Psychological stress and its inevitable trajectory toward mental health deteriorations such as clinical and major depression has become an unprecedented global burden. The diagnostic procedures involved in the characterization of mental illnesses commonly follow qualitative and subjective measures of stress, often leading to greater socioeconomic burdens due to misdiagnosis and poor understanding of the severity of such illnesses, further fueled by the stigmatization surrounding mental health. In recent years, the application of cortisol and stress hormone measurements has given rise to an alternative, quantifiable approach for the psychological evaluation of stress and depression. This review comprehensively evaluates the current state-of-the-art technology for measuring cortisol and dehydroepiandrosterone (DHEA) and their applications within stress monitoring in humans. Recent advancements in these fields have shown the importance of measuring stress hormones for the characterization of stress manifestation within the human body, and its relevance in mental health decline. Preliminary results from studies considering multimodal approaches toward stress monitoring have showcased promising developments, emphasizing the need for further technological advancement in this field, which consider both neurochemical and physiological biomarkers of stress, for global benefit.
Hypothalamic-pituitary-adrenal (HPA) axis dynamics are disrupted by opioids and may be involved in substance abuse; this persists during withdrawal and abstinence and is associated with co-morbid sleep disruption leading to vulnerability to relapse. We hypothesized that chronic sleep restriction (SR) alters the HPA axis diurnal rhythm and the sexually dimorphic response to acute stressor during opioid abstinence. We developed a rat model to evaluate the effect of persistent sleep loss during opioid abstinence on HPA axis dynamics in male and female rats. Plasma ACTH and corticosterone were measured diurnally and in response to acute restraint stress in rats Before (control) compared to During subsequent opioid abstinence without or with SR. Abstinence, regardless of sleep state, led to an increase in plasma ACTH and corticosterone in the morning in males. There was a tendency for higher PM plasma ACTH during abstinence in SR males (p = 0.076). ACTH and corticosterone responses to restraint were reduced in male SR rats whereas there was a failure to achieve the post-restraint nadir in female SR rats. There was no effect of the treatments or interventions on adrenal weight normalized to body weight. SR resulted in a dramatic increase in hypothalamic PVN AVP mRNA and plasma copeptin in male but not female rats. This corresponded to the attenuation of the HPA axis stress response in SR males during opioid abstinence. We have identified a potentially unique, sexually dimorphic role for magnocellular vasopressin in the control of the HPA axis during opioid abstinence and sleep restriction.
The brain is the key organ that orchestrates the stress response which translates to the retina. The retina is an extension of the brain and retinal symptoms in subjects with neurodegenerative diseases substantiated the eye as a window to the brain. The retina is used in this study to determine whether chronic stress reflects neurodegenerative signs indicative of neurodegenerative conditions. A three-year prospective cohort (n = 333; aged 46 ± 9 years) was stratified into stress-phenotype cases (n = 212) and controls (n = 121) by applying the Malan stress-phenotype index. Neurodegenerative risk markers included ischemia (astrocytic S100 calcium-binding protein B/S100B); 24-h blood pressure, proteomics; inflammation (tumor-necrosis-factor-α/TNF-α); neuronal damage (neuron-specific-enolase); anti-apoptosis of retinal-ganglion-cells (beta-nerve-growth-factor), astrocytic activity (glial-fibrillary-acidic-protein); hematocrit (viscosity) and retinal follow-up data [vessels; stress-optic-neuropathy]. Stress-optic-neuropathy risk was calculated from two indices: a newly derived diastolic-ocular-perfusion-pressure cut-point ≥68 mmHg relating to the stress-phenotype; combined with an established cup-to-disk ratio cut-point ≥0.3. Higher stress-optic-neuropathy (39% vs. 17%) and hypertension (73% vs. 16%) prevalence was observed in the stress-phenotype cases vs. controls. Elevated diastolic-ocular-perfusion-pressure, indicating hypoperfusion, was related to arterial narrowing and trend for ischemia increases in the stress-phenotype. Ischemia in the stress-phenotype at baseline, follow-up and three-year changes was related to consistent inflammation (TNF-α and cytokine-interleukin-17-receptor-A), neuron-specific-enolase increases, consistent apoptosis (chitinase-3-like protein 1, low beta-nerve-growth-factor), glial-fibrillary-acidic-protein decreases, elevated viscosity, vein widening as risk marker of endothelial dysfunction in the blood-retinal barrier, lower vein count, and elevated stress-optic-neuropathy. The stress-phenotype and related neurodegenerative signs of ongoing brain ischemia, apoptosis and endothelial dysfunction compromised blood-retinal barrier permeability and optic nerve integrity. In fact, the stress-phenotype could identify persons at high risk of neurodegeneration to indicate a neurodegenerative condition.
