首页 > 最新文献

Stata Journal最新文献

英文 中文
xtusreg: Software for dynamic panel regression under irregular time spacing xtusreg:不规则时间间隔下的动态面板回归软件
IF 4.8 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-09-01 DOI: 10.1177/1536867X221124567
Yuya Sasaki, Yi Xin
We introduce a new command, xtusreg, that estimates parameters of fixed-effects dynamic panel regression models under unequal time spacing. After reviewing the method, we examine the finite-sample performance of the command using simulated data. We also illustrate the command with the National Longitudinal Survey Original Cohorts: Older Men, whose personal interviews took place in the unequally spaced years of 1966, 1967, 1969, 1971, 1976, 1981, and 1990. The methods underlying xtusreg are those discussed by Sasaki and Xin (2017, Journal of Econometrics 196: 320–330).
我们引入了一个新的命令xtusreg,用于在不等时间间隔下估计固定效应动态面板回归模型的参数。在回顾了该方法之后,我们使用模拟数据检查了该命令的有限样本性能。我们还用国家纵向调查原始队列来说明这一命令:老年男性,他们的个人访谈是在1966年、1967年、1969年、1971年、1976年、1981年和1990年的不均匀间隔年份进行的。xtusreg的基础方法是Sasaki和Xin (2017, Journal of Econometrics 196: 320-330)所讨论的方法。
{"title":"xtusreg: Software for dynamic panel regression under irregular time spacing","authors":"Yuya Sasaki, Yi Xin","doi":"10.1177/1536867X221124567","DOIUrl":"https://doi.org/10.1177/1536867X221124567","url":null,"abstract":"We introduce a new command, xtusreg, that estimates parameters of fixed-effects dynamic panel regression models under unequal time spacing. After reviewing the method, we examine the finite-sample performance of the command using simulated data. We also illustrate the command with the National Longitudinal Survey Original Cohorts: Older Men, whose personal interviews took place in the unequally spaced years of 1966, 1967, 1969, 1971, 1976, 1981, and 1990. The methods underlying xtusreg are those discussed by Sasaki and Xin (2017, Journal of Econometrics 196: 320–330).","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"713 - 724"},"PeriodicalIF":4.8,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45917182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computing decomposable multigroup indices of segregation 可分解多群分离指数的计算
IF 4.8 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-09-01 DOI: 10.1177/1536867X221124471
Daniel Guinea-Martin, Ricardo Mora
Eight multigroup segregation indices are decomposable into a between and a within term. They are two versions of 1) the mutual information index, 2) the symmetric Atkinson index, 3) the relative diversity index, and 4) Theil’s H index. In this article, we present the command dseg, which obtains all of them. It contributes to the stock of segregation commands in Stata by 1) implementing the decomposition in a single call, 2) providing the weights and local indices used in the computation of the within term, 3) facilitating the deployment of the decomposability properties of the eight indices in complex scenarios that demand tailor-made solutions, and 4) leveraging sample data with bootstrapping and approximate randomization tests. We analyze 2017 census data of public schools in the United States to illustrate the use of dseg. The subject topic is school racial segregation.
8个多群分离指标可分解为between项和within项。它们是1)互信息指数,2)对称阿特金森指数,3)相对多样性指数和4)Theil 's H指数的两个版本。在本文中,我们将介绍命令dseg,它可以获取所有这些文件。它有助于Stata中隔离命令的库存:1)在单个调用中实现分解;2)提供在计算内项时使用的权重和局部索引;3)促进在需要定制解决方案的复杂场景中部署8个索引的可分解性属性;4)利用自举和近似随机化测试的样本数据。我们分析了2017年美国公立学校的人口普查数据,以说明dseg的使用。主题是学校种族隔离。
{"title":"Computing decomposable multigroup indices of segregation","authors":"Daniel Guinea-Martin, Ricardo Mora","doi":"10.1177/1536867X221124471","DOIUrl":"https://doi.org/10.1177/1536867X221124471","url":null,"abstract":"Eight multigroup segregation indices are decomposable into a between and a within term. They are two versions of 1) the mutual information index, 2) the symmetric Atkinson index, 3) the relative diversity index, and 4) Theil’s H index. In this article, we present the command dseg, which obtains all of them. It contributes to the stock of segregation commands in Stata by 1) implementing the decomposition in a single call, 2) providing the weights and local indices used in the computation of the within term, 3) facilitating the deployment of the decomposability properties of the eight indices in complex scenarios that demand tailor-made solutions, and 4) leveraging sample data with bootstrapping and approximate randomization tests. We analyze 2017 census data of public schools in the United States to illustrate the use of dseg. The subject topic is school racial segregation.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"521 - 556"},"PeriodicalIF":4.8,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44518937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A mixture of ordered probit models with endogenous switching between two latent classes 在两个潜在类别之间具有内生转换的有序概率模型的混合
IF 4.8 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-09-01 DOI: 10.1177/1536867X221124516
J. Huismans, Jan Willem Nijenhuis, A. Sirchenko
Ordinal responses can be generated, in a cross-sectional context, by different unobserved classes of population or, in a time-series context, by different latent regimes. We introduce a new command, swopit, that fits a mixture of ordered probit models with exogenous or endogenous switching between two latent classes (regimes). Switching is endogenous if unobservables in the classassignment model are correlated with unobservables in the outcome models. We provide a battery of postestimation commands; assess via Monte Carlo experiments the finite-sample performance of the maximum likelihood estimator of the parameters, probabilities, and their standard errors (both the asymptotic and bootstrap ones); and apply the new command to model the monetary policy interest rates.
