloid-derived suppressor cells (MDSCs) play a protective role in IBD pathogenesis. To investigate the molecular mechanisms of estrogen steroid 17β-estradiol (E2) in IBD progression, we established IBD mouse models (DNB-induced) with or without prior ovariectomy (OVX) and E2 implantation. We found that OVX led to worse IBD symptoms and reduced MDSCs frequency, whereas E2 significantly alleviated these effects <em>in vivo</em>. Moreover, <em>in vitro</em> experiments showed that E2 promoted the proliferation and immunosuppressive function of MDSCs through phosphorylation of Stat3 and p65. Mechanistically, E2-mediated Stat3/p65 phosphorylation depends on the interaction between HOTAIR, a long non-coding RNA that are well-known in MDSCs proliferation, and Stat3/p65 respectively. In conclusion, our study revealed that E2 promotes the expansion and immunosuppressive function of MDSCs, and thus diminished the occurrence and development of IBD.</p></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":4.1,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0960076024000888/pdfft?md5=0cc99cc3fbd8f7f2dec04b5aeafb813a&pid=1-s2.0-S0960076024000888-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140892261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}