Pub Date : 2021-01-01DOI: 10.12989/SEM.2021.79.5.653
Mehran Agha Mohammad Pour, H. Ovesy
The aim of this paper is to study the effects of linear viscoelastic behavior on dynamic buckling response of imperfect composite laminated plates subjected to in-plane dynamic loads by implementing semi-analytical finite strip method (FSM). The semi-analytical FSM converges with a comparatively small number of strips and correspondingly small number of degrees of freedom. Thus, it is usually implemented more easily and faster than many other computational methods. The governing equations are derived by using classical laminated plate theory (CLPT) and the behavior of plate is assumed to be geometrically nonlinear through Von-Karman assumptions. The Newmark's implicit time integration method in conjunction with the Newton-Raphson iteration are employed to solve the nonlinear governing equation. A Kelvin-Voigt viscoelastic model is considered, and the effects of viscosity coefficient, thickness of the layers of the composite plate and boundary conditions on the nonlinear dynamic buckling response are discussed. In order to justify the accuracy of the results, some of them are verified against those available in other sources. It is also shown that the nonlinear dynamic buckling response of an imperfect viscoelastic composite laminated plate is significantly different from the elastic one by considering different viscosity coefficients.
{"title":"Nonlinear dynamic buckling analysis of imperfect viscoelastic composite laminated plates","authors":"Mehran Agha Mohammad Pour, H. Ovesy","doi":"10.12989/SEM.2021.79.5.653","DOIUrl":"https://doi.org/10.12989/SEM.2021.79.5.653","url":null,"abstract":"The aim of this paper is to study the effects of linear viscoelastic behavior on dynamic buckling response of imperfect composite laminated plates subjected to in-plane dynamic loads by implementing semi-analytical finite strip method (FSM). The semi-analytical FSM converges with a comparatively small number of strips and correspondingly small number of degrees of freedom. Thus, it is usually implemented more easily and faster than many other computational methods. The governing equations are derived by using classical laminated plate theory (CLPT) and the behavior of plate is assumed to be geometrically nonlinear through Von-Karman assumptions. The Newmark's implicit time integration method in conjunction with the Newton-Raphson iteration are employed to solve the nonlinear governing equation. A Kelvin-Voigt viscoelastic model is considered, and the effects of viscosity coefficient, thickness of the layers of the composite plate and boundary conditions on the nonlinear dynamic buckling response are discussed. In order to justify the accuracy of the results, some of them are verified against those available in other sources. It is also shown that the nonlinear dynamic buckling response of an imperfect viscoelastic composite laminated plate is significantly different from the elastic one by considering different viscosity coefficients.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"653"},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66130584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.12989/SEM.2021.79.6.723
B. E. Yapanmış, Necla Togun, S. Bağdatlı, Sevki Akkoca
The history of modern humanity is developing towards making the technological equipment used as small as possible to facilitate human life. From this perspective, it is expected that electromechanical systems should be reduced to a size suitable for the requirements of the era. Therefore, dimensionless motion analysis of beams on the devices such as electronics, optics, etc., is of great significance. In this study, the linear and nonlinear vibration of nanobeams, which are frequently used in nanostructures, are focused on. Scenarios have been created about the vibration of nanobeams on the magnetic field and elastic foundation. In addition to these, the boundary conditions (BC) of nanobeams having clamped-clamped and simple-simple support situations are investigated. Nonlinear and linear natural frequencies of nanobeams are found, and the results are presented in tables and graphs. When the results are examined, decreases the vibration amplitudes with the increase of magnetic field and the elastic foundation coefficient. Higher frequency values and correction terms were obtained in clamped-clamped support conditions due to the structure's stiffening.