在横断面情况下,不同的未观察到的人口类别可以产生顺序响应,或者在时间序列情况下,由不同的潜在状态产生顺序响应。我们引入了一个新的命令swopit,它适合在两个潜在类别(政权)之间具有外生或内生切换的有序概率模型的混合物。如果分类分配模型中的不可观测值与结果模型中的不可观测值相关,则转换是内生的。我们提供了一系列后估计命令;通过蒙特卡罗实验评估参数、概率及其标准误差(渐近和自举误差)的最大似然估计的有限样本性能;并应用新命令对货币政策利率进行建模。
{"title":"A mixture of ordered probit models with endogenous switching between two latent classes","authors":"J. Huismans, Jan Willem Nijenhuis, A. Sirchenko","doi":"10.1177/1536867X221124516","DOIUrl":"https://doi.org/10.1177/1536867X221124516","url":null,"abstract":"Ordinal responses can be generated, in a cross-sectional context, by different unobserved classes of population or, in a time-series context, by different latent regimes. We introduce a new command, swopit, that fits a mixture of ordered probit models with exogenous or endogenous switching between two latent classes (regimes). Switching is endogenous if unobservables in the classassignment model are correlated with unobservables in the outcome models. We provide a battery of postestimation commands; assess via Monte Carlo experiments the finite-sample performance of the maximum likelihood estimator of the parameters, probabilities, and their standard errors (both the asymptotic and bootstrap ones); and apply the new command to model the monetary policy interest rates.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"557 - 596"},"PeriodicalIF":4.8,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44860851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Panel stochastic frontier models with endogeneity 具有内生性的面板随机前沿模型
IF 4.8 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-09-01 DOI: 10.1177/1536867X221124539
M. Karakaplan
In this article, I introduce xtsfkk as a new command for fitting panel stochastic frontier models with endogeneity. The advantage of xtsfkk is that it can control for the endogenous variables in the frontier and the inefficiency term in a longitudinal setting. Hence, xtsfkk performs better than standard panel frontier estimators such as xtfrontier that overlook endogeneity by design. Moreover, xtsfkk uses Mata’s moptimize() functions for substantially faster execution and completion speeds. I also present a set of Monte Carlo simulations and examples demonstrating the performance and usage of xtsfkk.
