The paper is devoted to a family of discrete one-dimensional Schrödinger operators with power-like decaying potentials with rapid oscillations. In particular, for the potential V(n)=λn−αcos(πωnβ)V(n)=lambda n^{-alpha }cos (pi omega n^beta ) with 1>β>2α1>beta >2alpha, it is proved that the spectrum is purely absolutely continuous on the spectrum of the Laplacian.
本文主要讨论了具有快速振荡的幂级数衰变势的离散一维薛定谔算子族。特别是,对于 1 > β > 2 α 1>beta >2alpha 的势 V ( n ) = λ n - α cos ( π ω n β ) V(n)=lambda n^{-alpha }cos (pi omega n^beta ) ,证明了其频谱在拉普拉卡频谱上是纯粹绝对连续的。
{"title":"Discrete Schrödinger operators with decaying and oscillating potentials","authors":"R. Frank, S. Larson","doi":"10.1090/spmj/1803","DOIUrl":"https://doi.org/10.1090/spmj/1803","url":null,"abstract":"<p>The paper is devoted to a family of discrete one-dimensional Schrödinger operators with power-like decaying potentials with rapid oscillations. In particular, for the potential <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper V left-parenthesis n right-parenthesis equals lamda n Superscript negative alpha Baseline cosine left-parenthesis pi omega n Superscript beta Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>V</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>n</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>λ<!-- λ --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> </mml:msup> <mml:mi>cos</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>π<!-- π --></mml:mi> <mml:mi>ω<!-- ω --></mml:mi> <mml:msup> <mml:mi>n</mml:mi> <mml:mi>β<!-- β --></mml:mi> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">V(n)=lambda n^{-alpha }cos (pi omega n^beta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 greater-than beta greater-than 2 alpha\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>></mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mo>></mml:mo> <mml:mn>2</mml:mn> <mml:mi>α<!-- α --></mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1>beta >2alpha</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, it is proved that the spectrum is purely absolutely continuous on the spectrum of the Laplacian.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"26 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
On the basis of a prescribed quadratic Lagrangian, an algorithm of synthesis for an electric circuit is suggested here. That is, the circuit evolution equations are equivalent to the relevant Euler–Lagrange equations. The proposed synthesis is a systematic approach that allows one to realize any finite-dimensional physical system described by a quadratic Lagrangian in a lossless electric circuit so that their evolution equations are equivalent. The synthesized circuit is composed of (i) capacitors and inductors of positive or negative values for the respective capacitances and inductances, and (ii) gyrators. The circuit topological design is based on the set of LCLC fundamental loops (f-loops) that are coupled by GLCGLC-links each of which is a serially connected gyrator, capacitor, or inductor. The set of independent variables of the underlying Lagrangian is identified with f-loop charges defined as the time integrals of the corresponding currents. The EL equations for all f-loops account for the Kirchhoff voltage law whereas the Kirchhoff current law is fulfilled naturally as a consequence of the setup of the coupled f-loops and the corresponding charges and currents. In particular, the proposed synthesis provides for efficient implementation of the desired spectral properties in an electric circuit. The synthesis provides also a way to realize arbitrary mutual capacitances and inductances through elementary capacitors and inductors of positive or negative respective capacitances and inductances.