{"title":"Magnetic field effect on nonlinear vibration of nonlocal nanobeam embedded in nonlinear elastic foundation","authors":"B. E. Yapanmış, Necla Togun, S. Bağdatlı, Sevki Akkoca","doi":"10.12989/SEM.2021.79.6.723","DOIUrl":"https://doi.org/10.12989/SEM.2021.79.6.723","url":null,"abstract":"The history of modern humanity is developing towards making the technological equipment used as small as possible to facilitate human life. From this perspective, it is expected that electromechanical systems should be reduced to a size suitable for the requirements of the era. Therefore, dimensionless motion analysis of beams on the devices such as electronics, optics, etc., is of great significance. In this study, the linear and nonlinear vibration of nanobeams, which are frequently used in nanostructures, are focused on. Scenarios have been created about the vibration of nanobeams on the magnetic field and elastic foundation. In addition to these, the boundary conditions (BC) of nanobeams having clamped-clamped and simple-simple support situations are investigated. Nonlinear and linear natural frequencies of nanobeams are found, and the results are presented in tables and graphs. When the results are examined, decreases the vibration amplitudes with the increase of magnetic field and the elastic foundation coefficient. Higher frequency values and correction terms were obtained in clamped-clamped support conditions due to the structure's stiffening.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"723"},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66130974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.12989/SEM.2021.79.6.737
P. Nguyen, Jeong-Hoi Kim, Jong-Byung Oh, Youngshik Park, Dongkyun Lee
This study presents overviews of a first proposed Hidden boundary one-way Rib precast concrete Slab, so-called HRS. In order to investigate bending behaviors of the novel structural system, three specimens manufactured in factory are tested by corresponding static loading protocol experiments. Four-points bending tests in both cases of the presence and absence of topping concrete slabs are performed. Results of the experiment scrutinize how each structural component such as rebars, topping concretes, strand wires can affect the bending behavior of HRS. As regards the main originality of this paper, approximate equations showing flexural strengths for a partially prestressed concrete flagged section, like HRS, are proposed in accordance with several current global and local design standards such as ACI 318, EN: Eurocode 2, PCI, AASHTO 2002, KCI 2012 and CSA A.23. Moreover, this study provides another predicting approach using finite element analysis of MIDAS FEA for analytical performances of specimens. Through these experimental and analytical results, the general characteristic of HRS may be observed and studied for realization in the field of prestressed precast concrete industries for construction.
{"title":"Flexural behaviors assessment of Hidden boundary Rib precast concrete Slab (HRS) with bi-tensional prestress: Experiments, analyses, and formulations","authors":"P. Nguyen, Jeong-Hoi Kim, Jong-Byung Oh, Youngshik Park, Dongkyun Lee","doi":"10.12989/SEM.2021.79.6.737","DOIUrl":"https://doi.org/10.12989/SEM.2021.79.6.737","url":null,"abstract":"This study presents overviews of a first proposed Hidden boundary one-way Rib precast concrete Slab, so-called HRS. In order to investigate bending behaviors of the novel structural system, three specimens manufactured in factory are tested by corresponding static loading protocol experiments. Four-points bending tests in both cases of the presence and absence of topping concrete slabs are performed. Results of the experiment scrutinize how each structural component such as rebars, topping concretes, strand wires can affect the bending behavior of HRS. As regards the main originality of this paper, approximate equations showing flexural strengths for a partially prestressed concrete flagged section, like HRS, are proposed in accordance with several current global and local design standards such as ACI 318, EN: Eurocode 2, PCI, AASHTO 2002, KCI 2012 and CSA A.23. Moreover, this study provides another predicting approach using finite element analysis of MIDAS FEA for analytical performances of specimens. Through these experimental and analytical results, the general characteristic of HRS may be observed and studied for realization in the field of prestressed precast concrete industries for construction.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"79 1","pages":"737"},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66131086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.12989/SEM.2021.80.1.027
Shiming Liu, Bin Huang, Y. Xie
Shell bridges have attracted extensive interest in engineering research and practice. This paper aims to evaluate the effects of longitudinal and transverse curvatures on the optimal design of the shell bridge. For this purpose, a slant-legged steel shell footbridge with the same initial and target volumes of steel was chosen to build parametric geometric models with different curvature radii, and then topology optimization was carried out using the bi-directional evolutionary structural optimization (BESO) technique to obtain optimized designs with high structural stiffness. Furthermore, linear static analysis and eigenvalue analysis demonstrate that the displacement, von Mises effective stress, and the first-order vertical vibration frequency satisfied all the requirements of design regulations. Numerical results indicate that not only the longitudinal curvature but also the transverse curvature have a significant effect on the optimized designs of steel shell footbridge. While the mean compliance increased with the transverse curvature radius, it first decreased and then increased with the longitudinal curvature radius.
