Pub Date : 2024-05-31DOI: 10.1007/s00362-024-01580-y
Chuancun Yin, Jing Yao, Yang Yang
In this work, we establish some stochastic comparison results for multivariate skew-elliptical random vectors. These multivariate stochastic comparisons involve Hessian and increasing-Hessian orderings and many of their special cases. We provide necessary and/or sufficient conditions for the orderings by comparing the underlying model parameters. In addition, we investigate the (positive) linear forms of usual stochastic, convex and increasing convex, positive convex and increasing-positive-convex orderings. Using these theoretical results, we explore two applications. The first involves determining the upper bound of multivariate skew-elliptical risk variables under specific parameter constraints. The other one focuses on assessing the portfolio aggregation risks. Finally, two examples based on numerical simulations and real data from an Australian insurance company illustrate the established results and practical explanations.
{"title":"Hessian and increasing-Hessian orderings of multivariate skew-elliptical random vectors with applications in actuarial science","authors":"Chuancun Yin, Jing Yao, Yang Yang","doi":"10.1007/s00362-024-01580-y","DOIUrl":"https://doi.org/10.1007/s00362-024-01580-y","url":null,"abstract":"<p>In this work, we establish some stochastic comparison results for multivariate skew-elliptical random vectors. These multivariate stochastic comparisons involve Hessian and increasing-Hessian orderings and many of their special cases. We provide necessary and/or sufficient conditions for the orderings by comparing the underlying model parameters. In addition, we investigate the (positive) linear forms of usual stochastic, convex and increasing convex, positive convex and increasing-positive-convex orderings. Using these theoretical results, we explore two applications. The first involves determining the upper bound of multivariate skew-elliptical risk variables under specific parameter constraints. The other one focuses on assessing the portfolio aggregation risks. Finally, two examples based on numerical simulations and real data from an Australian insurance company illustrate the established results and practical explanations.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"36 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1007/s00362-024-01566-w
Qian M. Zhou
Various goodness-of-fit tests are designed based on the so-called information matrix equivalence: if the assumed model is correctly specified, two information matrices that are derived from the likelihood function are equivalent. In the literature, this principle has been established for the likelihood function with fully observed data, but it has not been verified under the likelihood for censored data. In this manuscript, we prove the information matrix equivalence in the framework of semiparametric copula models for multivariate censored survival data. Based on this equivalence, we propose an information ratio (IR) test for the specification of the copula function. The IR statistic is constructed via comparing consistent estimates of the two information matrices. We derive the asymptotic distribution of the IR statistic and propose a parametric bootstrap procedure for the finite-sample P-value calculation. The performance of the IR test is investigated via a simulation study and a real data example.
各种拟合优度检验都是根据所谓的信息矩阵等价性设计的:如果假定模型的指定是正确的,那么从似然函数导出的两个信息矩阵是等价的。在文献中,这一原则是针对完全观测数据的似然函数建立的,但尚未在有删减数据的似然函数中得到验证。在本手稿中,我们在多变量删减生存数据的半参数 copula 模型框架下证明了信息矩阵等价性。基于这一等价性,我们提出了一种用于检验 copula 函数规范的信息比(IR)检验方法。IR 统计量是通过比较两个信息矩阵的一致估计值构建的。我们推导出了 IR 统计量的渐近分布,并提出了用于计算有限样本 P 值的参数引导程序。我们通过模拟研究和真实数据示例考察了 IR 检验的性能。
{"title":"Information matrix equivalence in the presence of censoring: a goodness-of-fit test for semiparametric copula models with multivariate survival data","authors":"Qian M. Zhou","doi":"10.1007/s00362-024-01566-w","DOIUrl":"https://doi.org/10.1007/s00362-024-01566-w","url":null,"abstract":"<p>Various goodness-of-fit tests are designed based on the so-called <i>information matrix equivalence</i>: if the assumed model is correctly specified, two information matrices that are derived from the likelihood function are equivalent. In the literature, this principle has been established for the likelihood function with fully observed data, but it has not been verified under the likelihood for censored data. In this manuscript, we prove the information matrix equivalence in the framework of semiparametric copula models for multivariate censored survival data. Based on this equivalence, we propose an information ratio (IR) test for the specification of the copula function. The IR statistic is constructed via comparing consistent estimates of the two information matrices. We derive the asymptotic distribution of the IR statistic and propose a parametric bootstrap procedure for the finite-sample <i>P</i>-value calculation. The performance of the IR test is investigated via a simulation study and a real data example.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"18 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-31DOI: 10.1007/s00362-024-01573-x
Noël Veraverbeke
The use of Bernstein polynomials in smooth nonparametric estimation of copulas has been well established in recent years. Their good properties in terms of bias and variance are well known. In this note we generalize some of the asymptotic theory to conditional copulas, that is where the dependence structure between the variables changes with a value of a random covariate. We obtain asymptotic representations and asymptotic normality for a conditional copula.