在规定的二次拉格朗日的基础上,这里提出了一种电路合成算法。也就是说,电路演化方程等价于相关的欧拉-拉格朗日方程。所提出的合成是一种系统方法,可以将二次拉格朗日描述的任何有限维物理系统实现为无损电路,从而使它们的演化方程等效。合成电路由以下两部分组成:(i) 电容和电感的正值或负值;(ii) 回旋器。电路拓扑设计基于一组 L C LC 基本回路(f-loop),这些回路通过 G L C GLC 链接耦合,每个链接都是一个串联的回旋器、电容器或电感器。基本拉格朗日的自变量集与 f 环电荷相一致,定义为相应电流的时间积分。所有 floop 的 EL 方程都考虑了基尔霍夫电压定律,而基尔霍夫电流定律则因耦合 floop 的设置以及相应的电荷和电流而自然实现。特别是,所提出的合成方法可在电路中有效实现所需的频谱特性。此外,该合成法还提供了一种方法,通过电容和电感各自为正或负的基本电容和电感,实现任意的互容和互感。
{"title":"Circuit synthesis based on a prescribed Lagrangian","authors":"A. Figotin","doi":"10.1090/spmj/1801","DOIUrl":"https://doi.org/10.1090/spmj/1801","url":null,"abstract":"<p>On the basis of a prescribed quadratic Lagrangian, an algorithm of synthesis for an electric circuit is suggested here. That is, the circuit evolution equations are equivalent to the relevant Euler–Lagrange equations. The proposed synthesis is a systematic approach that allows one to realize any finite-dimensional physical system described by a quadratic Lagrangian in a lossless electric circuit so that their evolution equations are equivalent. The synthesized circuit is composed of (i) capacitors and inductors of positive or negative values for the respective capacitances and inductances, and (ii) gyrators. The circuit topological design is based on the set of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L upper C\"> <mml:semantics> <mml:mrow> <mml:mi>L</mml:mi> <mml:mi>C</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">LC</mml:annotation> </mml:semantics> </mml:math> </inline-formula> fundamental loops (f-loops) that are coupled by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper G upper L upper C\"> <mml:semantics> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>L</mml:mi> <mml:mi>C</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">GLC</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-links each of which is a serially connected gyrator, capacitor, or inductor. The set of independent variables of the underlying Lagrangian is identified with f-loop charges defined as the time integrals of the corresponding currents. The EL equations for all f-loops account for the Kirchhoff voltage law whereas the Kirchhoff current law is fulfilled naturally as a consequence of the setup of the coupled f-loops and the corresponding charges and currents. In particular, the proposed synthesis provides for efficient implementation of the desired spectral properties in an electric circuit. The synthesis provides also a way to realize arbitrary mutual capacitances and inductances through elementary capacitors and inductors of positive or negative respective capacitances and inductances.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"190 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140937172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A family rλr_lambda, λ∈Clambda in mathbb {C}, of complex stochastic processes is introduced, which makes it possible to construct a probabilistic representation for the resolvent of the operator −12d2dx2-frac {1}{2}frac {d^2}{dx^2}. For λ=0lambda =0, the process rλr_lambda coincides with the Brownian local time process.
在 mathbb {C} 中引入了一个系列 r λ r_lambda , λ ∈ C lambda 。 引入了复杂随机过程,这使得为算子 - 1 2 d 2 d x 2 -frac {1}{2}frac {d^2}{dx^2}的解析量构建概率表示成为可能。对于 λ = 0 lambda =0,过程 r λ r_lambda 与布朗局部时间过程重合。
{"title":"Resolvent stochastic processes","authors":"I. Ibragimov, N. Smorodina, M. Faddeev","doi":"10.1090/spmj/1797","DOIUrl":"https://doi.org/10.1090/spmj/1797","url":null,"abstract":"<p>A family <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r Subscript lamda\"> <mml:semantics> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>λ<!-- λ --></mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">r_lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda element-of double-struck upper C\"> <mml:semantics> <mml:mrow> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">lambda in mathbb {C}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, of complex stochastic processes is introduced, which makes it possible to construct a probabilistic representation for the resolvent of the operator <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"minus one half StartFraction d squared Over d x squared EndFraction\"> <mml:semantics> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>2</mml:mn> </mml:mfrac> <mml:mfrac> <mml:msup> <mml:mi>d</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mrow> <mml:mi>d</mml:mi> <mml:msup> <mml:mi>x</mml:mi> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> </mml:mfrac> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">-frac {1}{2}frac {d^2}{dx^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda equals 0\"> <mml:semantics> <mml:mrow> <mml:mi>λ<!-- λ --></mml:mi> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">lambda =0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the process <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"r Subscript lamda\"> <mml:semantics> <mml:msub> <mml:mi>r</mml:mi> <mml:mi>λ<!