{"title":"Effects of longitudinal and transverse curvatures on optimal design of shell footbridge","authors":"Shiming Liu, Bin Huang, Y. Xie","doi":"10.12989/SEM.2021.80.1.027","DOIUrl":"https://doi.org/10.12989/SEM.2021.80.1.027","url":null,"abstract":"Shell bridges have attracted extensive interest in engineering research and practice. This paper aims to evaluate the effects of longitudinal and transverse curvatures on the optimal design of the shell bridge. For this purpose, a slant-legged steel shell footbridge with the same initial and target volumes of steel was chosen to build parametric geometric models with different curvature radii, and then topology optimization was carried out using the bi-directional evolutionary structural optimization (BESO) technique to obtain optimized designs with high structural stiffness. Furthermore, linear static analysis and eigenvalue analysis demonstrate that the displacement, von Mises effective stress, and the first-order vertical vibration frequency satisfied all the requirements of design regulations. Numerical results indicate that not only the longitudinal curvature but also the transverse curvature have a significant effect on the optimized designs of steel shell footbridge. While the mean compliance increased with the transverse curvature radius, it first decreased and then increased with the longitudinal curvature radius.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"80 1","pages":"27"},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66131096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.12989/SEM.2021.77.1.103
B. Karthick, M. Muthuraj
Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm – 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load – deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.
{"title":"Effect of medium coarse aggregate on fracture properties of ultra high strength concrete","authors":"B. Karthick, M. Muthuraj","doi":"10.12989/SEM.2021.77.1.103","DOIUrl":"https://doi.org/10.12989/SEM.2021.77.1.103","url":null,"abstract":"Ultra high strength concrete (UHSC) originally proposed by Richards and Cheyrezy (1995) composed of cement, silica fume, quartz sand, quartz powder, steel fibers, superplasticizer etc. Later, other ingredients such as fly ash, GGBS, metakaoline, copper slag, fine aggregate of different sizes have been added to original UHSC. In the present investigation, the combined effect of coarse aggregate (6mm – 10mm) and steel fibers (0.50%, 1.0% and 1.5%) has been studied on UHSC mixes to evaluate mechanical and fracture properties. Compressive strength, split tensile strength and modulus of elasticity were determined for the three UHSC mixes. Size dependent fracture energy was evaluated by using RILEM work of fracture and size independent fracture energy was evaluated by using (i) RILEM work of fracture with tail correction to load – deflection plot (ii) boundary effect method. The constitutive relationship between the residual stress carrying capacity (σ) and the corresponding crack opening (w) has been constructed in an inverse manner based on the concept of a non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams. It was found that (i) the size independent fracture energy obtained by using above two approaches yielded similar value and (ii) tensile stress increases with the increase of % of fibers. These two fracture properties will be very much useful for the analysis of cracked concrete structural components.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"77 1","pages":"103-114"},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66120077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effect of distribution shape of porosity using a quasi-3D theory for free vibration analysis of FG microbeams is studied analytically in the present paper. The microbeams are simply-supported and nonhomogeneous, with power function variation of Young's modulus along their thickness. The modified coupled stress theory is utilized to consolidate size dependency of microbeam. Both even and uneven distribution shape of porosity are considered and the effective properties of porous FG microbeams are defined by theoretical formula with an additional term of porosity. The equation of motion is obtained through Hamilton's principle, however, Navier type solution method is used to obtain frequencies. The influences played by many parameters are also investigated.
{"title":"Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity","authors":"Youcef Tlidji, Rabia Benferhat, Hassaine Daouadji Tahar","doi":"10.12989/SEM.2021.77.2.217","DOIUrl":"https://doi.org/10.12989/SEM.2021.77.2.217","url":null,"abstract":"The effect of distribution shape of porosity using a quasi-3D theory for free vibration analysis of FG microbeams is studied analytically in the present paper. The microbeams are simply-supported and nonhomogeneous, with power function variation of Young's modulus along their thickness. The modified coupled stress theory is utilized to consolidate size dependency of microbeam. Both even and uneven distribution shape of porosity are considered and the effective properties of porous FG microbeams are defined by theoretical formula with an additional term of porosity. The equation of motion is obtained through Hamilton's principle, however, Navier type solution method is used to obtain frequencies. The influences played by many parameters are also investigated.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"77 1","pages":"217-229"},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66120596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.12989/SEM.2021.77.3.369
Junwen Zhou, Mingxin Zhao
The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.