{"title":"Bernstein estimator for conditional copulas","authors":"Noël Veraverbeke","doi":"10.1007/s00362-024-01573-x","DOIUrl":"https://doi.org/10.1007/s00362-024-01573-x","url":null,"abstract":"<p>The use of Bernstein polynomials in smooth nonparametric estimation of copulas has been well established in recent years. Their good properties in terms of bias and variance are well known. In this note we generalize some of the asymptotic theory to conditional copulas, that is where the dependence structure between the variables changes with a value of a random covariate. We obtain asymptotic representations and asymptotic normality for a conditional copula.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"56 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1007/s00362-024-01578-6
Xuehu Zhu, Rongzhu Zhao, Dan Zeng, Qian Zhao, Jun Zhang
This paper introduces a novel Dimension Reduction-based Adaptive-to-model Semi-supervised Classification method, specifically designed for scenarios where the number of unlabeled samples significantly exceeds that of labeled samples. Leveraging the strengths of sufficient dimension reduction and non-parametric interpolation, the method significantly amplifies the value derived from unlabeled samples, thus enhancing the precision of the classification model. An iterative version is also presented to extract further insights from the interpolated unlabeled samples. Theoretical analyses and numerical studies demonstrate substantial improvements in classifier accuracy, particularly in the context of model misspecified. The effectiveness of the proposed method in enhancing classification accuracy is further substantiated through two empirical analyses: credit card application evaluations and coronary heart disease diagnostic assessments.
{"title":"Dimension reduction-based adaptive-to-model semi-supervised classification","authors":"Xuehu Zhu, Rongzhu Zhao, Dan Zeng, Qian Zhao, Jun Zhang","doi":"10.1007/s00362-024-01578-6","DOIUrl":"https://doi.org/10.1007/s00362-024-01578-6","url":null,"abstract":"<p>This paper introduces a novel Dimension Reduction-based Adaptive-to-model Semi-supervised Classification method, specifically designed for scenarios where the number of unlabeled samples significantly exceeds that of labeled samples. Leveraging the strengths of sufficient dimension reduction and non-parametric interpolation, the method significantly amplifies the value derived from unlabeled samples, thus enhancing the precision of the classification model. An iterative version is also presented to extract further insights from the interpolated unlabeled samples. Theoretical analyses and numerical studies demonstrate substantial improvements in classifier accuracy, particularly in the context of model misspecified. The effectiveness of the proposed method in enhancing classification accuracy is further substantiated through two empirical analyses: credit card application evaluations and coronary heart disease diagnostic assessments.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"83 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-25DOI: 10.1007/s00362-024-01568-8
Morteza Mohammadi, Majid Hashempour
This paper introduces the concept of dynamic cumulative residual extropy inaccuracy (DCREI) by expanding on the existing dynamic cumulative residual extropy (DCRE) measure and proposes a weighted version of it. The paper then investigates a characterization problem for the proposed weighted dynamic extropy inaccuracy measure under the proportional hazard model and characterizes some well-known lifetime distributions using the weighted dynamic cumulative residual extropy inaccuracy (WDCREI) measure. Additionally, the study discusses the stochastic ordering of WDCREI and certain results based on it. Non-parametric estimations of the proposed measures based on kernel and empirical estimators are suggested. Results of a simulation study show that the kernel-based estimators perform better than the empirical-based estimator. Finally, applications of the proposed measures on model selection are provided.