-- λ --></mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">r_lambda</mml:annotation> </mml:semantics> </mml:math> </inline-formula> coincides with the Brownian local time process.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"45 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140936866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding="application/x-tex">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a function on <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper R squared"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant="double-struck">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding="application/x-tex">mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the inhomogeneous Besov space <inline-formula content-type="math/tex"> <tex-math> {text textit {Russian {B}}}_{infty ,1}^{1}(mathbb {R}^2)</tex-math></inline-formula>. For a pair <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="left-parenthesis upper A comma upper B right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">(A,B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of not necessarily bounded and not necessarily commuting self-adjoint operators, the function <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="f left-parenthesis upper A comma upper B right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">f(A,B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is introduced as a densely defined linear operator. It is shown that if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="1 less-than-or-equal-to p less-than-or-equal-to 2"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">1le ple 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www
让 f f 是非均匀贝索夫空间 {text textit {Russian {B}}}_{infty ,1}^{1}(mathbb {R}^2) 中 R 2 mathbb {R}^2 上的函数。对于一对 ( A , B ) (A,B) 不一定有界且不一定相交的自相交算子,A A 和 B B 的函数 f ( A , B ) f(A,B) 被引入为密集定义的线性算子。结果表明,如果 1 ≤ p ≤ 2 1le ple 2 , ( A 1 , B 1 ) (A_1,B_1) 和 ( A 2 , B 2 ) (A_2. B_2) 是成对的、B_2) 是一对不一定有界且不一定相交的自并算子,使得 A 1 - A 2 A_1-A_2 和 B 1 - B 2 B_1-B_2 都属于 Schatten-von Neumann 类 S p {boldsymbol {S}}_p 且 fin {text textit {Russian {B}}}_{infty ,1}^{1}(mathbb {R}^2),那么下面的 Lipschitz 类型估计成立: 开始|f(A_1,B_1)-f(A_2,B_2)|_{{boldsymbol {S}}_p}最大值(big):||A_1-A_2|_{{boldsymbol {S}_p}, |B_1-B_2|_{{boldsymbol {S}_p}big }。end{equation*}
{"title":"Functions of perturbed noncommuting unbounded selfadjoint operators","authors":"A. Aleksandrov, V. Peller","doi":"10.1090/spmj/1784","DOIUrl":"https://doi.org/10.1090/spmj/1784","url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f\"> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=\"application/x-tex\">f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a function on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R squared\"> <mml:semantics> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> <mml:annotation encoding=\"application/x-tex\">mathbb {R}^2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in the inhomogeneous Besov space <inline-formula content-type=\"math/tex\"> <tex-math> {text textit {Russian {B}}}_{infty ,1}^{1}(mathbb {R}^2)</tex-math></inline-formula>. For a pair <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper A comma upper B right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(A,B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of not necessarily bounded and not necessarily commuting self-adjoint operators, the function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"f left-parenthesis upper A comma upper B right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">f(A,B)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is introduced as a densely defined linear operator. It is shown that if <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"1 less-than-or-equal-to p less-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">1le ple 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"128 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The paper is devoted to the study of deformations of Artinian algebras and zero-dimensional germs of varieties. In particular, an approach is developed to solving the open problem about the nonexistence of rigid Artinian algebras; it is based essentially on the use of the canonical duality in the cotangent complex. Thus, it is shown that there are no rigid Gorenstein Artinian algebras and rigid almost complete intersections. The proof of the latter statement is based on the properties of the torsion functors. More precisely, the tensor product of the conormal and canonical modules of the corresponding Artinian algebra is calculated. In this case, the homology and cohomology groups of higher degrees are also found. Among other things, some estimates are obtained for the dimension of the spaces of the first lower and upper cotangent functors of Artinian algebras, and the relationship between them is described. In conclusion, several examples of nonsmoothable Artinian noncomplete intersections are examined, and some unusual properties of such algebras are discussed.
