首页 > 最新文献

Stata Journal最新文献

英文 中文
Simultaneous tests and confidence bands for Stata estimation commands Stata估计命令的同步测试和置信带
IF 4.8 2区 数学 Q1 Mathematics Pub Date : 2023-06-01 DOI: 10.1177/1536867X231175333
D. Drukker
Stata estimation commands that implement frequentist methods produce an output table that contains multiple tests and multiple confidence intervals. Presumably, the multiple tests and multiple confidence are designed to help determine which parameters are responsible for a possible rejection of the overall null hypothesis of no effect. When taken by itself, each test and each confidence interval provides valid inference about the null hypothesis of no effect for each parameter at the specified error rate. However, simultaneously using two or more of these tests or confidence intervals provides inference at an error rate that exceeds the one specified. In this article, I discuss the sotable command, which provides p-values that are adjusted for the multiple tests and a confidence band that can be used to simultaneously test multiple parameters for no effect after almost all frequentist estimation commands. I also provide an introduction to the literature on simultaneous inference.
实现频率表方法的Stata估计命令生成一个包含多个测试和多个置信区间的输出表。据推测,多重检验和多重置信度的设计是为了帮助确定哪些参数是可能拒绝无影响的总体零假设的原因。当单独进行时,每个测试和每个置信区间都提供了关于在指定错误率下每个参数没有影响的零假设的有效推断。然而,同时使用两个或多个这样的测试或置信区间可以提供超过指定错误率的推断。在这篇文章中,我讨论了sotable命令,它提供了针对多个测试进行调整的p值,以及一个置信带,该置信带可用于在几乎所有频率估计命令之后同时测试多个参数,而不会产生任何影响。我还介绍了关于同时推理的文献。
{"title":"Simultaneous tests and confidence bands for Stata estimation commands","authors":"D. Drukker","doi":"10.1177/1536867X231175333","DOIUrl":"https://doi.org/10.1177/1536867X231175333","url":null,"abstract":"Stata estimation commands that implement frequentist methods produce an output table that contains multiple tests and multiple confidence intervals. Presumably, the multiple tests and multiple confidence are designed to help determine which parameters are responsible for a possible rejection of the overall null hypothesis of no effect. When taken by itself, each test and each confidence interval provides valid inference about the null hypothesis of no effect for each parameter at the specified error rate. However, simultaneously using two or more of these tests or confidence intervals provides inference at an error rate that exceeds the one specified. In this article, I discuss the sotable command, which provides p-values that are adjusted for the multiple tests and a confidence band that can be used to simultaneously test multiple parameters for no effect after almost all frequentist estimation commands. I also provide an introduction to the literature on simultaneous inference.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49237775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
posw: A command for the stepwise Neyman-orthogonal estimator posw:阶跃Neyman正交估计器的一个命令
IF 4.8 2区 数学 Q1 Mathematics Pub Date : 2023-06-01 DOI: 10.1177/1536867X231175272
D. Drukker, Di Liu
Inference for structural and treatment parameters while having high-dimensional covariates in the model is increasingly common. The Neyman-orthogonal (NO) estimators in Belloni, Chernozhukov, and Wei (2016, Journal of Business and Economic Statistics 34: 606–619) produce valid inferences for the parameters of interest while using generalized linear model lasso methods to select the covariates. Drukker and Liu (2022, Econometric Reviews 41: 1047–1076) extended the estimators in Belloni, Chernozhukov, and Wei (2016) by using a Bayesian information criterion stepwise method and a testing-stepwise method as the covariate selector. Drukker and Liu (2022) found a family of data-generating processes for which the NO estimator based on Bayesian information criterion stepwise produces much more reliable inferences than the lasso-based NO estimator. In this article, we describe the implementation of posw, a command for the stepwise-based NO estimator for the high-dimensional linear, logit, and Poisson models.