在本文中,我引入了xtsfkk作为一种新的命令来拟合具有内生性的面板随机前沿模型。xtsfkk的优点是它可以控制前沿的内生变量和纵向环境中的低效项。因此,xtsfkk的性能优于标准面板边界估计量,如xtfrontier,后者通过设计忽略了内生性。此外,xtsfkk使用了Mata的moptimize()函数,大大加快了执行和完成速度。我还展示了一组蒙特卡罗模拟和示例,展示了xtsfkk的性能和用法。
{"title":"Panel stochastic frontier models with endogeneity","authors":"M. Karakaplan","doi":"10.1177/1536867X221124539","DOIUrl":"https://doi.org/10.1177/1536867X221124539","url":null,"abstract":"In this article, I introduce xtsfkk as a new command for fitting panel stochastic frontier models with endogeneity. The advantage of xtsfkk is that it can control for the endogenous variables in the frontier and the inefficiency term in a longitudinal setting. Hence, xtsfkk performs better than standard panel frontier estimators such as xtfrontier that overlook endogeneity by design. Moreover, xtsfkk uses Mata’s moptimize() functions for substantially faster execution and completion speeds. I also present a set of Monte Carlo simulations and examples demonstrating the performance and usage of xtsfkk.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"643 - 663"},"PeriodicalIF":4.8,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48763100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Panel unit-root tests with structural breaks 具有结构断裂的面板单位根检验
IF 4.8 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-09-01 DOI: 10.1177/1536867X221124541
Pengyu Chen, Yiannis Karavias, Elias Tzavalis
In this article, we introduce a new community-contributed command called xtbunitroot, which implements the panel-data unit-root tests developed by Karavias and Tzavalis (2014, Computational Statistics and Data Analysis 76: 391–407). These tests allow for one or two structural breaks in deterministic components of the series and can be seen as panel-data counterparts of the tests by Zivot and Andrews (1992, Journal of Business and Economic Statistics 10: 251–270) and Lumsdaine and Papell (1997, Review of Economics and Statistics 79: 212–218). The dates of the breaks can be known or unknown. The tests allow for intercepts and linear trends, nonnormal errors, and cross-section heteroskedasticity and dependence. They have power against homogeneous and heterogeneous alternatives and can be applied to panels with small or large time-series dimensions.
在本文中,我们将介绍一个由社区贡献的新命令xtbunitroot,它实现了由Karavias和Tzavalis (2014, Computational Statistics and Data Analysis 76: 391-407)开发的面板数据单元根测试。这些测试允许在系列的确定性组成部分中出现一到两次结构中断,可以被视为Zivot和Andrews(1992年,《商业和经济统计杂志》10:251-270)和Lumsdaine和Papell(1997年,《经济与统计评论》79:212-218)的测试的面板数据对口。中断的日期可以是已知的,也可以是未知的。测试允许截距和线性趋势、非正态误差、横截面异方差和依赖性。它们具有对抗同质和异质替代品的能力,并且可以应用于具有小或大时间序列尺寸的面板。
{"title":"Panel unit-root tests with structural breaks","authors":"Pengyu Chen, Yiannis Karavias, Elias Tzavalis","doi":"10.1177/1536867X221124541","DOIUrl":"https://doi.org/10.1177/1536867X221124541","url":null,"abstract":"In this article, we introduce a new community-contributed command called xtbunitroot, which implements the panel-data unit-root tests developed by Karavias and Tzavalis (2014, Computational Statistics and Data Analysis 76: 391–407). These tests allow for one or two structural breaks in deterministic components of the series and can be seen as panel-data counterparts of the tests by Zivot and Andrews (1992, Journal of Business and Economic Statistics 10: 251–270) and Lumsdaine and Papell (1997, Review of Economics and Statistics 79: 212–218). The dates of the breaks can be known or unknown. The tests allow for intercepts and linear trends, nonnormal errors, and cross-section heteroskedasticity and dependence. They have power against homogeneous and heterogeneous alternatives and can be applied to panels with small or large time-series dimensions.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"664 - 678"},"PeriodicalIF":4.8,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47534244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
graphiclasso: Graphical lasso for learning sparse inverse-covariance matrices graphiclasso:学习稀疏逆协方差矩阵的图形套索
IF 4.8 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-09-01 DOI: 10.1177/1536867X221124538
A. Dallakyan
In modern multivariate statistics, where high-dimensional datasets are ubiquitous, learning large (inverse-) covariance matrices is imperative for data analysis. A popular approach to estimating a large inverse-covariance matrix is to regularize the Gaussian log-likelihood function by imposing a convex penalty function. In a seminal article, Friedman, Hastie, and Tibshirani (2008, Biostatistics 9: 432–441) proposed a graphical lasso (Glasso) algorithm to efficiently estimate sparse inverse-covariance matrices from the convex regularized log-likelihood function. In this article, I first explore the Glasso algorithm and then introduce a new graphiclasso command for the large inverse-covariance matrix estimation. Moreover, I provide a useful command for tuning parameter selection in the Glasso algorithm using the extended Bayesian information criterion, the Akaike information criterion, and cross-validation. I demonstrate the use of Glasso using simulation results and real-world data analysis.