{"title":"On weighted version of dynamic cumulative residual inaccuracy measure based on extropy","authors":"Morteza Mohammadi, Majid Hashempour","doi":"10.1007/s00362-024-01568-8","DOIUrl":"https://doi.org/10.1007/s00362-024-01568-8","url":null,"abstract":"<p>This paper introduces the concept of dynamic cumulative residual extropy inaccuracy (DCREI) by expanding on the existing dynamic cumulative residual extropy (DCRE) measure and proposes a weighted version of it. The paper then investigates a characterization problem for the proposed weighted dynamic extropy inaccuracy measure under the proportional hazard model and characterizes some well-known lifetime distributions using the weighted dynamic cumulative residual extropy inaccuracy (WDCREI) measure. Additionally, the study discusses the stochastic ordering of WDCREI and certain results based on it. Non-parametric estimations of the proposed measures based on kernel and empirical estimators are suggested. Results of a simulation study show that the kernel-based estimators perform better than the empirical-based estimator. Finally, applications of the proposed measures on model selection are provided.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"9 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141153701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.1007/s00362-024-01563-z
Guangyu Wu, Anders Lindquist
Probability density estimation is a core problem in statistics and data science. Moment methods are an important means of density estimation, but they are generally strongly dependent on the choice of feasible functions, which severely affects the performance. In this paper, we propose a non-classical parametrization for density estimation using sample moments, which does not require the choice of such functions. The parametrization is induced by the squared Hellinger distance, and the solution minimizing it, which is proved to exist and be unique subject to a simple prior that does not depend on data, and which can be obtained by convex optimization. Statistical properties of the density estimator, together with an asymptotic error upper bound, are proposed for the estimator by power moments. Simulation results validate the performance of the estimator by a comparison to several prevailing methods. The convergence rate of the proposed estimator is proved to be (m^{-1/2}) (m being the number of data samples), which is the optimal convergence rate for parametric estimators and exceeds that of the nonparametric estimators. To the best of our knowledge, the proposed estimator is the first one in the literature for which the power moments up to an arbitrary even order exactly match the sample moments, while the true density is not assumed to fall within specific function classes.
{"title":"A non-classical parameterization for density estimation using sample moments","authors":"Guangyu Wu, Anders Lindquist","doi":"10.1007/s00362-024-01563-z","DOIUrl":"https://doi.org/10.1007/s00362-024-01563-z","url":null,"abstract":"<p>Probability density estimation is a core problem in statistics and data science. Moment methods are an important means of density estimation, but they are generally strongly dependent on the choice of feasible functions, which severely affects the performance. In this paper, we propose a non-classical parametrization for density estimation using sample moments, which does not require the choice of such functions. The parametrization is induced by the squared Hellinger distance, and the solution minimizing it, which is proved to exist and be unique subject to a simple prior that does not depend on data, and which can be obtained by convex optimization. Statistical properties of the density estimator, together with an asymptotic error upper bound, are proposed for the estimator by power moments. Simulation results validate the performance of the estimator by a comparison to several prevailing methods. The convergence rate of the proposed estimator is proved to be <span>(m^{-1/2})</span> (<i>m</i> being the number of data samples), which is the optimal convergence rate for parametric estimators and exceeds that of the nonparametric estimators. To the best of our knowledge, the proposed estimator is the first one in the literature for which the power moments up to an arbitrary even order exactly match the sample moments, while the true density is not assumed to fall within specific function classes.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"57 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141153313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-20DOI: 10.1007/s00362-024-01564-y
Monika S. Dhull, Arun Kumar
In this article, we discuss some geometric infinitely divisible (gid) random variables using the Laplace exponents which are Bernstein functions and study their properties. The distributional properties and limiting behavior of the probability densities of these gid random variables at (0^{+}) are studied. The autoregressive (AR) models with gid marginals are introduced. Further, the first order AR process is generalized to kth order AR process. We also provide the parameter estimation method based on conditional least square and method of moments for the introduced AR(1) process. We also apply the introduced AR(1) model with geometric inverse Gaussian marginals on the household energy usage data which provide a good fit as compared to normal AR(1) data.