在模型中具有高维协变量的情况下,对结构和处理参数的推断越来越普遍。Belloni, Chernozhukov, and Wei (2016, Journal of Business and Economic Statistics 34: 606-619)的Neyman-orthogonal (NO)估计在使用广义线性模型lasso方法选择协变量的同时,对感兴趣的参数产生有效的推断。Drukker和Liu (2022, Econometric Reviews 41: 1047-1076)采用贝叶斯信息准则逐步方法和检验-逐步方法作为协变量选择器,扩展了Belloni、Chernozhukov和Wei(2016)的估计量。Drukker和Liu(2022)发现了一系列数据生成过程,其中基于贝叶斯信息准则的NO估计器逐步产生比基于laso的NO估计器更可靠的推断。在本文中,我们描述了posw的实现,posw是用于高维线性、logit和泊松模型的基于逐步的NO估计器的命令。
{"title":"posw: A command for the stepwise Neyman-orthogonal estimator","authors":"D. Drukker, Di Liu","doi":"10.1177/1536867X231175272","DOIUrl":"https://doi.org/10.1177/1536867X231175272","url":null,"abstract":"Inference for structural and treatment parameters while having high-dimensional covariates in the model is increasingly common. The Neyman-orthogonal (NO) estimators in Belloni, Chernozhukov, and Wei (2016, Journal of Business and Economic Statistics 34: 606–619) produce valid inferences for the parameters of interest while using generalized linear model lasso methods to select the covariates. Drukker and Liu (2022, Econometric Reviews 41: 1047–1076) extended the estimators in Belloni, Chernozhukov, and Wei (2016) by using a Bayesian information criterion stepwise method and a testing-stepwise method as the covariate selector. Drukker and Liu (2022) found a family of data-generating processes for which the NO estimator based on Bayesian information criterion stepwise produces much more reliable inferences than the lasso-based NO estimator. In this article, we describe the implementation of posw, a command for the stepwise-based NO estimator for the high-dimensional linear, logit, and Poisson models.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44242190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Lagrange multiplier test for the mean stationarity assumption in dynamic panel-data models 动态面板数据模型中平均平稳性假设的拉格朗日乘子检验
IF 4.8 2区 数学 Q1 Mathematics Pub Date : 2023-06-01 DOI: 10.1177/1536867X231175276
Laura Magazzini, G. Calzolari
In this article, we describe the xttestms command, which implements the Lagrange multiplier test proposed by Magazzini and Calzolari (2020, Econometric Reviews 39: 115–134). The test verifies the validity of the initial conditions in dynamic panel-data models, which is required for consistency of the system generalized method of moments estimator.
在本文中,我们描述了xttestms命令,它实现了Magazzini和Calzolari提出的拉格朗日乘数测试(2020,Ecometric Reviews 39:115–134)。该测试验证了动态面板数据模型中初始条件的有效性,这是系统广义矩估计方法一致性所必需的。
{"title":"A Lagrange multiplier test for the mean stationarity assumption in dynamic panel-data models","authors":"Laura Magazzini, G. Calzolari","doi":"10.1177/1536867X231175276","DOIUrl":"https://doi.org/10.1177/1536867X231175276","url":null,"abstract":"In this article, we describe the xttestms command, which implements the Lagrange multiplier test proposed by Magazzini and Calzolari (2020, Econometric Reviews 39: 115–134). The test verifies the validity of the initial conditions in dynamic panel-data models, which is required for consistency of the system generalized method of moments estimator.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44575641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Software Updates 软件更新
IF 4.8 2区 数学 Q1 Mathematics Pub Date : 2023-06-01 DOI: 10.1177/1536867X231175350
G. Longton
The most important change in this update is the addition of the subcommand breakdown, which issues a report on different missing values; that is, the numbers present as 1) empty strings "" if string variables are included and 2) system missing and extended missing values if numeric variables are included. This subcommand is most obviously useful as a check on the presence of extended missing values for numeric variables.