{"title":"Shaking table test of liquid storage tank with finite element analysis considering uplift effect","authors":"Junwen Zhou, Mingxin Zhao","doi":"10.12989/SEM.2021.77.3.369","DOIUrl":"https://doi.org/10.12989/SEM.2021.77.3.369","url":null,"abstract":"The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"77 1","pages":"369-381"},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66120871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.12989/SEM.2021.77.3.407
Gholamali Mirali-Katouli, G. Abdollahzadeh
Seismic isolation is one of the best-advanced methods for controlling seismic vibrations in buildings, bridges and nuclear facilities. A new Friction Multi-Layer Elastomeric Seismic Isolator (FMESI) has been modeled, analyzed and investigated by ABAQUS finite element analysis software and then, compared to real models. A number of friction cores have been used instead of the lead core therefore, some of the previous isolator problems have been almost resolved. Moreover, Studies show that the proposed isolator provides suitable initial stiffness and acceptable hysteresis behavior under different vertical and horizontal loading conditions and also internal stresses in different layers are acceptable. Also, as a result, the initial stiffness and overall area of the curves increase, as friction coefficients of the cores increase, although the frictional coefficients must be within a certain range.
{"title":"A new proposed Friction Multi-layered Elastomeric Seismic Isolator (FMESI)","authors":"Gholamali Mirali-Katouli, G. Abdollahzadeh","doi":"10.12989/SEM.2021.77.3.407","DOIUrl":"https://doi.org/10.12989/SEM.2021.77.3.407","url":null,"abstract":"Seismic isolation is one of the best-advanced methods for controlling seismic vibrations in buildings, bridges and nuclear facilities. A new Friction Multi-Layer Elastomeric Seismic Isolator (FMESI) has been modeled, analyzed and investigated by ABAQUS finite element analysis software and then, compared to real models. A number of friction cores have been used instead of the lead core therefore, some of the previous isolator problems have been almost resolved. Moreover, Studies show that the proposed isolator provides suitable initial stiffness and acceptable hysteresis behavior under different vertical and horizontal loading conditions and also internal stresses in different layers are acceptable. Also, as a result, the initial stiffness and overall area of the curves increase, as friction coefficients of the cores increase, although the frictional coefficients must be within a certain range.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"77 1","pages":"407-416"},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66121018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.12989/SEM.2021.77.4.495
Hung V. Dang, M. Raza, H. Tran-Ngoc, T. Bui-Tien, H. Nguyen
This study devises a novel approach, namely quadruple 1D convolutional neural network, for detecting connection stiffness reduction in steel truss bridge structure using experimental and numerical modal data. The method is developed based on expertise in two domains: firstly, in Structural Health Monitoring, the mode shapes and its high-order derivatives, including second, third, and fourth derivatives, are accurate indicators in assessing damages. Secondly, in the Machine Learning literature, the deep convolutional neural networks are able to extract relevant features from input data, then perform classification tasks with high accuracy and reduced time complexity. The efficacy and effectiveness of the present method are supported through an extensive case study with the railway Nam O bridge. It delivers highly accurate results in assessing damage localization and damage severity for single as well as multiple damage scenarios. In addition, the robustness of this method is tested with the presence of white noise reflecting unavoidable uncertainties in signal processing and modeling in reality. The proposed approach is able to provide stable results with data corrupted by noise up to 10%.
