Pub Date : 2020-01-01DOI: 10.12989/SSS.2020.26.1.103
Yan Cao, Rayed Alyousef, K. Jermsittiparsert, Lanh Si Ho, A. Alaskar, Hisham Alabduljabbar, Fahed Alrshoudi, A. M. Mohamed
{"title":"Investigation on the monotonic behavior of the steel rack upright-beam column connection","authors":"Yan Cao, Rayed Alyousef, K. Jermsittiparsert, Lanh Si Ho, A. Alaskar, Hisham Alabduljabbar, Fahed Alrshoudi, A. M. Mohamed","doi":"10.12989/SSS.2020.26.1.103","DOIUrl":"https://doi.org/10.12989/SSS.2020.26.1.103","url":null,"abstract":"","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66185285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/SSS.2020.26.1.077
R. M. Fenjan, R. A. Ahmed, Nadhim M. Faleh, Fatima Masood Hani
{"title":"Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation","authors":"R. M. Fenjan, R. A. Ahmed, Nadhim M. Faleh, Fatima Masood Hani","doi":"10.12989/SSS.2020.26.1.077","DOIUrl":"https://doi.org/10.12989/SSS.2020.26.1.077","url":null,"abstract":"","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66185590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/SSS.2021.27.5.795
J. Hu, Young-Wook Cha, A. Farzampour, N. Mirzai, I. Mansouri
Structural fuses are manufactured from oriented steel plates for use in seismic protective systems to withstand significant lateral shear loads. These systems are designed and detailed for concentrating the damage and excessive inelastic deformations in the desired location along the length of the fuse to prevent the crack propagation and structural issues for the surrounding elements. Among a number of structural systems with engineered - cut-outs, a recently developed butterfly-shaped structural fuses are proposed to better align the bending strength along the length of the fuse with the demand moment, enhancing controlled yielding features over the brittle behavior. Previously, the design methodologies were developed purely based on the flexural stresses' or shear stresses' behavior leading to underestimate or overestimate the structural capacity of the fuses. The aim of this study is to optimize the design methodologies for commonly used butterfly-shaped dampers through experimental investigations considering the stresses are not uniformly distributed stresses along the length of the fuse system. The effect of shear and flexural stresses on the behavior of butterfly-shaped are initially formulated based on the Von-Mises criterion, and the optimized geometry is specified. Subsequently, experimental tests are developed for evaluating the optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel. It is shown that butterfly-shaped dampers are capable of full cyclic hysteric behavior without any major signs of strength or stiffness degradations.
{"title":"Experimental study on the optimized design of butterfly-shaped dampers","authors":"J. Hu, Young-Wook Cha, A. Farzampour, N. Mirzai, I. Mansouri","doi":"10.12989/SSS.2021.27.5.795","DOIUrl":"https://doi.org/10.12989/SSS.2021.27.5.795","url":null,"abstract":"Structural fuses are manufactured from oriented steel plates for use in seismic protective systems to withstand significant lateral shear loads. These systems are designed and detailed for concentrating the damage and excessive inelastic deformations in the desired location along the length of the fuse to prevent the crack propagation and structural issues for the surrounding elements. Among a number of structural systems with engineered - cut-outs, a recently developed butterfly-shaped structural fuses are proposed to better align the bending strength along the length of the fuse with the demand moment, enhancing controlled yielding features over the brittle behavior. Previously, the design methodologies were developed purely based on the flexural stresses' or shear stresses' behavior leading to underestimate or overestimate the structural capacity of the fuses. The aim of this study is to optimize the design methodologies for commonly used butterfly-shaped dampers through experimental investigations considering the stresses are not uniformly distributed stresses along the length of the fuse system. The effect of shear and flexural stresses on the behavior of butterfly-shaped are initially formulated based on the Von-Mises criterion, and the optimized geometry is specified. Subsequently, experimental tests are developed for evaluating the optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel. It is shown that butterfly-shaped dampers are capable of full cyclic hysteric behavior without any major signs of strength or stiffness degradations.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66186946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/SSS.2020.25.1.047
M. M. Dehcheshmeh, A. Hosseinzadeh, G. G. Amiri
This paper proposes a model-based approach for structural damage identification and quantification. Using pseudo modal strain energy and mode shape vectors, a damage-sensitive objective function is introduced which is suitable for damage estimation and quantification in shear frames. Whale optimization algorithm (WOA) is used to solve the problem and report the optimal solution as damage detection results. To illustrate the capability of the proposed method, a numerical example of a shear frame under different damage patterns is studied in both ideal and noisy cases. Furthermore, the performance of the WOA is compared with particle swarm optimization algorithm, as one the widely-used optimization techniques. The applicability of the method is also experimentally investigated by studying a six-story shear frame tested on a shake table. Based on the obtained results, the proposed method is able to assess the health of the shear building structures with high level of accuracy.