此更新中最重要的更改是添加了子命令细分,它会发布关于不同缺失值的报告;也就是说,如果包含字符串变量,则数字显示为1)空字符串“”;如果包含数字变量,则显示为2)系统缺失和扩展缺失值。此子命令在检查数值变量是否存在扩展的缺失值时非常有用。
{"title":"Software Updates","authors":"G. Longton","doi":"10.1177/1536867X231175350","DOIUrl":"https://doi.org/10.1177/1536867X231175350","url":null,"abstract":"The most important change in this update is the addition of the subcommand breakdown, which issues a report on different missing values; that is, the numbers present as 1) empty strings \"\" if string variables are included and 2) system missing and extended missing values if numeric variables are included. This subcommand is most obviously useful as a check on the presence of extended missing values for numeric variables.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46768549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
lgrgtest: Lagrange multiplier test after constrained maximum-likelihood estimation lgrgtest:约束最大似然估计后的拉格朗日乘数检验
IF 4.8 2区 数学 Q1 Mathematics Pub Date : 2023-06-01 DOI: 10.1177/1536867X231175265
H. Tauchmann
Besides the Wald and likelihood-ratio tests, the Lagrange multiplier test (Rao, 1948, Mathematical Proceedings of the Cambridge Philosophical Society 44: 50–57; Aitchison and Silvey, 1958, Annals of Mathematical Statistics 29: 813–828; Silvey, 1959, Annals of Mathematical Statistics 30: 389–407) is the third canonical approach to testing hypotheses after maximum likelihood estimation. While the Stata commands test and lrtest implement the first two, Stata does not have an official command for implementing the third. The community-contributed boottest package (Roodman et al., 2019, Stata Journal 19: 4–60) focuses on methods of bootstrap inference and also implements the Lagrange multiplier test functionality. In this article, I introduce the new community-contributed postestimation command lgrgtest, which allows for straightforwardly using the Lagrange multiplier test after constrained maximum-likelihood estimation. lgrgtest is intended to be compatible with all Stata estimation commands that use maximum likelihood and allow for the options constraints(), iterate(), and from(). lgrgtest can also be used after cnsreg.
除了Wald检验和似然比检验,拉格朗日乘数检验(Rao, 1948,《剑桥哲学学会数学论文集》44:50-57;艾奇逊和西尔维,1958,数理统计年鉴29:813-828;Silvey, 1959, Annals of Mathematical Statistics 30: 389-407)是继极大似然估计之后检验假设的第三个规范方法。虽然Stata命令test和lrtest实现了前两个功能,但Stata没有用于实现第三个功能的官方命令。社区贡献的引导包(Roodman et al., 2019, Stata Journal 19:4 - 60)侧重于引导推理的方法,并实现了拉格朗日乘子测试功能。在本文中,我将介绍新的社区贡献的后估计命令lgrgtest,它允许在受限的最大似然估计之后直接使用拉格朗日乘数测试。lgrgtest旨在与所有使用最大似然的Stata估计命令兼容,并允许使用constraints()、iterate()和from()选项。Lgrgtest也可以在cnsregg之后使用。
{"title":"lgrgtest: Lagrange multiplier test after constrained maximum-likelihood estimation","authors":"H. Tauchmann","doi":"10.1177/1536867X231175265","DOIUrl":"https://doi.org/10.1177/1536867X231175265","url":null,"abstract":"Besides the Wald and likelihood-ratio tests, the Lagrange multiplier test (Rao, 1948, Mathematical Proceedings of the Cambridge Philosophical Society 44: 50–57; Aitchison and Silvey, 1958, Annals of Mathematical Statistics 29: 813–828; Silvey, 1959, Annals of Mathematical Statistics 30: 389–407) is the third canonical approach to testing hypotheses after maximum likelihood estimation. While the Stata commands test and lrtest implement the first two, Stata does not have an official command for implementing the third. The community-contributed boottest package (Roodman et al., 2019, Stata Journal 19: 4–60) focuses on methods of bootstrap inference and also implements the Lagrange multiplier test functionality. In this article, I introduce the new community-contributed postestimation command lgrgtest, which allows for straightforwardly using the Lagrange multiplier test after constrained maximum-likelihood estimation. lgrgtest is intended to be compatible with all Stata estimation commands that use maximum likelihood and allow for the options constraints(), iterate(), and from(). lgrgtest can also be used after cnsreg.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47055657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ginteff: A generalized command for computing interaction effects ginteff:计算交互效果的通用命令
IF 4.8 2区 数学 Q1 Mathematics Pub Date : 2023-06-01 DOI: 10.1177/1536867X231175253
Marius Radean
Interaction analyses are useful tools to examine complex socioeconomic outcomes in which the effect of one variable depends on the presence or values of another variable. Interaction effects capture simultaneous changes in two (or more) covariates, and their computation is especially challenging in nonlinear models. For such models, a statistically significant interaction-term coefficient does not necessarily indicate significant interactive effects. For analyses in which the interaction effect cannot be inferred from the model estimates, I introduce ginteff, a new command that automatically computes two- and three-way interaction effects. The command accommodates a large suite of estimation models and allows researchers to use either the partial derivative or the first difference to model the effect of the interacted variables.