Besides significant benefits to physical health, exercise promotes mental health, reduces symptoms of mental illness, and enhances psychological development. Exercise can offset the impact of chronic stress, which is a major precursor to the development of mental disorders. The effects of exercise on chronic stress-induced behaviors are contradictory in preclinical studies, primarily due to the lack of data and sex-specific investigations. We sought to evaluate the effects of exercise on chronic stress-induced behavioral changes in both male and female mice. Mice were subjected to an Unpredictable Chronic Mild Stress (UCMS) paradigm with accessibility to running wheels for 2 h daily. Physiological and behavioral evaluations were conducted throughout the stress paradigm to determine if exercise blunts the effects of UCMS. Chronic stress induced voluntary wheel running (VWR) and weight loss in male and female mice. Compared to males, increased VWR was reported in females who also regained their weight lost by the end of the UCMS protocol. Exercise promoted resilience to stress-induced hyponeophagia in the novelty-suppressed feeding test and increased sucrose consumption. Exercise induced a sex-specific reduction in immobility and avoidance behavior in the tail suspension and open field tests and increased exploratory behavior in the light-dark test. These results indicate that exercise can promote resilience to the behavioral effects of chronic stress in males and females, and can affect behavior independent of chronic stress.
Stress can have severe psychological and physiological consequences. Thus, inappropriate regulation of the stress response is linked to the etiology of mood and anxiety disorders. The generation and implementation of preclinical animal models represent valuable tools to explore and characterize the mechanisms underlying the pathophysiology of stress-related psychiatric disorders and the development of novel pharmacological strategies. In this commentary, we discuss the strengths and limitations of state-of-the-art molecular and computational advances employed in stress neurobiology research, with a focus on the ever-increasing spatiotemporal resolution in cell biology and behavioral science. Finally, we share our perspective on future directions in the fields of preclinical and human stress research.
Mary Dallman has left a legacy in neuroendocrinology, not only as the scientist who elaborated on new concepts such as rapid corticosteroid feedback pathways, but also as a role model, particularly for women who followed in her footsteps. In this contribution, I compare (i) the remarkable journey she made toward her position as the first female faculty member ever at the physiology department at USCF with that of generations after her; (ii) the contribution of our labs on rapid corticosteroid actions; and, (iii) finally, our experiences with unexpected findings for which one should always keep an open mind, a standpoint that was fervently advocated by Mary Dallman.
Stress is a normal response to situational pressures or demands. Exposure to stress activates the hypothalamic-pituitary-adrenal (HPA) axis and leads to the release of corticosteroids, which act in the brain via two distinct receptors: mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Persistent HPA axis overactivation or dysregulation can disrupt an individual's homeostasis, thereby contributing to an increased risk for mental illness. On the other hand, successful coping with stressful events involves adaptive and cognitive processes in the brain that render individuals more resilient to similar stressors in the future. Here we review the role of the MR in these processes, starting with an overview of the physiological structure, ligand binding, and expression of MR, and further summarizing its role in the brain, its relevance to psychiatric disorders, and related rodent studies. Given the central role of MR in cognitive and emotional functioning, and its importance as a target for promoting resilience, future research should investigate how MR modulation can be used to alleviate disturbances in emotion and behavior, as well as cognitive impairment, in patients with stress-related psychiatric disorders.
Stress-related exhaustion is associated with cognitive deficits, measured subjectively using questionnaires targeting everyday slips and failures or more objectively as performance on cognitive tests. Yet, only weak associations between subjective and objective cognitive measures in this group has been presented, theorized to reflect recruitment of compensational resources during cognitive testing. This explorative study investigated how subjectively reported symptoms of cognitive functioning and burnout levels relate to performance as well as neural activation during a response inhibition task. To this end, 56 patients diagnosed with stress-related exhaustion disorder (ED; ICD-10 code F43.8A) completed functional magnetic resonance imaging (fMRI) using a Flanker paradigm. In order to investigate associations between neural activity and subjective cognitive complaints (SCCs) and burnout, respectively, scores on the Prospective and Retrospective Memory Questionnaire (PRMQ) and the Shirom-Melamed Burnout Questionnaire (SMBQ) were added as covariates of interest to a general linear model at the whole-brain level. In agreement with previous research, the results showed that SCCs and burnout levels were largely unrelated to task performance. Moreover, we did not see any correlations between these self-report measures and altered neural activity in frontal brain regions. Instead, we observed an association between the PRMQ and increased neural activity in an occipitally situated cluster. We propose that this finding may reflect compensational processes at the level of basic visual attention which could go unnoticed in cognitive testing but still be reflected in the experience of deficits in everyday cognitive functioning.