{"title":"Feasibility study on model-based damage detection in shear frames using pseudo modal strain energy","authors":"M. M. Dehcheshmeh, A. Hosseinzadeh, G. G. Amiri","doi":"10.12989/SSS.2020.25.1.047","DOIUrl":"https://doi.org/10.12989/SSS.2020.25.1.047","url":null,"abstract":"This paper proposes a model-based approach for structural damage identification and quantification. Using pseudo modal strain energy and mode shape vectors, a damage-sensitive objective function is introduced which is suitable for damage estimation and quantification in shear frames. Whale optimization algorithm (WOA) is used to solve the problem and report the optimal solution as damage detection results. To illustrate the capability of the proposed method, a numerical example of a shear frame under different damage patterns is studied in both ideal and noisy cases. Furthermore, the performance of the WOA is compared with particle swarm optimization algorithm, as one the widely-used optimization techniques. The applicability of the method is also experimentally investigated by studying a six-story shear frame tested on a shake table. Based on the obtained results, the proposed method is able to assess the health of the shear building structures with high level of accuracy.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66184260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAECPTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAECPTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.
{"title":"Semi-active eddy current pendulum tuned mass damper with variable frequency and damping","authors":"Liangkun Wang, Weixing Shi, Ying Zhou, Quanwu Zhang","doi":"10.12989/SSS.2020.25.1.065","DOIUrl":"https://doi.org/10.12989/SSS.2020.25.1.065","url":null,"abstract":"In order to protect a structure over its full life cycle, a novel tuned mass damper (TMD), the so-called semi-active eddy current pendulum tuned mass damper (SAEC-PTMD), which can retune its frequency and damping ratio in real-time, is proposed in this study. The structural instantaneous frequency is identified through a Hilbert-Huang transformation (HHT), and the SAECPTMD pendulum is adjusted through an HHT-based control algorithm. The eddy current damping parameters are discussed, and the relationship between effective damping coefficients and air gaps is fitted through a polynomial function. The semi-active eddy current damping can be adjusted in real-time by adjusting the air gap based on the linear-quadratic-Gaussian (LQG)-based control algorithm. To verify the vibration control effect of the SAEC-PTMD, an idealized linear primary structure equipped with an SAECPTMD excited by harmonic excitations and near-fault pulse-like earthquake excitations is proposed as one of the two case studies. Under strong earthquakes, structures may go into the nonlinear state, while the Bouc-Wen model has a wild application in simulating the hysteretic characteristic. Therefore, in the other case study, a nonlinear primary structure based on the Bouc-Wen model is proposed. An optimal passive TMD is used for comparison and the detuning effect, which results from the cumulative damage to primary structures, is considered. The maximum and root-mean-square (RMS) values of structural acceleration and displacement time history response, structural acceleration, and displacement response spectra are used as evaluation indices. Power analyses for one earthquake excitation are presented as an example to further study the energy dissipation effect of an SAECPTMD. The results indicate that an SAEC-PTMD performs better than an optimized passive TMD, both before and after damage occurs to the primary structure.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66184376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/SSS.2020.25.1.111
R. Al-Saleh, C. Fuggini
Researchers up to date have introduced several Structural Health Monitoring (SHM) techniques with varying advantages and drawbacks for each. Satellite positioning systems (GPS, GLONASS and GALILEO) based techniques proved to be promising, especially for high natural period structures. Particularly, the GPS has proved sufficient performance and reasonable accuracy in tracking real time dynamic displacements of flexible structures independent of atmospheric conditions, temperature variations and visibility of the monitored object. Tall structures are particularly sensitive to oscillations produced by different sources of dynamic actions; such as typhoons. Wind forces induce in the structure both longitudinal and perpendicular displacements with respect to the wind direction, resulting in torsional effects, which are usually more complex to be detected. To efficiently track the horizontal rotations of the in-plane sections of such flexible structures, two main issues have to be considered: a suitable sensor topology (i.e., location, installation, and combination of sensors), and the methodology used to process the data recorded by sensors. This paper reports the contributions of the measurements recorded from dual frequency GPS receivers and uni-axial accelerometers in a full-scale experimental campaign. The Canton tower in Guangzhou-China is the case study of this research, which is instrumented with a long-term structural health monitoring system deploying both accelerometers and GPS receivers. The elaboration of combining the obtained rather long records provided by these two types of sensors in detecting the torsional behavior of the tower under ambient vibration condition and during strong wind events is discussed in this paper. Results confirmed the reliability of GPS receivers in obtaining the dynamic characteristics of the system, and its ability to capture the torsional response of the tower when used alone or when they are combined with accelerometers integrated data.