相互作用分析是检验复杂社会经济结果的有用工具,其中一个变量的影响取决于另一个变量的存在或值。交互效应捕获两个(或更多)协变量的同时变化,它们的计算在非线性模型中特别具有挑战性。对于这样的模型,统计上显著的相互作用项系数并不一定表明显著的相互作用效应。对于无法从模型估计中推断交互效应的分析,我引入了ginteff,这是一个自动计算双向和三方交互效应的新命令。该命令容纳了大量的估计模型,并允许研究人员使用偏导数或一阶差分来模拟相互作用变量的影响。
{"title":"ginteff: A generalized command for computing interaction effects","authors":"Marius Radean","doi":"10.1177/1536867X231175253","DOIUrl":"https://doi.org/10.1177/1536867X231175253","url":null,"abstract":"Interaction analyses are useful tools to examine complex socioeconomic outcomes in which the effect of one variable depends on the presence or values of another variable. Interaction effects capture simultaneous changes in two (or more) covariates, and their computation is especially challenging in nonlinear models. For such models, a statistically significant interaction-term coefficient does not necessarily indicate significant interactive effects. For analyses in which the interaction effect cannot be inferred from the model estimates, I introduce ginteff, a new command that automatically computes two- and three-way interaction effects. The command accommodates a large suite of estimation models and allows researchers to use either the partial derivative or the first difference to model the effect of the interacted variables.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47838342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
xtnumfac: A battery of estimators for the number of common factors in time series and panel-data models xtnumfacc:一组用于时间序列和面板数据模型中公共因子数量的估计器
IF 4.8 2区 数学 Q1 Mathematics Pub Date : 2023-06-01 DOI: 10.1177/1536867X231175305
J. Ditzen, Simon Reese
In this article, we introduce a new community-contributed command, xtnumfac, for estimating the number of common factors in time-series and panel datasets using the methods of Bai and Ng (2002, Econometrica 70: 191–221), Ahn and Horenstein (2013, Econometrica 81: 1203–1227), Onatski (2010, Review of Economics and Statistics 92: 1004–1016), and Gagliardini, Ossola, and Scaillet (2019, Journal of Econometrics 212: 503–521). Common factors are usually unobserved or unobservable. In time series, they influence all predictors, while in paneldata models, they influence all cross-sectional units at different degrees. Examples are shocks from oil prices, inflation, or demand or supply shocks. Knowledge about the number of factors is key for multiple econometric estimation methods, such as Pesaran (2006, Econometrica 74: 967–1012), Bai (2009, Econometrica 77: 1229–1279), Norkute et al. (2021, Journal of Econometrics 220: 416–446), and Kripfganz and Sarafidis (2021, Stata Journal 21: 659–686). This article discusses a total of 10 methods to estimate the number of common factors. Examples based on Kapetanios, Pesaran, and Reese (2021, Journal of Econometrics 221: 510–541) show that U.S. house prices are exposed to up to 10 common factors. Therefore, when one fits models with house prices as a dependent variable, the number of factors must be considered.