本文利用伯恩斯坦函数的拉普拉斯指数讨论了一些几何无限可分(gid)随机变量,并研究了它们的性质。研究了这些gid随机变量在(0^{+})处的概率密度的分布性质和极限行为。引入了具有 gid 边值的自回归(AR)模型。此外,还将一阶 AR 过程泛化为 kth 阶 AR 过程。我们还为引入的 AR(1) 过程提供了基于条件最小二乘法和矩法的参数估计方法。我们还将引入的具有几何反高斯边际的 AR(1) 模型应用于家庭能源使用数据,与普通 AR(1) 数据相比,该模型具有良好的拟合效果。
{"title":"Geometric infinitely divisible autoregressive models","authors":"Monika S. Dhull, Arun Kumar","doi":"10.1007/s00362-024-01564-y","DOIUrl":"https://doi.org/10.1007/s00362-024-01564-y","url":null,"abstract":"<p>In this article, we discuss some geometric infinitely divisible (gid) random variables using the Laplace exponents which are Bernstein functions and study their properties. The distributional properties and limiting behavior of the probability densities of these gid random variables at <span>(0^{+})</span> are studied. The autoregressive (AR) models with gid marginals are introduced. Further, the first order AR process is generalized to <i>k</i>th order AR process. We also provide the parameter estimation method based on conditional least square and method of moments for the introduced AR(1) process. We also apply the introduced AR(1) model with geometric inverse Gaussian marginals on the household energy usage data which provide a good fit as compared to normal AR(1) data.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"5 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141153300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-10DOI: 10.1007/s00362-024-01561-1
Ping Sun, Ze-Chun Hu, Wei Sun
Let X be a random variable with finite second moment. We investigate the inequality: (P{|X-textrm{E}[X]|le sqrt{textrm{Var}(X)}}ge P{|Z|le 1}), where Z is a standard normal random variable. We prove that this inequality holds for many familiar infinitely divisible continuous distributions including the Laplace, Gumbel, Logistic, Pareto, infinitely divisible Weibull, Log-normal, Student’s t and Inverse Gaussian distributions. Numerical results are given to show that the inequality with continuity correction also holds for some infinitely divisible discrete distributions.
假设 X 是一个具有有限第二矩的随机变量。我们研究不等式(P{|X-textrm{E}[X]|le sqrt{textrm{Var}(X)}}ge P{|Z|le 1}),其中 Z 是标准正态随机变量。我们证明了这个不等式对许多熟悉的无限可分连续分布都成立,包括拉普拉斯分布、甘贝尔分布、对数分布、帕累托分布、无限可分韦布尔分布、对数正态分布、Student's t 分布和反高斯分布。给出的数值结果表明,带连续性修正的不等式也适用于某些无限可分离散分布。
{"title":"Variation comparison between infinitely divisible distributions and the normal distribution","authors":"Ping Sun, Ze-Chun Hu, Wei Sun","doi":"10.1007/s00362-024-01561-1","DOIUrl":"https://doi.org/10.1007/s00362-024-01561-1","url":null,"abstract":"<p>Let <i>X</i> be a random variable with finite second moment. We investigate the inequality: <span>(P{|X-textrm{E}[X]|le sqrt{textrm{Var}(X)}}ge P{|Z|le 1})</span>, where <i>Z</i> is a standard normal random variable. We prove that this inequality holds for many familiar infinitely divisible continuous distributions including the Laplace, Gumbel, Logistic, Pareto, infinitely divisible Weibull, Log-normal, Student’s <i>t</i> and Inverse Gaussian distributions. Numerical results are given to show that the inequality with continuity correction also holds for some infinitely divisible discrete distributions.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"3 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-07DOI: 10.1007/s00362-024-01558-w
Tanmay Sahoo, Nil Kamal Hazra, Narayanaswamy Balakrishnan
Sequential order statistics (SOS) are useful tools for modeling the lifetimes of systems wherein the failure of a component has a significant impact on the lifetimes of the remaining surviving components. The SOS model is a general model that contains most of the existing models for ordered random variables. In this paper, we consider the SOS model with non-identical components and then discuss various univariate and multivariate stochastic comparison results in both one-and two-sample scenarios.