{"title":"Combining GPS and accelerometers' records to capture torsional response of cylindrical tower","authors":"R. Al-Saleh, C. Fuggini","doi":"10.12989/SSS.2020.25.1.111","DOIUrl":"https://doi.org/10.12989/SSS.2020.25.1.111","url":null,"abstract":"Researchers up to date have introduced several Structural Health Monitoring (SHM) techniques with varying advantages and drawbacks for each. Satellite positioning systems (GPS, GLONASS and GALILEO) based techniques proved to be promising, especially for high natural period structures. Particularly, the GPS has proved sufficient performance and reasonable accuracy in tracking real time dynamic displacements of flexible structures independent of atmospheric conditions, temperature variations and visibility of the monitored object. Tall structures are particularly sensitive to oscillations produced by different sources of dynamic actions; such as typhoons. Wind forces induce in the structure both longitudinal and perpendicular displacements with respect to the wind direction, resulting in torsional effects, which are usually more complex to be detected. To efficiently track the horizontal rotations of the in-plane sections of such flexible structures, two main issues have to be considered: a suitable sensor topology (i.e., location, installation, and combination of sensors), and the methodology used to process the data recorded by sensors. This paper reports the contributions of the measurements recorded from dual frequency GPS receivers and uni-axial accelerometers in a full-scale experimental campaign. The Canton tower in Guangzhou-China is the case study of this research, which is instrumented with a long-term structural health monitoring system deploying both accelerometers and GPS receivers. The elaboration of combining the obtained rather long records provided by these two types of sensors in detecting the torsional behavior of the tower under ambient vibration condition and during strong wind events is discussed in this paper. Results confirmed the reliability of GPS receivers in obtaining the dynamic characteristics of the system, and its ability to capture the torsional response of the tower when used alone or when they are combined with accelerometers integrated data.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66184645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/SSS.2020.25.4.401
Tim Chen, Megan Lohnash, Emmanuel Owens, Cyj Chen
{"title":"PDC Intelligent control-based theory for structure system dynamics","authors":"Tim Chen, Megan Lohnash, Emmanuel Owens, Cyj Chen","doi":"10.12989/SSS.2020.25.4.401","DOIUrl":"https://doi.org/10.12989/SSS.2020.25.4.401","url":null,"abstract":"","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66184959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/SSS.2020.26.4.521
Babak Tohidi, M. Delshad, H. Saghafi
{"title":"A new interleaved high step up converter with low voltage stress on the main switches","authors":"Babak Tohidi, M. Delshad, H. Saghafi","doi":"10.12989/SSS.2020.26.4.521","DOIUrl":"https://doi.org/10.12989/SSS.2020.26.4.521","url":null,"abstract":"","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66185934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/SSS.2020.26.4.469
Reza Zare, Neda Najaafi, M. Habibi, F. Ebrahimi, H. Safarpour
{"title":"Influence of imperfection on the smart control frequency characteristics of a cylindrical sensor-actuator GPLRC cylindrical shell using a proportional-derivative smart controller","authors":"Reza Zare, Neda Najaafi, M. Habibi, F. Ebrahimi, H. Safarpour","doi":"10.12989/SSS.2020.26.4.469","DOIUrl":"https://doi.org/10.12989/SSS.2020.26.4.469","url":null,"abstract":"","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66186121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-01-01DOI: 10.12989/SSS.2020.26.5.575
Fangdian Di, Limin Sun, Lin Chen
{"title":"Cable vibration control with internal and external dampers: Theoretical analysis and field test validation","authors":"Fangdian Di, Limin Sun, Lin Chen","doi":"10.12989/SSS.2020.26.5.575","DOIUrl":"https://doi.org/10.12989/SSS.2020.26.5.575","url":null,"abstract":"","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66186541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}