在本文中,我们引入了一个新的社区贡献的命令xtnumfacc,用于估计时间序列和面板数据集中的共同因子数量,使用了Bai和Ng (2002, Econometrica 70: 191-221), Ahn和Horenstein (2013, Econometrica 81: 1203-1227), Onatski (2010, Review of Economics and Statistics 92: 1004-1016)和Gagliardini, Ossola, and Scaillet (2019, Journal of Econometrics 212: 503-521)的方法。共同因素通常是不可观察或不可观察的。在时间序列中,它们影响所有预测因子,而在面板数据模型中,它们在不同程度上影响所有截面单位。例如来自油价、通货膨胀或需求或供给冲击的冲击。关于因素数量的知识是多种计量经济学估计方法的关键,如Pesaran (2006, Econometrica 74: 967-1012), Bai (2009, Econometrica 77: 1229-1279), Norkute等人(2021,Journal of Econometrica 220: 416-446), Kripfganz和Sarafidis (2021, Stata Journal 21: 659-686)。本文讨论了共10种估算公因子数量的方法。基于Kapetanios, Pesaran和Reese (2021, Journal of Econometrics 221: 510-541)的例子表明,美国房价受到多达10个共同因素的影响。因此,当一个人拟合以房价为因变量的模型时,必须考虑因素的数量。
{"title":"xtnumfac: A battery of estimators for the number of common factors in time series and panel-data models","authors":"J. Ditzen, Simon Reese","doi":"10.1177/1536867X231175305","DOIUrl":"https://doi.org/10.1177/1536867X231175305","url":null,"abstract":"In this article, we introduce a new community-contributed command, xtnumfac, for estimating the number of common factors in time-series and panel datasets using the methods of Bai and Ng (2002, Econometrica 70: 191–221), Ahn and Horenstein (2013, Econometrica 81: 1203–1227), Onatski (2010, Review of Economics and Statistics 92: 1004–1016), and Gagliardini, Ossola, and Scaillet (2019, Journal of Econometrics 212: 503–521). Common factors are usually unobserved or unobservable. In time series, they influence all predictors, while in paneldata models, they influence all cross-sectional units at different degrees. Examples are shocks from oil prices, inflation, or demand or supply shocks. Knowledge about the number of factors is key for multiple econometric estimation methods, such as Pesaran (2006, Econometrica 74: 967–1012), Bai (2009, Econometrica 77: 1229–1279), Norkute et al. (2021, Journal of Econometrics 220: 416–446), and Kripfganz and Sarafidis (2021, Stata Journal 21: 659–686). This article discusses a total of 10 methods to estimate the number of common factors. Examples based on Kapetanios, Pesaran, and Reese (2021, Journal of Econometrics 221: 510–541) show that U.S. house prices are exposed to up to 10 common factors. Therefore, when one fits models with house prices as a dependent variable, the number of factors must be considered.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48709907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Reporting empirical results to .docx files 将经验结果报告到.docx文件
IF 4.8 2区 数学 Q1 Mathematics Pub Date : 2023-06-01 DOI: 10.1177/1536867X231175334
Yuan Xue, Chuntao Li, Haitao Si
Reporting empirical results to automatically generate structured tables is important but time consuming for empirical researchers. Because of the lack of commands that can effectively create and edit Office Open XML documents (.docx documents), neither official commands nor community-contributed commands could tabulate results to this regularly used document type until putdocx was launched in Stata 15. In this article, we introduce four new commands: sum2docx, corr2docx, t2docx, and reg2docx. These new commands are all based on putdocx. They can be coalesced and can report summary statistics, correlation coefficient matrices, split-sample t tests, and regression results automatically in one .docx file. The commands are user friendly and can provide researchers with new options for reporting empirical results.
报告实证结果,以自动生成结构化表是重要的,但耗时的实证研究人员。由于缺乏能够有效地创建和编辑Office Open XML文档(.docx文档)的命令,官方命令和社区贡献的命令都无法将结果制表为这种经常使用的文档类型,直到Stata 15中推出putdocx。在本文中,我们将介绍四个新命令:sum2docx、corr2docx、t2docx和reg2docx。这些新命令都是基于putdocx的。它们可以合并在一起,并且可以在一个.docx文件中自动报告汇总统计信息、相关系数矩阵、分离样本t检验和回归结果。这些命令是用户友好的,可以为研究人员提供报告经验结果的新选项。
{"title":"Reporting empirical results to .docx files","authors":"Yuan Xue, Chuntao Li, Haitao Si","doi":"10.1177/1536867X231175334","DOIUrl":"https://doi.org/10.1177/1536867X231175334","url":null,"abstract":"Reporting empirical results to automatically generate structured tables is important but time consuming for empirical researchers. Because of the lack of commands that can effectively create and edit Office Open XML documents (.docx documents), neither official commands nor community-contributed commands could tabulate results to this regularly used document type until putdocx was launched in Stata 15. In this article, we introduce four new commands: sum2docx, corr2docx, t2docx, and reg2docx. These new commands are all based on putdocx. They can be coalesced and can report summary statistics, correlation coefficient matrices, split-sample t tests, and regression results automatically in one .docx file. The commands are user friendly and can provide researchers with new options for reporting empirical results.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47777032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudo-observations in a multistate setting 多态设置中的伪观测
IF 4.8 2区 数学 Q1 Mathematics Pub Date : 2023-06-01 DOI: 10.1177/1536867X231175332
M. Overgaard, Per K. Andersen, E. Parner
Regression analyses of how state occupation probabilities or expected lengths of stay depend on covariates in multistate settings can be performed using the pseudo-observation method, which involves calculating jackknife pseudo-observations based on some estimator of the expected value of the outcome. In this article, we present a new command, stpmstate, that calculates such pseudo-observations based on the Aalen–Johansen estimator. We give examples of use of the command, and we conduct a small simulation study to offer insights into the pseudo-observation regression approach.