{"title":"Deformations of commutative Artinian algebras","authors":"A. Aleksandrov","doi":"10.1090/spmj/1783","DOIUrl":"https://doi.org/10.1090/spmj/1783","url":null,"abstract":"<p>The paper is devoted to the study of deformations of Artinian algebras and zero-dimensional germs of varieties. In particular, an approach is developed to solving the open problem about the nonexistence of rigid Artinian algebras; it is based essentially on the use of the canonical duality in the cotangent complex. Thus, it is shown that there are no rigid Gorenstein Artinian algebras and rigid almost complete intersections. The proof of the latter statement is based on the properties of the torsion functors. More precisely, the tensor product of the conormal and canonical modules of the corresponding Artinian algebra is calculated. In this case, the homology and cohomology groups of higher degrees are also found. Among other things, some estimates are obtained for the dimension of the spaces of the first lower and upper cotangent functors of Artinian algebras, and the relationship between them is described. In conclusion, several examples of nonsmoothable Artinian noncomplete intersections are examined, and some unusual properties of such algebras are discussed.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"2015 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A version of the extra-zero conjecture, formulated by the first named author, is proved for pp-adic LL-functions associated with Rankin–Selberg convolutions of modular forms of the same weight. This result provides an evidence in support of this conjecture in the noncritical case, which remained essentially unstudied.
第一位作者提出的 "零外猜想 "的一个版本被证明适用于与同重模态的兰金-塞尔伯格卷积相关的 p -adic L L 函数。这一结果为在非临界情况下支持这一猜想提供了证据,而这一猜想基本上仍未得到研究。
{"title":"On extra zeros of 𝑝-adic Rankin–Selberg 𝐿-functions","authors":"D. Benois, S. Horte","doi":"10.1090/spmj/1785","DOIUrl":"https://doi.org/10.1090/spmj/1785","url":null,"abstract":"<p>A version of the extra-zero conjecture, formulated by the first named author, is proved for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L\"> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=\"application/x-tex\">L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions associated with Rankin–Selberg convolutions of modular forms of the same weight. This result provides an evidence in support of this conjecture in the <italic>noncritical</italic> case, which remained essentially unstudied.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"20 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atsuyama’s result on the geometry of symmetric spaces of type EIII is generalized to the case of arbitrary fields of characteristic not 2 or 3. As an application, a variant of the “chain lemma” for microweight tori in groups of type E6E_6 is proved.
{"title":"Geometry of symmetric spaces of type EIII","authors":"V. Petrov, A. Semenov","doi":"10.1090/spmj/1789","DOIUrl":"https://doi.org/10.1090/spmj/1789","url":null,"abstract":"<p>Atsuyama’s result on the geometry of symmetric spaces of type EIII is generalized to the case of arbitrary fields of characteristic not 2 or 3. As an application, a variant of the “chain lemma” for microweight tori in groups of type <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper E 6\"> <mml:semantics> <mml:msub> <mml:mi>E</mml:mi> <mml:mn>6</mml:mn> </mml:msub> <mml:annotation encoding=\"application/x-tex\">E_6</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is proved.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"108 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>An alternative approach to the classical Morel–Voevodsky stable motivic homotopy theory <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper H left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>H</mml:mi> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">SH(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is suggested. The triangulated category of framed bispectra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper H Subscript n i s Superscript f r Baseline left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>nis</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">SH_{operatorname {nis}}^{operatorname {fr}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and effective framed bispectra <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper H Subscript n i s Superscript f r comma e f f Baseline left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>nis</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> <mml:mo>,</mml:mo> <mml:mi>eff</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">SH_{operatorname {nis}}^{operatorname {fr},operatorname {eff}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are introduced in the paper. Both triangulated categories only involve Nisnevich local equivalences and have nothing to do with any kind of motivic equivalences. It is shown that <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper H Subscript n i s Superscript f r Baseline left-parenthesis k right-parenthesis"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>nis</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy="false">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">SH_{operatorname {nis}}^{operatorname {fr}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper S upper H Subscript n i s Superscript f r comma e f f Baseline