序列有序统计(SOS)是建立系统寿命模型的有用工具,其中一个组件的失效会对其余存活组件的寿命产生重大影响。SOS 模型是一个通用模型,包含了大多数现有的有序随机变量模型。在本文中,我们考虑了具有非相同组件的 SOS 模型,然后讨论了单样本和双样本情况下的各种单变量和多变量随机比较结果。
{"title":"Multivariate stochastic comparisons of sequential order statistics with non-identical components","authors":"Tanmay Sahoo, Nil Kamal Hazra, Narayanaswamy Balakrishnan","doi":"10.1007/s00362-024-01558-w","DOIUrl":"https://doi.org/10.1007/s00362-024-01558-w","url":null,"abstract":"<p>Sequential order statistics (SOS) are useful tools for modeling the lifetimes of systems wherein the failure of a component has a significant impact on the lifetimes of the remaining surviving components. The SOS model is a general model that contains most of the existing models for ordered random variables. In this paper, we consider the SOS model with non-identical components and then discuss various univariate and multivariate stochastic comparison results in both one-and two-sample scenarios.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"128 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-06DOI: 10.1007/s00362-024-01559-9
Martial Longla
We characterize absolutely continuous symmetric copulas with square integrable densities in this paper. This characterization is used to create new copula families, that are perturbations of the independence copula. The full study of mixing properties of Markov chains generated by these copula families is conducted. An extension that includes the Farlie–Gumbel–Morgenstern family of copulas is proposed. We propose some examples of copulas that generate non-mixing Markov chains, but whose convex combinations generate (psi )-mixing Markov chains. Some general results on (psi )-mixing are given. The Spearman’s correlation (rho _S) and Kendall’s (tau ) are provided for the created copula families. Some general remarks are provided for (rho _S) and (tau ). A central limit theorem is provided for parameter estimators in one example. A simulation study is conducted to support derived asymptotic distributions for some examples.
{"title":"New copula families and mixing properties","authors":"Martial Longla","doi":"10.1007/s00362-024-01559-9","DOIUrl":"https://doi.org/10.1007/s00362-024-01559-9","url":null,"abstract":"<p>We characterize absolutely continuous symmetric copulas with square integrable densities in this paper. This characterization is used to create new copula families, that are perturbations of the independence copula. The full study of mixing properties of Markov chains generated by these copula families is conducted. An extension that includes the Farlie–Gumbel–Morgenstern family of copulas is proposed. We propose some examples of copulas that generate non-mixing Markov chains, but whose convex combinations generate <span>(psi )</span>-mixing Markov chains. Some general results on <span>(psi )</span>-mixing are given. The Spearman’s correlation <span>(rho _S)</span> and Kendall’s <span>(tau )</span> are provided for the created copula families. Some general remarks are provided for <span>(rho _S)</span> and <span>(tau )</span>. A central limit theorem is provided for parameter estimators in one example. A simulation study is conducted to support derived asymptotic distributions for some examples.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"32 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}