{"title":"Connection stiffness reduction analysis in steel bridge via deep CNN and modal experimental data","authors":"Hung V. Dang, M. Raza, H. Tran-Ngoc, T. Bui-Tien, H. Nguyen","doi":"10.12989/SEM.2021.77.4.495","DOIUrl":"https://doi.org/10.12989/SEM.2021.77.4.495","url":null,"abstract":"This study devises a novel approach, namely quadruple 1D convolutional neural network, for detecting connection stiffness reduction in steel truss bridge structure using experimental and numerical modal data. The method is developed based on expertise in two domains: firstly, in Structural Health Monitoring, the mode shapes and its high-order derivatives, including second, third, and fourth derivatives, are accurate indicators in assessing damages. Secondly, in the Machine Learning literature, the deep convolutional neural networks are able to extract relevant features from input data, then perform classification tasks with high accuracy and reduced time complexity. The efficacy and effectiveness of the present method are supported through an extensive case study with the railway Nam O bridge. It delivers highly accurate results in assessing damage localization and damage severity for single as well as multiple damage scenarios. In addition, the robustness of this method is tested with the presence of white noise reflecting unavoidable uncertainties in signal processing and modeling in reality. The proposed approach is able to provide stable results with data corrupted by noise up to 10%.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"77 1","pages":"495-508"},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66121272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-01DOI: 10.12989/SEM.2021.78.1.053
T. Nahar, M. Rahman, Dookie Kim
The determination of the damage index to reveal the performance level of a structure can constitute the seismic risk generalization approach based on the parametric analysis. This study implemented this concept to one kind of civil engineering structure that is the concrete gravity dam. Different cases of the structure exhibit their individual responses, which constitute different considerations. Therefore, this approach allows the parametric study of concrete as well as soil for evaluating the seismic nature in the generalized case. To ensure that the target algorithm applicable to most of the concrete gravity dams, a very simple procedure has been considered. In order to develop a correlated algorithm (by response surface methodology; RSM) between the ground motion and the structural property, randomized sampling was adopted through a stochastic method called half-fractional central composite design. The responses in the case of fluid-foundation-dam interaction (FFDI) make it more reliable by introducing the foundation as being bounded by infinite elements. To evaluate the seismic generalization of FFDI models, incremental dynamic analysis (IDA) was carried out under the impacts of various earthquake records, which have been selected from the Pacific Earthquake Engineering Research Center data. Here, the displacement-based damage indexed fragility curves have been generated to show the variation in the seismic pattern of the dam. The responses to the sensitivity analysis of the various parameters presented here are the most effective controlling factors for the concrete gravity dam. Finally, to establish the accuracy of the proposed approach, reliable verification was adopted in this study.
{"title":"Damage index based seismic risk generalization for concrete gravity dams considering FFDI","authors":"T. Nahar, M. Rahman, Dookie Kim","doi":"10.12989/SEM.2021.78.1.053","DOIUrl":"https://doi.org/10.12989/SEM.2021.78.1.053","url":null,"abstract":"The determination of the damage index to reveal the performance level of a structure can constitute the seismic risk generalization approach based on the parametric analysis. This study implemented this concept to one kind of civil engineering structure that is the concrete gravity dam. Different cases of the structure exhibit their individual responses, which constitute different considerations. Therefore, this approach allows the parametric study of concrete as well as soil for evaluating the seismic nature in the generalized case. To ensure that the target algorithm applicable to most of the concrete gravity dams, a very simple procedure has been considered. In order to develop a correlated algorithm (by response surface methodology; RSM) between the ground motion and the structural property, randomized sampling was adopted through a stochastic method called half-fractional central composite design. The responses in the case of fluid-foundation-dam interaction (FFDI) make it more reliable by introducing the foundation as being bounded by infinite elements. To evaluate the seismic generalization of FFDI models, incremental dynamic analysis (IDA) was carried out under the impacts of various earthquake records, which have been selected from the Pacific Earthquake Engineering Research Center data. Here, the displacement-based damage indexed fragility curves have been generated to show the variation in the seismic pattern of the dam. The responses to the sensitivity analysis of the various parameters presented here are the most effective controlling factors for the concrete gravity dam. Finally, to establish the accuracy of the proposed approach, reliable verification was adopted in this study.","PeriodicalId":51181,"journal":{"name":"Structural Engineering and Mechanics","volume":"78 1","pages":"53"},"PeriodicalIF":2.2,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66124402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}