在现代多元统计中,高维数据集无处不在,学习大型(逆)协方差矩阵对于数据分析是必不可少的。估计大型逆协方差矩阵的常用方法是通过施加凸惩罚函数来正则化高斯对数似然函数。在一篇开创性的文章中,Friedman, Hastie和Tibshirani (2008, Biostatistics 9: 432-441)提出了一种图形lasso (Glasso)算法来有效地从凸正则化对数似然函数估计稀疏逆协方差矩阵。在本文中,我首先探讨了Glasso算法,然后介绍了一个新的graphiclasso命令,用于大型逆协方差矩阵估计。此外,我还提供了一个有用的命令,用于使用扩展贝叶斯信息标准、赤池信息标准和交叉验证来调优Glasso算法中的参数选择。我通过模拟结果和实际数据分析来演示Glasso的使用。
{"title":"graphiclasso: Graphical lasso for learning sparse inverse-covariance matrices","authors":"A. Dallakyan","doi":"10.1177/1536867X221124538","DOIUrl":"https://doi.org/10.1177/1536867X221124538","url":null,"abstract":"In modern multivariate statistics, where high-dimensional datasets are ubiquitous, learning large (inverse-) covariance matrices is imperative for data analysis. A popular approach to estimating a large inverse-covariance matrix is to regularize the Gaussian log-likelihood function by imposing a convex penalty function. In a seminal article, Friedman, Hastie, and Tibshirani (2008, Biostatistics 9: 432–441) proposed a graphical lasso (Glasso) algorithm to efficiently estimate sparse inverse-covariance matrices from the convex regularized log-likelihood function. In this article, I first explore the Glasso algorithm and then introduce a new graphiclasso command for the large inverse-covariance matrix estimation. Moreover, I provide a useful command for tuning parameter selection in the Glasso algorithm using the extended Bayesian information criterion, the Akaike information criterion, and cross-validation. I demonstrate the use of Glasso using simulation results and real-world data analysis.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"625 - 642"},"PeriodicalIF":4.8,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44870771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible parametric survival analysis with multiple timescales: Estimation and implementation using stmt 多时间尺度的灵活参数生存分析:使用stmt的估计和实现
IF 4.8 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-09-01 DOI: 10.1177/1536867X221124552
H. Bower, T. Andersson, M. Crowther, P. Lambert
In this article, we describe methodology that allows for multiple timescales using flexible parametric survival models without the need for time splitting. When one fits flexible parametric survival models on the log-hazard scale, numerical integration is required in the log likelihood to fit the model. The use of numerical integration allows incorporation of arbitrary functions of time into the model and hence lends itself to the inclusion of multiple timescales in an appealing way. We describe and exemplify these methods and show how to use the command stmt , which implements these methods, alongside its postestimation commands.
在本文中,我们描述了使用灵活的参数生存模型而不需要时间分割的方法,该方法允许多个时间尺度。在对数风险尺度上拟合柔性参数生存模型时,需要对对数似然进行数值积分来拟合模型。数值积分的使用允许将任意时间函数合并到模型中,因此可以以一种吸引人的方式包含多个时间尺度。我们将描述和举例说明这些方法,并展示如何使用命令stmt(它实现了这些方法)及其后估计命令。
{"title":"Flexible parametric survival analysis with multiple timescales: Estimation and implementation using stmt","authors":"H. Bower, T. Andersson, M. Crowther, P. Lambert","doi":"10.1177/1536867X221124552","DOIUrl":"https://doi.org/10.1177/1536867X221124552","url":null,"abstract":"In this article, we describe methodology that allows for multiple timescales using flexible parametric survival models without the need for time splitting. When one fits flexible parametric survival models on the log-hazard scale, numerical integration is required in the log likelihood to fit the model. The use of numerical integration allows incorporation of arbitrary functions of time into the model and hence lends itself to the inclusion of multiple timescales in an appealing way. We describe and exemplify these methods and show how to use the command stmt , which implements these methods, alongside its postestimation commands.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"679 - 701"},"PeriodicalIF":4.8,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41889346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Software Updates 软件更新
IF 4.8 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-09-01 DOI: 10.1177/1536867x221124568
Patching your computer is one of the most important ways to protect yourself online. Windows users should turn on Windows Update [2] and set it to download and install patches automatically Additionally make sure Microsoft Updates [3] has been activated so that Office and other Microsoft updates are being applied. For Mac OS X, patches are installed via the App Store [4], and the settings can be checked under System Preferences>App Store.