使用伪观测方法,可以对多状态设置下的状态职业概率或预期停留时间长短如何依赖于协变量进行回归分析,该方法涉及基于结果期望值的某些估计量计算折刀伪观测。在本文中,我们提出了一个新命令stpmstate,它基于aallen - johansen估计器计算此类伪观测值。我们给出了使用该命令的示例,并进行了一个小型模拟研究,以提供对伪观测回归方法的见解。
{"title":"Pseudo-observations in a multistate setting","authors":"M. Overgaard, Per K. Andersen, E. Parner","doi":"10.1177/1536867X231175332","DOIUrl":"https://doi.org/10.1177/1536867X231175332","url":null,"abstract":"Regression analyses of how state occupation probabilities or expected lengths of stay depend on covariates in multistate settings can be performed using the pseudo-observation method, which involves calculating jackknife pseudo-observations based on some estimator of the expected value of the outcome. In this article, we present a new command, stpmstate, that calculates such pseudo-observations based on the Aalen–Johansen estimator. We give examples of use of the command, and we conduct a small simulation study to offer insights into the pseudo-observation regression approach.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46167390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
robustpf: A command for robust estimation of production functions robustpf:生产函数的鲁棒估计命令
IF 4.8 2区 数学 Q1 Mathematics Pub Date : 2023-03-01 DOI: 10.1177/1536867X231161977
Yingyao Hu, Guofang Huang, Yuya Sasaki
We introduce a new command, robustpf, to estimate parameters of Cobb–Douglas production functions. The command is robust against two potential problems. First, it is robust against optimization errors in firms’ input choice, unobserved idiosyncratic cost shocks, and measurement errors in proxy variables. In particular, the command relaxes the conventional assumption of scalar unobservables. Second, it is also robust against the functional dependence problem of static input choice, which is known today as a cause of identification failure. The main method is proposed by Hu, Huang, and Sasaki (2020, Journal of Econometrics 215: 375–398).
我们引入了一个新的命令robustpf来估计Cobb–Douglas生产函数的参数。该命令针对两个潜在问题是稳健的。首先,它对企业投入选择中的优化误差、未观察到的特殊成本冲击和代理变量中的测量误差具有鲁棒性。特别是,该命令放宽了标量不可观测的传统假设。其次,它对静态输入选择的函数依赖性问题也是鲁棒的,这在今天被认为是识别失败的原因。主要方法由胡、黄和佐佐木提出(2020,计量经济学杂志215:375-398)。
{"title":"robustpf: A command for robust estimation of production functions","authors":"Yingyao Hu, Guofang Huang, Yuya Sasaki","doi":"10.1177/1536867X231161977","DOIUrl":"https://doi.org/10.1177/1536867X231161977","url":null,"abstract":"We introduce a new command, robustpf, to estimate parameters of Cobb–Douglas production functions. The command is robust against two potential problems. First, it is robust against optimization errors in firms’ input choice, unobserved idiosyncratic cost shocks, and measurement errors in proxy variables. In particular, the command relaxes the conventional assumption of scalar unobservables. Second, it is also robust against the functional dependence problem of static input choice, which is known today as a cause of identification failure. The main method is proposed by Hu, Huang, and Sasaki (2020, Journal of Econometrics 215: 375–398).","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":null,"pages":null},"PeriodicalIF":4.8,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41969555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stata Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1