Health informatics and artificial intelligence (AI) are expected to transform the healthcare enterprise and the future practice of radiology. There is an increasing body of literature on radiomics and deep learning/AI applications in medical imaging. There are also a steadily increasing number of FDA cleared AI applications in radiology. It is therefore essential for radiologists to have a basic understanding of these approaches, whether in academia or private practice. In this article, we will provide an overview of the field and familiarize the readers with the fundamental concepts behind these approaches.
There is a steadily increasing number of artificial intelligence (AI) tools available and cleared for use in clinical radiological practice. Radiologists will increasingly be faced with options provided by other radiologist colleagues, clinician colleagues, vendors, or other professionals for obtaining and deploying AI algorithms in clinical practice. It is important that radiologists are familiar with basic and practical aspects that need to be considered when assessing an AI tool for use in their practice, so that resources are properly allocated and there is an appropriate return on investment through enhancements in patient quality of care, safety, and/or process efficiency. In this review, we will discuss a potential approach for AI software assessment and practical points that should be considered when considering the acquisition and deployment of an AI tool in the radiology department.