{"title":"Software Updates","authors":"","doi":"10.1177/1536867x221124568","DOIUrl":"https://doi.org/10.1177/1536867x221124568","url":null,"abstract":"Patching your computer is one of the most important ways to protect yourself online. Windows users should turn on Windows Update [2] and set it to download and install patches automatically Additionally make sure Microsoft Updates [3] has been activated so that Office and other Microsoft updates are being applied. For Mac OS X, patches are installed via the App Store [4], and the settings can be checked under System Preferences>App Store.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"725 - 725"},"PeriodicalIF":4.8,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47255477","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
uirt: A command for unidimensional IRT modeling uirt:用于一维IRT建模的命令
IF 4.8 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-06-01 DOI: 10.1177/1536867X221106368
Bartosz Kondratek
In this article, I introduce the uirt command, which allows one to estimate parameters of a variety of unidimensional item response theory models (two-parameter logistic model, three-parameter logistic model, graded response model, partial credit model, and generalized partial credit model). uirt has extended item-fit analysis capabilities, features multigroup modeling, allows testing for differential item functioning, and provides tools for generating plausible values with a latent regression conditioning model. I provide examples to illustrate cases where uirt can be especially useful in conducting analyses within the item response theory approach.
在本文中,我介绍了irt命令,它允许人们估计各种一维项目反应理论模型(双参数逻辑模型、三参数逻辑模型、分级反应模型、部分信用模型和广义部分信用模型)的参数。Uirt具有扩展的项目适合分析功能,具有多组建模功能,允许对差异项目功能进行测试,并提供使用潜在回归条件反射模型生成可信值的工具。我提供了一些例子来说明irt在项目反应理论方法中进行分析时特别有用的情况。
{"title":"uirt: A command for unidimensional IRT modeling","authors":"Bartosz Kondratek","doi":"10.1177/1536867X221106368","DOIUrl":"https://doi.org/10.1177/1536867X221106368","url":null,"abstract":"In this article, I introduce the uirt command, which allows one to estimate parameters of a variety of unidimensional item response theory models (two-parameter logistic model, three-parameter logistic model, graded response model, partial credit model, and generalized partial credit model). uirt has extended item-fit analysis capabilities, features multigroup modeling, allows testing for differential item functioning, and provides tools for generating plausible values with a latent regression conditioning model. I provide examples to illustrate cases where uirt can be especially useful in conducting analyses within the item response theory approach.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"22 1","pages":"243 - 268"},"PeriodicalIF":4.8,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48002765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fitting spatial autoregressive logit and probit models using Stata: The spatbinary command 使用Stata拟合空间自回归logit和probit模型:spatbinary命令
IF 4.8 2区 数学 Q1 SOCIAL SCIENCES, MATHEMATICAL METHODS Pub Date : 2022-06-01 DOI: 10.1177/1536867X221106373
Daniele Spinelli
Starting from version 15, Stata allows users to manage data and fit regressions accounting for spatial relationships through the sp commands. Spatial regressions can be estimated using the spregress, spxtregress, and spivregress commands. These commands allow users to fit spatial autoregressive models in cross-sectional and panel data. However, they are designed to estimate regressions with continuous dependent variables. Although binary spatial regressions are important in applied econometrics, they cannot be estimated in Stata. Therefore, I introduce spatbinary, a Stata command that allows users to fit spatial logit and probit models.
从版本15开始,Stata允许用户通过sp命令管理数据和拟合空间关系的回归。空间回归可以使用spregress、spxtreress和spivregress命令来估计。这些命令允许用户在横断面和面板数据中拟合空间自回归模型。然而,它们被设计用来估计具有连续因变量的回归。虽然二元空间回归在应用计量经济学中很重要,但在Stata中无法估计。因此,我介绍了一个Stata命令,它允许用户拟合空间logit和probit模型。
{"title":"Fitting spatial autoregressive logit and probit models using Stata: The spatbinary command","authors":"Daniele Spinelli","doi":"10.1177/1536867X221106373","DOIUrl":"https://doi.org/10.1177/1536867X221106373","url":null,"abstract":"Starting from version 15, Stata allows users to manage data and fit regressions accounting for spatial relationships through the sp commands. Spatial regressions can be estimated using the spregress, spxtregress, and spivregress commands. These commands allow users to fit spatial autoregressive models in cross-sectional and panel data. However, they are designed to estimate regressions with continuous dependent variables. Although binary spatial regressions are important in applied econometrics, they cannot be estimated in Stata. Therefore, I introduce spatbinary, a Stata command that allows users to fit spatial logit and probit models.","PeriodicalId":51171,"journal":{"name":"Stata Journal","volume":"20 1","pages":"293 - 318"},"PeriodicalIF":4.8,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"65524935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Stata Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1