本文提出了经典莫雷尔-伏沃斯基稳定动机同调理论 S H ( k ) SH(k) 的另一种方法。文中介绍了有框双谱 S H nis fr ( k ) SH_{operatorname {nis}}^{operatorname {fr}}(k) 和有效有框双谱 S H nis fr , eff ( k ) SH_{operatorname {nis}}^{operatorname {fr},operatorname {eff}}(k) 的三角范畴。这两个三角范畴都只涉及尼斯内维奇局部等价,而与任何一种动机等价无关。研究表明,S H nis fr ( k ) SH_{operatorname {nis}}^{operatorname {fr}}(k) 和 S H nis fr , eff ( k ) SH_{operatorname {nis}}^{operatorname {fr}、operatorname {eff}}(k) 分别恢复了经典的莫雷尔-伏伊伏丁斯基三角范畴的双谱 S H ( k ) SH(k) 和有效双谱 S H eff ( k ) SH^{operatorname {eff}}(k) 。还有 S H ( k ) SH(k) 和 S H eff ( k ) SH^{operatorname {eff}}(k) 被复原为有框动机谱函子 S H S 1 fr [ F r 0 ( k ) ] SH_{S^1 fr [ F r 0 ( k ) ] 的三角范畴。) ] SH_{S^1}^{operatorname {fr}}[mathcal {F}r_0(k)] 和本文构建的有框动机三角范畴 S H fr ( k ) mathcal {SH}^{operatorname {fr}}(k).
{"title":"Triangulated categories of framed bispectra and framed motives","authors":"G. Garkusha, I. Panin","doi":"10.1090/spmj/1786","DOIUrl":"https://doi.org/10.1090/spmj/1786","url":null,"abstract":"<p>An alternative approach to the classical Morel–Voevodsky stable motivic homotopy theory <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>H</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is suggested. The triangulated category of framed bispectra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H Subscript n i s Superscript f r Baseline left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>nis</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH_{operatorname {nis}}^{operatorname {fr}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and effective framed bispectra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H Subscript n i s Superscript f r comma e f f Baseline left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>nis</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> <mml:mo>,</mml:mo> <mml:mi>eff</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH_{operatorname {nis}}^{operatorname {fr},operatorname {eff}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are introduced in the paper. Both triangulated categories only involve Nisnevich local equivalences and have nothing to do with any kind of motivic equivalences. It is shown that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H Subscript n i s Superscript f r Baseline left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>nis</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH_{operatorname {nis}}^{operatorname {fr}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H Subscript n i s Superscript f r comma e f f Baseline","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"34 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140937240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A hierarchy of Lax pairs with 2×22times 2 matrix coefficients is presented. The compatibility conditions for these pairs include the Toda chain equation, and other differential-difference integrable systems. Various kinds of finite gap solutions for such systems are constructed. Examples of simplest one- and two-phase solutions are given, together with the corresponding spectral curves.
{"title":"Dubrovin method and the Toda chain","authors":"V. Matveev, A. Smirnov","doi":"10.1090/spmj/1787","DOIUrl":"https://doi.org/10.1090/spmj/1787","url":null,"abstract":"<p>A hierarchy of Lax pairs with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"2 times 2\"> <mml:semantics> <mml:mrow> <mml:mn>2</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">2times 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrix coefficients is presented. The compatibility conditions for these pairs include the Toda chain equation, and other differential-difference integrable systems. Various kinds of finite gap solutions for such systems are constructed. Examples of simplest one- and two-phase solutions are given, together with the corresponding spectral curves.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"19 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140937063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A necessary and sufficient Blaschke-type condition is obtained for the zeros of derivatoves of Nevanlinna class functions.
为 Nevanlinna 类函数的导数零点获得了一个必要且充分的 Blaschke 型条件。
{"title":"On a Blaschke-type condition for the zeros of derivatives of R. Nevanlinna class functions in the disk","authors":"F. Shamoyan","doi":"10.1090/spmj/1790","DOIUrl":"https://doi.org/10.1090/spmj/1790","url":null,"abstract":"<p>A necessary and sufficient Blaschke-type condition is obtained for the zeros of derivatoves of Nevanlinna class functions.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"66 1","pages":""},"PeriodicalIF":0.8,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140942116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}